Skip to content
2000
image of The Role of Gut Bacteria and Plasma Metabolites in Predicting Post-Stroke Depression in Patients with Acute Ischemic Stroke

Abstract

Introduction

Early diagnosis of Post-Stroke Depression (PSD) is challenging. This study aimed to identify possible biomarkers in gut microbiota and plasma metabolites within 72 hours after Acute Ischemic Stroke (AIS) to predict PSD occurring 2 weeks later.

Method

In this study, 86 patients with AIS were observed within 3 days of stroke onset and followed up for 2 weeks. We collected the feces and plasma within 72 hours of AIS onset for 16S rRNA sequencing and liquid chromatography-mass spectrometry analysis, respectively.

Results

At the genus level, PSD patients at 2 weeks following a stroke had a higher relative abundance of , , and a lower abundance of , , and within 3 days of AIS onset. Meanwhile, when all metabolites in plasma collected within 72 hours after AIS onset were used to predict 2-week PSD, 31 altered metabolites were identified, of which 28 metabolites increased and 3 decreased, belonging predominantly to steroid and steroid derivatives, glycerophospholipids, fatty acyls, and prenol lipids. The Area Under the Curve (AUC) values for the clinical data, metabolic profiles, gut microbiota, and combined dataset were 0.664 (0.549,0.779), 0.739 (0.621, 0.857), 0.870 (0.781,0.960), and 0.955 (0.888,1), respectively.

Discussion

Our study identified potential biomarkers from clinical data, gut bacteria, and plasma metabolites that contribute to PSD. Within 72 hours after AIS, combining these biomarkers from all three sources showed preliminary ability to predict PSD at 2 weeks. Metabolites had the highest contribution, followed by gut bacteria and clinical data.

Conclusion

A biomarker panel including metabolites, gut microbiota, and clinical data within 72 hours after AIS onset could preliminarily predict PSD 2 weeks later.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X390349250818115524
2025-09-09
2025-11-04
Loading full text...

Full text loading...

