Skip to content
2000
image of Role of Traditional Chinese Medicine Formulations in Reducing Neuroinflammation and Oxidative Stress in Alzheimer’s Disease

Abstract

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease among older people. AD can cause memory loss and neuropsychiatric abnormalities. AD pathogenesis is complicated. Oxidative stress and chronic neuroinflammation are believed to contribute to the occurrence and progression of AD. Oxidative stress refers to a harmful state of neurons caused by an impaired antioxidant system and abnormal accumulation of reactive oxygen species (ROS) in the brain of a patient with AD. Neuroinflammation often results from a series of harmful responses to neurons induced by the overactivated microglia and astrocytes, such as the secretion of proinflammatory cytokines and promotion of neuronal apoptosis. Several studies have demonstrated that inhibition of oxidative stress and neuroinflammation can alleviate AD symptoms, suggesting that they may serve as potential targets for drug development. Herein, we review the mechanism of oxidative stress and neuroinflammation. Additionally, we have summarized data from preclinical studies published between 2019 and 2024 that investigate traditional Chinese medicine (TCM) formulations used to treat AD through the modulation of oxidative stress and neuroinflammation. We have included information on the extracts, compounds, modified compounds, and novel delivery systems for TCM formulations and summarized the key mechanisms involved in their actions.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X390931250927121733
2025-10-17
2025-12-18
Loading full text...

Full text loading...

/deliver/fulltext/cn/10.2174/011570159X390931250927121733/BMS-CN-2025-57.html?itemId=/content/journals/cn/10.2174/011570159X390931250927121733&mimeType=html&fmt=ahah

References

  1. Abbott A. Dementia: A problem for our age. Nature 2011 475 7355 S2 S4 10.1038/475S2a 21760579
    [Google Scholar]
  2. Cui L. Hou N.N. Wu H.M. Zuo X. Lian Y.Z. Zhang C.N. Wang Z.F. Zhang X. Zhu J.H. Prevalence of Alzheimer’s disease and Parkinson’s disease in China: An updated systematical analysis. Front. Aging Neurosci. 2020 12 603854 10.3389/fnagi.2020.603854 33424580
    [Google Scholar]
  3. DeTure M.A. Dickson D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 2019 14 1 32 10.1186/s13024‑019‑0333‑5 31375134
    [Google Scholar]
  4. Atri A. The Alzheimer’s disease clinical spectrum. Med. Clin. North Am. 2019 103 2 263 293 10.1016/j.mcna.2018.10.009 30704681
    [Google Scholar]
  5. 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023 19 4 1598 1695 10.1002/alz.13016 36918389
    [Google Scholar]
  6. Wang Y. Mandelkow E. Tau in physiology and pathology. Nat. Rev. Neurosci. 2016 17 1 22 35 10.1038/nrn.2015.1 26631930
    [Google Scholar]
  7. Liu P.P. Xie Y. Meng X.Y. Kang J.S. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct. Target. Ther. 2019 4 1 29 10.1038/s41392‑019‑0063‑8 31637009
    [Google Scholar]
  8. Nguyen P.H. Ramamoorthy A. Sahoo B.R. Zheng J. Faller P. Straub J.E. Dominguez L. Shea J.E. Dokholyan N.V. De Simone A. Ma B. Nussinov R. Najafi S. Ngo S.T. Loquet A. Chiricotto M. Ganguly P. McCarty J. Li M.S. Hall C. Wang Y. Miller Y. Melchionna S. Habenstein B. Timr S. Chen J. Hnath B. Strodel B. Kayed R. Lesné S. Wei G. Sterpone F. Doig A.J. Derreumaux P. Amyloid Oligomers: A Joint experimental/computational perspective on Alzheimer’s disease, Parkinson’s disease, type ii diabetes, and amyotrophic lateral sclerosis. Chem. Rev. 2021 121 4 2545 2647 10.1021/acs.chemrev.0c01122 33543942
    [Google Scholar]
  9. FDA-Approved Treatments for Alzheimer’s FDA-Approved Treatments for Alzheimer's. 2023 Available from: https://www.alz.org/getmedia/4f4ca289-a2c6-4df9-8cdf-390365bd477e/alzheimers-dementia-fda-approved-treatments-for-alzheimers-ts.pdf
  10. Sivandzade F. Prasad S. Bhalerao A. Cucullo L. NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches. Redox Biol. 2019 21 101059 10.1016/j.redox.2018.11.017 30576920
    [Google Scholar]