References

  1. Guo J. Wang J. Sun W. Liu X. The advances of post-stroke depression: 2021 update. J. Neurol. 2022 269 3 1236 1249 10.1007/s00415‑021‑10597‑4 34052887
    [Google Scholar]
  2. Ezema C.I. Akusoba P.C. Nweke M.C. Uchewoke C.U. Agono J. Usoro G. Influence of post-stroke depression on functional independence in activities of daily living. Ethiop. J. Health Sci. 2019 29 1 841 846 30700951
    [Google Scholar]
  3. Cai W. Mueller C. Li Y.J. Shen W.D. Stewart R. Post stroke depression and risk of stroke recurrence and mortality: A systematic review and meta-analysis. Ageing Res. Rev. 2019 50 102 109 10.1016/j.arr.2019.01.013 30711712
    [Google Scholar]
  4. Lu Y. Sun P. Jin H. Wang Z. Shen Z. Sun W. Sun Y. Liu R. Li F. Shu J. Qiu Z. Lu Z. Sun W. Zhu S. Huang Y. CASTOR investigators CASTOR investigators. prolonged hospital length of stay does not improve functional outcome in acute ischemic stroke. Neurol. Ther. 2025 14 2 593 607 10.1007/s40120‑025‑00712‑2 39964661
    [Google Scholar]
  5. Jiang W. Chen J. Gong L. Liu F. Zhao H. Yan Z. Li Y. Zhang J. Xiao M. Mu J. Microbiota-derived short-chain fatty acids may participate in post-stroke depression by regulating host’s lipid metabolism. J. Psychiatr. Res. 2023 161 426 434 10.1016/j.jpsychires.2023.03.032 37031497
    [Google Scholar]
  6. Shao R. Tan X. Pan M. Huang J. Huang L. Bi B. Huang X. Wang J. Li X. Inulin alters gut microbiota to alleviate post‐stroke depressive‐like behavior associated with the IGF‐1‐mediated MAPK signaling pathway. Brain Behav. 2024 14 1 3387 10.1002/brb3.3387 38376033
    [Google Scholar]
  7. Jiang W. Gong L. Liu F. Ren Y. Mu J. Alteration of gut microbiome and correlated lipid metabolism in post-stroke depression. Front. Cell. Infect. Microbiol. 2021 11 663967 10.3389/fcimb.2021.663967 33968807
    [Google Scholar]
  8. Fan W. Yan Y. Bie Y. Wang Q. Relationship between intestinal flora disturbance and depression after stroke in rats. Chin J. Cereb Dis. 2016 13 644 649
    [Google Scholar]
  9. Luo F. Fang C. Association between gut microbiota and post-stroke depression in Chinese population: A meta-analysis. Heliyon 2022 8 12 12605 10.1016/j.heliyon.2022.e12605 36619429
    [Google Scholar]
  10. Ding X. Liu R. Li W. Ni H. Liu Y. Wu D. Yang S. Liu J. Xiao B. Liu S. A metabonomic investigation on the biochemical perturbation in post-stroke patients with depressive disorder (PSD). Metab. Brain Dis. 2016 31 2 279 287 10.1007/s11011‑015‑9748‑z 26537495
    [Google Scholar]
  11. Cai W. Wang X.F. Wei X.F. Zhang J.R. Hu C. Ma W. Shen W.D. Does urinary metabolite signature act as a biomarker of post-stroke depression? Front. Psychiatry 2022 13 928076 10.3389/fpsyt.2022.928076 36090365
    [Google Scholar]
  12. Liu H. Pu J. Zhou Q. Yang L. Bai D. Peripheral blood and urine metabolites and biological functions in post-stroke depression. Metab. Brain Dis. 2022 37 5 1557 1568 10.1007/s11011‑022‑00984‑9 35438379
    [Google Scholar]
  13. Wang M. Gui X. Wu L. Tian S. Wang H. Xie L. Wu W. Amino acid metabolism, lipid metabolism, and oxidative stress are associated with post-stroke depression: A metabonomics study. BMC Neurol. 2020 20 1 250 10.1186/s12883‑020‑01780‑7 32563250
    [Google Scholar]
  14. Xie J. Han Y. Hong Y. Li W. Pei Q. Zhou X. Zhang B. Wang Y. Identification of potential metabolite markers for middle-aged patients with post-stroke depression using urine metabolomics. Neuropsychiatr. Dis. Treat. 2020 16 2017 2024 10.2147/NDT.S271990 32922015
    [Google Scholar]
  15. Zhang W. Zhang X. A novel urinary metabolite signature for non-invasive post-stroke depression diagnosis. Cell Biochem. Biophys. 2015 72 3 661 667 10.1007/s12013‑014‑0472‑9 27352185
    [Google Scholar]
  16. Liang Z.H. Jia Y.B. Li Z.R. Li M. Wang M.L. Yun Y.L. Yu L.J. Shi L. Zhu R.X. Urinary biomarkers for diagnosing poststroke depression in patients with type 2 diabetes mellitus. Diabetes Metab. Syndr. Obes. 2019 12 1379 1386 10.2147/DMSO.S215187 31496775
    [Google Scholar]
  17. Jiang W. Chen J. Gong L. Liu F. Zhao H. Mu J. Alteration of glycerophospholipid metabolism in hippocampus of post-stroke depression rats. Neurochem. Res. 2022 47 7 2052 2063 10.1007/s11064‑022‑03596‑y 35469367
    [Google Scholar]
  18. Cryan J.F. O’Riordan K.J. Cowan C.S.M. Sandhu K.V. Bastiaanssen T.F.S. Boehme M. Codagnone M.G. Cussotto S. Fulling C. Golubeva A.V. Guzzetta K.E. Jaggar M. Long-Smith C.M. Lyte J.M. Martin J.A. Molinero-Perez A. Moloney G. Morelli E. Morillas E. O’Connor R. Cruz-Pereira J.S. Peterson V.L. Rea K. Ritz N.L. Sherwin E. Spichak S. Teichman E.M. van de Wouw M. Ventura-Silva A.P. Wallace-Fitzsimons S.E. Hyland N. Clarke G. Dinan T.G. The microbiota-gut-brain axis. Physiol. Rev. 2019 99 4 1877 2013 10.1152/physrev.00018.2018 31460832
    [Google Scholar]
  19. Maghini D.G. Moss E.L. Vance S.E. Bhatt A.S. Improved high-molecular-weight DNA extraction, nanopore sequencing and metagenomic assembly from the human gut microbiome. Nat. Protoc. 2021 16 1 458 471 10.1038/s41596‑020‑00424‑x 33277629
    [Google Scholar]
  20. Worley B. Powers R. PCA as a practical indicator of OPLS-DA model reliability. Curr. Metabolomics 2016 4 2 97 103 10.2174/2213235X04666160613122429 27547730
    [Google Scholar]
  21. Xu K. Gao X. Xia G. Chen M. Zeng N. Wang S. You C. Tian X. Di H. Tang W. Li P. Wang H. Zeng X. Tan C. Meng F. Li H. He Y. Zhou H. Yin J. Rapid gut dysbiosis induced by stroke exacerbates brain infarction in turn. Gut 2021 70 8 1486 1494 10.1136/gutjnl‑2020‑323263 33558272
    [Google Scholar]
  22. Simpson C.A. Diaz-Arteche C. Eliby D. Schwartz O.S. Simmons J.G. Cowan C.S.M. The gut microbiota in anxiety and depression – A systematic review. Clin. Psychol. Rev. 2021 83 101943 10.1016/j.cpr.2020.101943 33271426
    [Google Scholar]
  23. Tian P. Chen Y. Zhu H. Wang L. Qian X. Zou R. Zhao J. Zhang H. Qian L. Wang Q. Wang G. Chen W. Bifidobacterium breve CCFM1025 attenuates major depression disorder via regulating gut microbiome and tryptophan metabolism: A randomized clinical trial. Brain Behav. Immun. 2022 100 233 241 10.1016/j.bbi.2021.11.023 34875345
    [Google Scholar]
  24. Yao S. Xie H. Wang Y. Shen N. Chen Q. Zhao Y. Gu Q. Zhang J. Liu J. Sun J. Tong Q. Predictive microbial feature analysis in patients with depression after acute ischemic stroke. Front. Aging Neurosci. 2023 15 1116065 10.3389/fnagi.2023.1116065 37032826
    [Google Scholar]
  25. Liu X. Mao B. Gu J. Wu J. Cui S. Wang G. Zhao J. Zhang H. Chen W. Blautia —a new functional genus with potential probiotic properties? Gut Microbes 2021 13 1 1875796 10.1080/19490976.2021.1875796 33525961
    [Google Scholar]
  26. Hosomi K. Saito M. Park J. Murakami H. Shibata N. Ando M. Nagatake T. Konishi K. Ohno H. Tanisawa K. Mohsen A. Chen Y.A. Kawashima H. Natsume-Kitatani Y. Oka Y. Shimizu H. Furuta M. Tojima Y. Sawane K. Saika A. Kondo S. Yonejima Y. Takeyama H. Matsutani A. Mizuguchi K. Miyachi M. Kunisawa J. Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota. Nat. Commun. 2022 13 1 4477 10.1038/s41467‑022‑32015‑7 35982037
    [Google Scholar]