  11. Singh A. Kukreti R. Saso L. Kukreti S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 2019 24 8 1583 10.3390/molecules24081583 31013638
    [Google Scholar]
  12. Lü J.M. Lin P.H. Yao Q. Chen C. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. J. Cell. Mol. Med. 2010 14 4 840 860 10.1111/j.1582‑4934.2009.00897.x 19754673
    [Google Scholar]
  13. Wang H. Jiang T. Li W. Gao N. Zhang T. Resveratrol attenuates oxidative damage through activating mitophagy in an in vitro model of Alzheimer’s disease. Toxicol. Lett. 2018 282 100 108 10.1016/j.toxlet.2017.10.021 29097221
    [Google Scholar]
  14. Abolaji A.O. Adedara A.O. Adie M.A. Vicente-Crespo M. Farombi E.O. Resveratrol prolongs lifespan and improves 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced oxidative damage and behavioural deficits in Drosophila melanogaster. Biochem. Biophys. Res. Commun. 2018 503 2 1042 1048 10.1016/j.bbrc.2018.06.114 29935183
    [Google Scholar]
  15. Rao S.V. Hemalatha P. Yetish S. Muralidhara M. Rajini P.S. Prophylactic neuroprotective propensity of Crocin, a carotenoid against rotenone induced neurotoxicity in mice: behavioural and biochemical evidence. Metab. Brain Dis. 2019 34 5 1341 1353 10.1007/s11011‑019‑00451‑y 31214956
    [Google Scholar]
  16. Kumar P. Singh S. Jamwal S. Neuroprotective potential of quercetin in combination with piperine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. Neural Regen. Res. 2017 12 7 1137 1144 10.4103/1673‑5374.211194 28852397
    [Google Scholar]
  17. Buendia I. Michalska P. Navarro E. Gameiro I. Egea J. León R. Nrf2-ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol. Ther. 2016 157 84 104 10.1016/j.pharmthera.2015.11.003 26617217
    [Google Scholar]
  18. Picca A. Mankowski R.T. Burman J.L. Donisi L. Kim J.S. Marzetti E. Leeuwenburgh C. Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nat. Rev. Cardiol. 2018 15 9 543 554 10.1038/s41569‑018‑0059‑z 30042431
    [Google Scholar]
  19. Lin M.T. Beal M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006 443 7113 787 795 10.1038/nature05292 17051205
    [Google Scholar]
  20. Mitra S. Kaushik N. Moon I.S. Choi E.H. Kaushik N.K. Utility of reactive species generation in plasma medicine for neuronal development. Biomedicines 2020 8 9 348 10.3390/biomedicines8090348 32932745
    [Google Scholar]
  21. Beckhauser T.F. Francis-Oliveira J. De Pasquale R. Reactive oxygen species: Physiological and physiopathological effects on synaptic plasticity J. Exp. Neurosci. 2016 10 S1 JEN.S39887. 10.4137/JEN.S39887 27625575
    [Google Scholar]
  22. Le Belle J.E. Orozco N.M. Paucar A.A. Saxe J.P. Mottahedeh J. Pyle A.D. Wu H. Kornblum H.I. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 2011 8 1 59 71 10.1016/j.stem.2010.11.028 21211782
    [Google Scholar]
  23. Wang Y. Xu E. Musich P.R. Lin F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci. Ther. 2019 25 7 816 824 10.1111/cns.13116 30889315
    [Google Scholar]
  24. Norat P. Soldozy S. Sokolowski J.D. Gorick C.M. Kumar J.S. Chae Y. Yağmurlu K. Prada F. Walker M. Levitt M.R. Price R.J. Tvrdik P. Kalani M.Y.S. Mitochondrial dysfunction in neurological disorders: Exploring mitochondrial transplantation. NPJ Regen. Med. 2020 5 1 22 10.1038/s41536‑020‑00107‑x 33298971
    [Google Scholar]
  25. Ryan K.C. Ashkavand Z. Norman K.R. The role of mitochondrial calcium homeostasis in Alzheimer’s and related diseases. Int. J. Mol. Sci. 2020 21 23 9153 10.3390/ijms21239153 33271784
    [Google Scholar]
  26. Li Q. Barres B.A. Microglia and macrophages in brain homeostasis and disease. Nat. Rev. Immunol. 2018 18 4 225 242 10.1038/nri.2017.125 29151590
    [Google Scholar]
  27. Colonna M. Butovsky O. Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 2017 35 1 441 468 10.1146/annurev‑immunol‑051116‑052358 28226226
    [Google Scholar]
  28. Nimmerjahn A. Kirchhoff F. Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005 308 5726 1314 1318 10.1126/science.1110647 15831717
    [Google Scholar]
  29. Davalos D. Grutzendler J. Yang G. Kim J.V. Zuo Y. Jung S. Littman D.R. Dustin M.L. Gan W.B. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 2005 8 6 752 758 10.1038/nn1472 15895084