  27. Sen P. Sherwin E. Sandhu K. Bastiaanssen T.F.S. Moloney G.M. Golubeva A. Fitzgerald P. Paula Ventura Da Silva A. Chruścicka-Smaga B. Olavarría-Ramírez L. Druelle C. Campos D. Jayaprakash P. Rea K. Jeffery I.B. Savignac H. Chetal S. Mulder I. Schellekens H. Dinan T.G. Cryan J.F. The live biotherapeutic Blautia stercoris MRx0006 attenuates social deficits, repetitive behaviour, and anxiety-like behaviour in a mouse model relevant to autism. Brain Behav. Immun. 2022 106 115 126 10.1016/j.bbi.2022.08.007 35995237
    [Google Scholar]
  28. Luu T.H. Michel C. Bard J.M. Dravet F. Nazih H. Bobin-Dubigeon C. Intestinal proportion of blautia sp. is associated with clinical stage and histoprognostic grade in patients with early-stage breast cancer. Nutr. Cancer 2017 69 2 267 275 10.1080/01635581.2017.1263750 28094541
    [Google Scholar]
  29. Nishino K. Nishida A. Inoue R. Kawada Y. Ohno M. Sakai S. Inatomi O. Bamba S. Sugimoto M. Kawahara M. Naito Y. Andoh A. Analysis of endoscopic brush samples identified mucosa-associated dysbiosis in inflammatory bowel disease. J. Gastroenterol. 2018 53 1 95 106 10.1007/s00535‑017‑1384‑4 28852861
    [Google Scholar]
  30. Rajilić-Stojanović M. Biagi E. Heilig H.G.H.J. Kajander K. Kekkonen R.A. Tims S. de Vos W.M. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 2011 141 5 1792 1801 10.1053/j.gastro.2011.07.043 21820992
    [Google Scholar]
  31. Zhuang Z. Yang R. Wang W. Qi L. Huang T. Associations between gut microbiota and Alzheimer’s disease, major depressive disorder, and schizophrenia. J. Neuroinflammation 2020 17 1 288 10.1186/s12974‑020‑01961‑8 33008395
    [Google Scholar]
  32. Sun M.F. Zhu Y.L. Zhou Z.L. Jia X.B. Xu Y.D. Yang Q. Cui C. Shen Y.Q. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson’s disease mice: Gut microbiota, glial reaction and TLR4/TNF-α signaling pathway. Brain Behav. Immun. 2018 70 48 60 10.1016/j.bbi.2018.02.005 29471030
    [Google Scholar]
  33. Qian J. Lu J. Cheng S. Zou X. Tao Q. Wang M. Wang N. Zheng L. Liao W. Li Y. Yan F. Periodontitis salivary microbiota exacerbates colitis-induced anxiety-like behavior via gut microbiota. NPJ Biofilms Microbiomes 2023 9 1 93 10.1038/s41522‑023‑00462‑9 38062089
    [Google Scholar]
  34. Leonov G. Salikhova D. Starodubova A. Vasilyev A. Makhnach O. Fatkhudinov T. Goldshtein D. Oral microbiome dysbiosis as a risk factor for stroke: A comprehensive review. Microorganisms 2024 12 8 1732 10.3390/microorganisms12081732 39203574
    [Google Scholar]
  35. Wu L. Ma B. Yu F. Ma Z. Meng Q. Li Z. Zhou H. Salivary microbiome diversity in Chinese children with various caries states. Clin. Oral Investig. 2022 27 2 773 785 10.1007/s00784‑022‑04825‑y 36538092
    [Google Scholar]
  36. Luo S. Li W. Li Q. Zhang M. Wang X. Wu S. Li Y. Causal effects of gut microbiota on the risk of periodontitis: A two-sample Mendelian randomization study. Front. Cell. Infect. Microbiol. 2023 13 1160993 10.3389/fcimb.2023.1160993 37305424
    [Google Scholar]
  37. Yutin N. Galperin M.Y. A genomic update on clostridial phylogeny: G ram‐negative spore formers and other misplaced clostridia. Environ. Microbiol. 2013 15 10 2631 2641 10.1111/1462‑2920.12173 23834245
    [Google Scholar]
  38. Zhou Y. Chen C. Yu H. Yang Z. Fecal microbiota changes in patients with postpartum depressive disorder. Front. Cell. Infect. Microbiol. 2020 10 567268 10.3389/fcimb.2020.567268 33134190
    [Google Scholar]
  39. Takewaki D. Kiguchi Y. Masuoka H. Manu M.S. Raveney B.J.E. Narushima S. Kurokawa R. Ogata Y. Hattori M. Kimura Y. Sato N. Ozawa Y. Yagishita S. Araki T. Miyake S. Sato W. Suda W. Yamamura T. Tyzzerella nexilis strains enriched in mobile genetic elements are involved in progressive multiple sclerosis. Cell Rep. 2024 43 10 114785 10.1016/j.celrep.2024.114785 39341204
    [Google Scholar]