    [Google Scholar]
  30. Stence N. Waite M. Dailey M.E. Dynamics of microglial activation: A confocal time-lapse analysis in hippocampal slices. Glia 2001 33 3 256 266 10.1002/1098‑1136(200103)33:3<256:AID‑GLIA1024>3.0.CO;2‑J 11241743
    [Google Scholar]
  31. Leng F. Edison P. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nat. Rev. Neurol. 2021 17 3 157 172 10.1038/s41582‑020‑00435‑y 33318676
    [Google Scholar]
  32. Ransohoff R.M. A polarizing question: Do M1 and M2 microglia exist? Nat. Neurosci. 2016 19 8 987 991 10.1038/nn.4338 27459405
    [Google Scholar]
  33. Rawji K.S. Mishra M.K. Michaels N.J. Rivest S. Stys P.K. Yong V.W. Immunosenescence of microglia and macrophages: Impact on the ageing central nervous system. Brain 2016 139 3 653 661 10.1093/brain/awv395 26912633
    [Google Scholar]
  34. Tansey M.G. Wallings R.L. Houser M.C. Herrick M.K. Keating C.E. Joers V. Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol. 2022 22 11 657 673 10.1038/s41577‑022‑00684‑6 35246670
    [Google Scholar]
  35. Boyd R.J. Avramopoulos D. Jantzie L.L. McCallion A.S. Neuroinflammation represents a common theme amongst genetic and environmental risk factors for Alzheimer and Parkinson diseases. J. Neuroinflammation 2022 19 1 223 10.1186/s12974‑022‑02584‑x 36076238
    [Google Scholar]
  36. Kumar V. Toll-like receptors in the pathogenesis of neuroinflammation. J. Neuroimmunol. 2019 332 16 30 10.1016/j.jneuroim.2019.03.012 30928868
    [Google Scholar]
  37. Roh J.S. Sohn D.H. Damage-associated molecular patterns in inflammatory diseases. Immune Netw. 2018 18 4 e27 10.4110/in.2018.18.e27 30181915
    [Google Scholar]
  38. Keogh C.E. Rude K.M. Gareau M.G. Role of pattern recognition receptors and the microbiota in neurological disorders. J. Physiol. 2021 599 5 1379 1389 10.1113/JP279771 33404072
    [Google Scholar]
  39. Swerdlow R.H. Burns J.M. Khan S.M. The Alzheimer’s disease mitochondrial cascade hypothesis: Progress and perspectives. Biochim. Biophys. Acta Mol. Basis Dis. 2014 1842 8 1219 1231 10.1016/j.bbadis.2013.09.010 24071439
    [Google Scholar]
  40. Huang L.K. Chao S.P. Hu C.J. Clinical trials of new drugs for Alzheimer disease. J. Biomed. Sci. 2020 27 1 18 10.1186/s12929‑019‑0609‑7 31906949
    [Google Scholar]
  41. Holmström K.M. Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 2014 15 6 411 421 10.1038/nrm3801 24854789
    [Google Scholar]
  42. Butterfield D.A. Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 2019 20 3 148 160 10.1038/s41583‑019‑0132‑6 30737462
    [Google Scholar]
  43. Kamat P.K. Kalani A. Rai S. Swarnkar S. Tota S. Nath C. Tyagi N. Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of alzheimer’s disease: Understanding the therapeutics strategies. Mol. Neurobiol. 2016 53 1 648 661 10.1007/s12035‑014‑9053‑6 25511446
    [Google Scholar]
  44. Bezprozvanny I. Mattson M.P. Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci. 2008 31 9 454 463 10.1016/j.tins.2008.06.005 18675468
    [Google Scholar]
  45. Gao C. Jiang J. Tan Y. Chen S. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets. Signal Transduct. Target. Ther. 2023 8 1 359 10.1038/s41392‑023‑01588‑0 37735487
    [Google Scholar]
  46. Di Benedetto G. Burgaletto C. Bellanca C.M. Munafò A. Bernardini R. Cantarella G. Role of microglia and astrocytes in Alzheimer’s disease: From neuroinflammation to Ca2+ homeostasis dysregulation. Cells 2022 11 17 2728 10.3390/cells11172728 36078138
    [Google Scholar]
  47. Fang J. Sheng R. Qin Z.H. NADPH oxidases in the central nervous system: Regional and cellular localization and the possible link to brain diseases. Antioxid. Redox Signal. 2021 35 12 951 973 10.1089/ars.2021.0040 34293949
    [Google Scholar]
  48. Simpson D.S.A. Oliver P.L. ROS generation in microglia: Understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants 2020 9 8 743 10.3390/antiox9080743 32823544
    [Google Scholar]
  49. Dustin C.M. Shiva S.S. Vazquez A. Saeed A. Pascoal T. Cifuentes-Pagano E. Pagano P.J. NOX2 in Alzheimer’s and Parkinson’s disease. Redox Biol. 2024 78 103433 10.1016/j.redox.2024.103433 39616884
    [Google Scholar]
  50. Han X. Xu T. Fang Q. Zhang H. Yue L. Hu G. Sun L. Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy. Redox Biol. 2021 44 102010 10.1016/j.redox.2021.102010 34082381
    [Google Scholar]
  51. Park M.W. Cha H.W. Kim J. Kim J.H. Yang H. Yoon S. Boonpraman N. Yi S.S. Yoo I.D. Moon J.S. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases. Redox Biol. 2021 41 101947 10.1016/j.redox.2021.101947 33774476
    [Google Scholar]
  52. Sun Y. Zhang H. Zhang X. Wang W. Chen Y. Cai Z. Wang Q. Wang J. Shi Y. Promotion of astrocyte-neuron glutamate-glutamine shuttle by SCFA contributes to the alleviation of Alzheimer’s disease. Redox Biol. 2023 62 102690 10.1016/j.redox.2023.102690 37018970
    [Google Scholar]
  53. Chiu Y.J. Lin C.H. Lee M.C. Hsieh-Li H.M. Chen C.M. Wu Y.R. Chang K.H. Lee-Chen G.J. Formulated Chinese medicine Shaoyao Gancao Tang reduces NLRP1 and NLRP3 in Alzheimer’s disease cell and mouse models for neuroprotection and cognitive improvement. Aging 2021 13 11 15620 15637 10.18632/aging.203125 34106880
    [Google Scholar]
  54. Sayas C.L. Ávila J. GSK-3 and Tau: A key duet in Alzheimer’s disease. Cells 2021 10 4 721 10.3390/cells10040721 33804962
    [Google Scholar]
  55. Han J. Zhang H. Zhang Y. Zhang Z. Yu M. Wang S. Han F. Lingguizhugan decoction protects PC12 cells against Aβ25-35-induced oxidative stress and neuroinflammation by modulating NF-κB/MAPK signaling pathways. J. Ethnopharmacol. 2022 292 115194 10.1016/j.jep.2022.115194 35304276
    [Google Scholar]
  56. Peng A. Gao Y. Zhuang X. Lin Y. He W. Wang Y. Chen W. Chen T. Huang X. Yang R. Huang Y. Xi S. Zhang X. Bazhu decoction, a traditional Chinese medical formula, ameliorates cognitive deficits in the 5xfad mouse model of Alzheimer’s disease. Front. Pharmacol. 2019 10 1391 10.3389/fphar.2019.01391 31827437
    [Google Scholar]
  57. Li Q. Jia C. Wu H. Liao Y. Yang K. Li S. Zhang J. Wang J. Li G. Guan F. Leung E. Yuan Z. Hua Q. Pan R.Y. Nao Tan Qing ameliorates Alzheimer’s disease-like pathology by regulating glycolipid metabolism and neuroinflammation: A network pharmacology analysis and biological validation. Pharmacol. Res. 2022 185 106489 10.1016/j.phrs.2022.106489 36228869
    [Google Scholar]
  58. Zhou L. Yang C. Liu Z. Chen L. Wang P. Zhou Y. Yuan M. Zhou L.T. Wang X. Zhu L.Q. Neuroprotective effect of the traditional decoction Tian-Si-Yin against Alzheimer’s disease via suppression of neuroinflammation. J. Ethnopharmacol. 2024 321 117569 10.1016/j.jep.2023.117569 38086513
    [Google Scholar]
  59. Jiao Y.N. Zhang J.S. Qiao W.J. Tian S.Y. Wang Y.B. Wang C.Y. Zhang Y.H. Zhang Q. Li W. Min D.Y. Wang Z.Y. Kai-Xin-San inhibits Tau pathology and neuronal apoptosis in aged saMP8 mice. Mol. Neurobiol. 2022 59 5 3294 3309 10.1007/s12035‑021‑02626‑0 35303280
    [Google Scholar]
  60. Luo Y. Li D. Liao Y. Cai C. Wu Q. Ke H. Liu X. Li H. Hong H. Xu Y. Wang Q. Fang J. Fang S. Systems pharmacology approach to investigate the mechanism of Kai-Xin-San in Alzheimer’s disease. Front. Pharmacol. 2020 11 381 10.3389/fphar.2020.00381 32317964
    [Google Scholar]
  61. Zhang X. Sun Y. Yu Q. Zeng W. Zhang Y. Zeng M. Pang K. Yu Y. Gan J. Li H. Yang L. Jiang X. Jia-Wei-Kai-Xin-San treatment alleviated mild cognitive impairment through anti-inflammatory and antiapoptotic mechanisms in SAMP8 mice. Mediators Inflamm. 2023 2023 1 20 10.1155/2023/7807302 37954637
    [Google Scholar]
  62. Wang X. Yin Z. Cao P. Zheng S. Chen Y. Yu M. Liao C. Zhang Z. Duan Y. Han J. Zhang S. Yang X. NaoXinTong Capsule ameliorates memory deficit in APP/PS1 mice by regulating inflammatory cytokines. Biomed. Pharmacother. 2021 133 110964 10.1016/j.biopha.2020.110964 33197761
    [Google Scholar]
  63. Yang G. Tong Y. Wang X. Zhao C. Ba Z. Ahelijiang R. Liu X. Gao W. Zhao Y. Gu Y. Yang J. Xu Y. Guizhi Fuling capsule relieves memory deficits by inhibition of microglial neuroinflammation through blocking JAK2/STAT3 pathway in presenilin1/2 conditional double knockout mice. Front. Immunol. 2023 14 1185570 10.3389/fimmu.2023.1185570 37465679
    [Google Scholar]
  64. Gu X. Zhou J. Zhou Y. Wang H. Si N. Ren W. Zhao W. Fan X. Gao W. Wei X. Yang J. Bian B. Zhao H. Huanglian Jiedu decoction remodels the periphery microenvironment to inhibit Alzheimer’s disease progression based on the “brain-gut” axis through multiple integrated omics. Alzheimers Res. Ther. 2021 13 1 44 10.1186/s13195‑021‑00779‑7 33579351
    [Google Scholar]
  65. Zeng M. Feng A. Li M. Liu M. Guo P. Zhang Y. Zhang Q. Zhang B. Cao B. Jia J. Wang R. Lyu J. Zheng X. Corallodiscus flabellata B. L. Burtt extract and isonuomioside A ameliorate Aβ25−35-induced brain injury by inhibiting apoptosis, oxidative stress, and autophagy via the NMDAR2B/CamK II/PKG pathway. Phytomedicine 2022 101 154114 10.1016/j.phymed.2022.154114 35489325
    [Google Scholar]
  66. Jiang X. Liu W. Wu Y. Wu Q. Lu H. Xu Z. Gao H. Zhao Q. Notopterygium incisum extract (NRE) rescues cognitive deficits in APP/PS1 Alzhneimer’s disease mice by attenuating amyloid-beta, tau, and neuroinflammation pathology. J. Ethnopharmacol. 2020 249 112433 10.1016/j.jep.2019.112433 31783135
    [Google Scholar]
  67. Yuen C.W. Murugaiyah V. Najimudin N. Azzam G. Danshen (Salvia miltiorrhiza) water extract shows potential neuroprotective effects in Caenorhabditis elegans. J. Ethnopharmacol. 2021 266 113418 10.1016/j.jep.2020.113418 32991971
    [Google Scholar]
  68. Li B. Wu Y.R. Li L. Liu Y. Yan Z.Y. A novel based-network strategy to identify phytochemicals from radix Salviae miltiorrhizae (danshen) for treating Alzheimer’s disease. Molecules 2022 27 14 4463 10.3390/molecules27144463 35889336
    [Google Scholar]
  69. Li R. Wang L. Zhang Q. Duan H. Qian D. Yang F. Xia J. Alpiniae oxyphyllae fructus possesses neuroprotective effects on H2O2 stimulated PC12 cells via regulation of the PI3K/Akt signaling pathway. Front. Pharmacol. 2022 13 966348 10.3389/fphar.2022.966348 36091821
    [Google Scholar]
  70. Shi Y.S. Chen J.C. Lin B.H. Wang R.N. Zhao J. Li S. Zhang Y. Zhang X.F. Pteris laeta Wall. and its new phytochemical, pterosinsade a, promote hippocampal neurogenesis via activating the wnt signaling pathway. J. Agric. Food Chem. 2023 71 11 4586 4598 10.1021/acs.jafc.2c08493 36892329
    [Google Scholar]
  71. Zweig J.A. Brandes M.S. Brumbach B.H. Caruso M. Wright K.M. Quinn J.F. Soumyanath A. Gray N.E. Prolonged treatment with centella asiatica improves memory, reduces amyloid-β pathology, and activates nrf2-regulated antioxidant response pathway in 5xFAD mice. J. Alzheimers Dis. 2021 81 4 1453 1468 10.3233/JAD‑210271 33935097
    [Google Scholar]
  72. Meng J. Lv Z. Guo M. Sun C. Li X. Jiang Z. Zhang W. Chen C. A Lycium barbarum extract inhibits β‐amyloid toxicity by activating the antioxidant system and mtUPR in a Caenorhabditis elegans model of Alzheimer’s disease. FASEB J. 2022 36 2 e22156 10.1096/fj.202101116RR 35044707
    [Google Scholar]
  73. Zhang X. Wang X. Hu X. Chu X. Li X. Han F. Neuroprotective effects of a Rhodiola crenulata extract on amyloid-β peptides (Aβ1-42)-induced cognitive deficits in rat models of Alzheimer’s disease. Phytomedicine 2019 57 331 338 10.1016/j.phymed.2018.12.042 30807987
    [Google Scholar]
  74. Huang Q. Zhang C. Dong S. Han J. Qu S. Xie T. Zhao H. Shi Y. Asafoetida exerts neuroprotective effect on oxidative stress induced apoptosis through PI3K/Akt/GSK3β/Nrf2/HO-1 pathway. Chin. Med. 2022 17 1 83 10.1186/s13020‑022‑00630‑7 35794585
    [Google Scholar]
  75. Jiang P. Chen L. Xu J. Liu W. Feng F. Qu W. Neuroprotective effects of rhynchophylline against Aβ1–42-induced oxidative stress, neurodegeneration, and memory impairment via Nrf2–ARE activation. Neurochem. Res. 2021 46 9 2439 2450 10.1007/s11064‑021‑03343‑9 34170454
    [Google Scholar]
  76. Yin S. Ran Q. Yang J. Zhao Y. Li C. Nootropic effect of neferine on aluminium chloride-induced Alzheimer’s disease in experimental models. J. Biochem. Mol. Toxicol. 2020 34 2 e22429 10.1002/jbt.22429 31860774
    [Google Scholar]
  77. Lin L. Li C. Zhang D. Yuan M. Chen C. Li M. Synergic effects of berberine and curcumin on improving cognitive function in an Alzheimer’s disease mouse model. Neurochem. Res. 2020 45 5 1130 1141 10.1007/s11064‑020‑02992‑6 32080784
    [Google Scholar]
  78. Dong P. Ji X. Han W. Han H. Oxymatrine exhibits anti-neuroinflammatory effects on Aβ1–42-induced primary microglia cells by inhibiting NF-κB and MAPK signaling pathways. Int. Immunopharmacol. 2019 74 105686 10.1016/j.intimp.2019.105686 31207405
    [Google Scholar]
  79. Chen L. Pan H. Bai Y. Li H. Yang W. Lin Z.X. Cui W. Xian Y.F. Gelsemine, a natural alkaloid extracted from Gelsemium elegans Benth. alleviates neuroinflammation and cognitive impairments in Aβ oligomer-treated mice. Psychopharmacology 2020 237 7 2111 2124 10.1007/s00213‑020‑05522‑y 32363440
    [Google Scholar]
  80. Manach C. Scalbert A. Morand C. Rémésy C. Jiménez L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004 79 5 727 747 10.1093/ajcn/79.5.727 15113710
    [Google Scholar]
  81. Liu P. Zhou Y. Shi J. Wang F. Yang X. Zheng X. Wang Y. He Y. Xie X. Pang X. Myricetin improves pathological changes in 3×Tg-AD mice by regulating the mitochondria-NLRP3 inflammasome-microglia channel by targeting P38 MAPK signaling pathway. Phytomedicine 2023 115 154801 10.1016/j.phymed.2023.154801 37086707
    [Google Scholar]
  82. Guo P. Zeng M. Wang S. Cao B. Liu M. Zhang Y. Jia J. Zhang Q. Zhang B. Wang R. Zheng X. Feng W. Eriodictyol and homoeriodictyol improve memory impairment in aβ25–35-induced mice by inhibiting the nlrp3 inflammasome. Molecules 2022 27 8 2488 10.3390/molecules27082488 35458684
    [Google Scholar]
  83. Xie X.M. Hao J.J. Shi J.Z. Zhou Y.F. Liu P.F. Wang F. Zheng X.M. Yu X.Y. Wang C.C. Yan Y. Du G.H. Song J.K. He Y.Y. Pang X.B. Baicalein ameliorates Alzheimer’s disease via orchestration of CX3CR1/NF-κB pathway in a triple transgenic mouse model. Int. Immunopharmacol. 2023 118 109994 10.1016/j.intimp.2023.109994 37098656
    [Google Scholar]
  84. Du Z. Fanshi F. Lai Y.H. Chen J.R. Hao E. Deng J. Hsiao C.D. Mechanism of anti-dementia effects of mangiferin in a senescence accelerated mouse (SAMP8) model. Biosci. Rep. 2019 39 9 BSR20190488 10.1042/BSR20190488 31484797
    [Google Scholar]
  85. Chen T. Shou L. Guo X. Wei M. Zheng H. Tao T. Magnolol attenuates the locomotor impairment, cognitive deficit, and neuroinflammation in Alzheimer’s disease mice with brain insulin resistance via up-regulating miR-200c. Bioengineered 2022 13 1 531 543 10.1080/21655979.2021.2009975 34968163
    [Google Scholar]
  86. Shi D. Hao Z. Qi W. Jiang F. Liu K. Shi X. Aerobic exercise combined with chlorogenic acid exerts neuroprotective effects and reverses cognitive decline in Alzheimer’s disease model mice (APP/PS1) via the SIRT1/PGC-1α/PPARγ signaling pathway. Front. Aging Neurosci. 2023 15 1269952 10.3389/fnagi.2023.1269952 38046466
    [Google Scholar]
  87. Yang S. Wang L. Zeng Y. Wang Y. Pei T. Xie Z. Xiong Q. Wei H. Li W. Li J. Su Q. Wei D. Cheng W. Salidroside alleviates cognitive impairment by inhibiting ferroptosis via activation of the Nrf2/GPX4 axis in SAMP8 mice. Phytomedicine 2023 114 154762 10.1016/j.phymed.2023.154762 36965372
    [Google Scholar]
  88. Shunan D. Yu M. Guan H. Zhou Y. Neuroprotective effect of Betalain against AlCl3-induced Alzheimer’s disease in Sprague Dawley Rats via putative modulation of oxidative stress and nuclear factor kappa B (NF-κB) signaling pathway. Biomed. Pharmacother. 2021 137 111369 10.1016/j.biopha.2021.111369 33582452
    [Google Scholar]
  89. Wang Z.X. Lian W.W. He J. He X.L. Wang Y.M. Pan C.H. Li M. Zhang W.K. Liu L.Q. Xu J.K. Cornuside ameliorates cognitive impairments in scopolamine induced AD mice: Involvement of neurotransmitter and oxidative stress. J. Ethnopharmacol. 2022 293 115252 10.1016/j.jep.2022.115252 35405255
    [Google Scholar]
  90. Yu L. Che R. Zhang W. Xu J. Lian W. He J. Tu S. Bai X. He X. Cornuside, by regulating the AGEs‐RAGE‐IκBα‐ERK1/2 signaling pathway, ameliorates cognitive impairment associated with brain aging. Phytother. Res. 2023 37 6 2419 2436 10.1002/ptr.7765 36781177
    [Google Scholar]
  91. Chen Y. Li Y.Q. Fang J.Y. Li P. Li F. Establishment of the concurrent experimental model of osteoporosis combined with Alzheimer’s disease in rat and the dual-effects of echinacoside and acteoside from Cistanche tubulosa. J. Ethnopharmacol. 2020 257 112834 10.1016/j.jep.2020.112834 32278031
    [Google Scholar]
  92. Chen X. Zhang M. Ahmed M. Surapaneni K.M. Veeraraghavan V.P. Arulselvan P. Neuroprotective effects of ononin against the aluminium chloride-induced Alzheimer’s disease in rats. Saudi J. Biol. Sci. 2021 28 8 4232 4239 10.1016/j.sjbs.2021.06.031 34354404
    [Google Scholar]
  93. Zhang S. Li L. Hu J. Ma P. Zhu H. Polysaccharide of Taxus chinensis var. mairei Cheng et L.K.Fu attenuates neurotoxicity and cognitive dysfunction in mice with Alzheimer’s disease. Pharm. Biol. 2020 58 1 959 968 10.1080/13880209.2020.1817102 32970507
    [Google Scholar]
  94. Xu M. Yan T. Fan K. Wang M. Qi Y. Xiao F. Bi K. Jia Y. Polysaccharide of Schisandra chinensis fructus ameliorates cognitive decline in a mouse model of Alzheimer’s disease. J. Ethnopharmacol. 2019 237 354 365 10.1016/j.jep.2019.02.046 30844489
    [Google Scholar]
  95. Guan L. Mao Z. Yang S. Wu G. Chen Y. Yin L. Qi Y. Han L. Xu L. Dioscin alleviates Alzheimer’s disease through regulating RAGE/NOX4 mediated oxidative stress and inflammation. Biomed. Pharmacother. 2022 152 113248 10.1016/j.biopha.2022.113248 35691153
    [Google Scholar]
  96. Liu X. Zhou Q. Zhang J.H. Wang K.Y. Saito T. Saido T.C. Wang X. Gao X. Azuma K. Microglia-based sex-biased neuropathology in early-stage Alzheimer’s disease model mice and the potential pharmacologic efficacy of dioscin. Cells 2021 10 11 3261 10.3390/cells10113261 34831483
    [Google Scholar]
  97. Zhang H. Zhou W. Li J. Qiu Z. Wang X. Xu H. Wang H. Lu D. Qi R. Senegenin rescues PC12 cells with oxidative damage through inhibition of ferroptosis. Mol. Neurobiol. 2022 59 11 6983 6992 10.1007/s12035‑022‑03014‑y 36068400
    [Google Scholar]
  98. Tian Y. Qi Y. Cai H. Xu M. Zhang Y. Senegenin alleviates Aβ1-42 induced cell damage through triggering mitophagy. J. Ethnopharmacol. 2022 295 115409 10.1016/j.jep.2022.115409 35640739
    [Google Scholar]
  99. Zhang J. Song N. Liu Y. Guo J. Platycodin D. Platycodin D. Inhibits β-amyloid-induced inflammation and oxidative stress in BV-2 cells via suppressing tlr4/nf-κb signaling pathway and activating nrf2/ho-1 signaling pathway. Neurochem. Res. 2021 46 3 638 647 10.1007/s11064‑020‑03198‑6 33394221
    [Google Scholar]
  100. Liu J. Zhang Y. Lai C. Xie J. Multitarget protective effects of JUB on Aβ-induced neurotoxicity and the mechanism predication using network pharmacology analysis. J. Agric. Food Chem. 2023 71 51 20724 20734 10.1021/acs.jafc.3c06430 38098161
    [Google Scholar]
  101. Zhai L. Pei H. Shen H. Yang Y. Han C. Guan Q. Paeoniflorin suppresses neuronal ferroptosis to improve the cognitive behaviors in Alzheimer’s disease mice. Phytother. Res. 2023 37 10 4791 4800 10.1002/ptr.7946 37448137
    [Google Scholar]
  102. Xiang J. Yang F. Zhu W. Cai M. Li X.T. Zhang J.S. Yu Z.H. Zhang W. Cai D.F. Bilobalide inhibits inflammation and promotes the expression of Aβ degrading enzymes in astrocytes to rescue neuronal deficiency in AD models. Transl. Psychiatry 2021 11 1 542 10.1038/s41398‑021‑01594‑2 34671017
    [Google Scholar]
  103. Tang X. Zhao Y. Liu Y. Liu Y. Liu Y. Niu F. Fang F. 3,6′‐disinapoyl sucrose attenuates Aβ 1‐42 ‐ induced neurotoxicity in Caenorhabditis elegans by enhancing antioxidation and regulating autophagy. J. Cell. Mol. Med. 2022 26 4 1024 1033 10.1111/jcmm.17153 35044105
    [Google Scholar]
  104. Zhang M. Ding Z. Huang W. Luo J. Ye S. Hu S. Zhou P. Cai B. Chrysophanol exerts a protective effect against Aβ25-35-induced Alzheimer’s disease model through regulating the ROS/] TXNIP/NLRP3 pathway. Inflammopharmacology 2023 31 3 1511 1527 10.1007/s10787‑023‑01201‑4 36976486
    [Google Scholar]
  105. Xu Y. Hu R. He D. Zhou G. Wu H. Xu C. He B. Wu L. Wang Y. Chang Y. Ma R. Xie M. Xiao Z. Bisdemethoxycurcumin inhibits oxidative stress and antagonizes Alzheimer’s disease by up‐regulating SIRT1. Brain Behav. 2020 10 7 e01655 10.1002/brb3.1655 32441492
    [Google Scholar]
  106. Zhao X. Ge P. Lei S. Guo S. Zhou P. Zhao L. Qi Y. Wei X. Wu W. Wang N. Guo R. Yang N. Xiao Q. Zhang Q. Zhu H. An exosome-based therapeutic strategy targeting neuroinflammation in Alzheimer’s disease with berberine and palmatine. Drug Des. Devel. Ther. 2023 17 2401 2420 10.2147/DDDT.S417465 37609432
    [Google Scholar]
  107. Gao C. Wang Y. Sun J. Han Y. Gong W. Li Y. Feng Y. Wang H. Yang M. Li Z. Yang Y. Gao C. Neuronal mitochondria-targeted delivery of curcumin by biomimetic engineered nanosystems in Alzheimer’s disease mice. Acta Biomater. 2020 108 285 299 10.1016/j.actbio.2020.03.029 32251785
    [Google Scholar]
  108. Huo Q. Shi Y. Qi Y. Huang L. Sui H. Zhao L. Biomimetic silibinin-loaded macrophage-derived exosomes induce dual inhibition of Aβ aggregation and astrocyte activation to alleviate cognitive impairment in a model of Alzheimer’s disease. Mater. Sci. Eng. C 2021 129 112365 10.1016/j.msec.2021.112365 34579884
    [Google Scholar]
  109. Han Y. Chu X. Cui L. Fu S. Gao C. Li Y. Sun B. Neuronal mitochondria-targeted therapy for Alzheimer’s disease by systemic delivery of resveratrol using dual-modified novel biomimetic nanosystems. Drug Deliv. 2020 27 1 502 518 10.1080/10717544.2020.1745328 32228100
    [Google Scholar]
  110. Yang L. Wang Y. Zheng G. Li Z. Mei J. Resveratrol-loaded selenium/chitosan nano-flowers alleviate glucolipid metabolism disorder-associated cognitive impairment in Alzheimer’s disease. Int. J. Biol. Macromol. 2023 239 124316 10.1016/j.ijbiomac.2023.124316 37004937
    [Google Scholar]
  111. Abbas H. Gad H.A. Khattab M.A. Mansour M. The tragedy of Alzheimer’s disease: Towards better management via resveratrol-loaded oral bilosomes. Pharmaceutics 2021 13 10 1635 10.3390/pharmaceutics13101635 34683928
    [Google Scholar]
  112. Chen X. Wang Y. Ma N. Tian J. Shao Y. Zhu B. Wong Y.K. Liang Z. Zou C. Wang J. Target identification of natural medicine with chemical proteomics approach: Probe synthesis, target fishing and protein identification. Signal Transduct. Target. Ther. 2020 5 1 72 10.1038/s41392‑020‑0186‑y 32435053
    [Google Scholar]
  113. Yang Z. Zhang X.W. Zhuo F.F. Liu T.T. Luo Q.W. Zheng Y.Z. Li L. Yang H. Zhang Y.C. Wang Y.H. Liu D. Tu P.F. Zeng K.W. Allosteric activation of transglutaminase 2 via inducing an “Open” conformation for osteoblast differentiation. Adv. Sci. 2023 10 18 2206533 10.1002/advs.202206533 37088726
    [Google Scholar]
  114. Chen Y. Wang K. Cai J. Li Y. Yu H. Wu Q. Meng W. Wang H. Yin C. Wu J. Huang M. Li R. Guan D. Detecting key functional components group and speculating the potential mechanism of xiao-xu-ming decoction in treating stroke. Front. Cell Dev. Biol. 2022 10 753425 10.3389/fcell.2022.753425 35646921
    [Google Scholar]
  115. Wang K. Li K. Chen Y. Wei G. Yu H. Li Y. Meng W. Wang H. Gao L. Lu A. Peng J. Guan D. Computational network pharmacology–based strategy to capture key functional components and decode the mechanism of chai-hu-shu-gan-san in treating depression. Front. Pharmacol. 2021 12 782060 10.3389/fphar.2021.782060 34867413
    [Google Scholar]
  116. Harrison J.E. Schultz J. Studies on the chlorinating activity of myeloperoxidase. J. Biol. Chem. 1976 251 5 1371 1374 10.1016/S0021‑9258(17)33749‑3 176150
    [Google Scholar]
  117. Boonpraman N. Yoon S. Kim C.Y. Moon J.S. Yi S.S. NOX4 as a critical effector mediating neuroinflammatory cytokines, myeloperoxidase and osteopontin, specifically in astrocytes in the hippocampus in Parkinson’s disease. Redox Biol. 2023 62 102698 10.1016/j.redox.2023.102698 37058998
    [Google Scholar]
  118. Chen S. Pan J. Gong Z. Wu M. Zhang X. Chen H. Yang D. Qi S. Peng Y. Shen J. Hypochlorous acid derived from microglial myeloperoxidase could mediate high-mobility group box 1 release from neurons to amplify brain damage in cerebral ischemia–reperfusion injury. J. Neuroinflammation 2024 21 1 70 10.1186/s12974‑023‑02991‑8 38515139
    [Google Scholar]
  119. Strzepa A. Pritchard K.A. Dittel B.N. Myeloperoxidase: A new player in autoimmunity. Cell. Immunol. 2017 317 1 8 10.1016/j.cellimm.2017.05.002 28511921
    [Google Scholar]
/content/journals/cn/10.2174/011570159X390931250927121733
Loading
/content/journals/cn/10.2174/011570159X390931250927121733
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test