  40. Zhang X. Liu Z. Liu G. Wei Z. Qin Z. Li R. Liu Y. Jiang Z. Min Y. Peng X. Causal effect of gut microbiota on occurrence of herpes zoster and postherpetic neuralgia, and role of Tyzzerella 3. Eur. J. Med. Res. 2024 29 1 511 10.1186/s40001‑024‑02106‑w 39438941
    [Google Scholar]
  41. Wu W. Kaicen W. Bian X. Yang L. Ding S. Li Y. Li S. Zhuge A. Li L. Akkermansia muciniphila alleviates high‐fat‐diet ‐related metabolic‐associated fatty liver disease by modulating gut microbiota and bile acids. Microb. Biotechnol. 2023 16 10 1924 1939 10.1111/1751‑7915.14293 37377410
    [Google Scholar]
  42. Shi S. Zhang Q. Sang Y. Ge S. Wang Q. Wang R. He J. Probiotic Bifidobacterium longum BB68S improves cognitive functions in healthy older adults: A randomized, double-blind, placebo-controlled trial. Nutrients 2022 15 1 51 10.3390/nu15010051 36615708
    [Google Scholar]
  43. Shen W. Tao Y. Zheng F. Zhou H. Wu H. Shi H. Huang F. Wu X. The alteration of gut microbiota in venlafaxine-ameliorated chronic unpredictable mild stress-induced depression in mice. Behav. Brain Res. 2023 446 114399 10.1016/j.bbr.2023.114399 36963638
    [Google Scholar]
  44. Ramaprasad A. Burda P.C. Calvani E. Sait A.J. Palma-Duran S.A. Withers-Martinez C. Hackett F. Macrae J. Collinson L. Gilberger T.W. Blackman M.J. A choline-releasing glycerophosphodiesterase essential for phosphatidylcholine biosynthesis and blood stage development in the malaria parasite. eLife 2022 11 82207 10.7554/eLife.82207 36576255
    [Google Scholar]
  45. Khafaga A.F. Exogenous phosphatidylcholine supplementation retrieve aluminum-induced toxicity in male albino rats. Environ. Sci. Pollut. Res. Int. 2017 24 18 15589 15598 10.1007/s11356‑017‑9151‑x 28523611
    [Google Scholar]
  46. Zuo W.Y. Wen M. Zhao Y.C. Li X.Y. Xue C.H. Yanagita T. Wang Y.M. Zhang T.T. Effects of short‐term supplementation with DHA ‐enriched phosphatidylcholine and phosphatidylserine on lipid profiles in the brain and liver of n‐3 PUFA ‐deficient mice in early life after weaning. J. Sci. Food Agric. 2024 104 13 7939 7952 10.1002/jsfa.13625 38843481
    [Google Scholar]
  47. Calderon Martinez E. Zachariah Saji S. Salazar Ore J.V. Borges-Sosa O.A. Srinivas S. Mareddy N.S.R. Manzoor T. Di Vanna M. Al Shanableh Y. Taneja R. Arruarana V.S. The effects of omega‐3, DHA, EPA, Souvenaid® in Alzheimer’s disease: A systematic review and meta‐analysis. Neuropsychopharmacol. Rep. 2024 44 3 545 556 10.1002/npr2.12455 38924283
    [Google Scholar]
  48. Gao X. Du L. Randell E. Zhang H. Li K. Li D. Effect of different phosphatidylcholines on high fat diet-induced insulin resistance in mice. Food Funct. 2021 12 4 1516 1528 10.1039/D0FO02632H 33506827
    [Google Scholar]
  49. Kivity S. Arango M.T. Molano-González N. Blank M. Shoenfeld Y. Phospholipid supplementation can attenuate vaccine-induced depressive-like behavior in mice. Immunol. Res. 2017 65 1 99 105 10.1007/s12026‑016‑8818‑6 27465467
    [Google Scholar]
  50. Zhang F. Zhou Y. Chen H. Jiang H. Zhou F. Lv B. Xu M. Curcumin alleviates DSS-induced anxiety-like behaviors via the microbial-brain-gut axis. Oxid Med. Cell. Longev. 2022 2022 1 19 10.1155/2022/6244757 35345829
    [Google Scholar]
  51. Pu J. Liu Y. Zhang H. Tian L. Gui S. Yu Y. Chen X. Chen Y. Yang L. Ran Y. Zhong X. Xu S. Song X. Liu L. Zheng P. Wang H. Xie P. An integrated meta-analysis of peripheral blood metabolites and biological functions in major depressive disorder. Mol. Psychiatry 2021 26 8 4265 4276 10.1038/s41380‑020‑0645‑4 31959849
    [Google Scholar]
  52. Kanno T. Jin Y. Nishizaki T. DL-/PO-phosphatidylcholine restores restraint stress-induced depression-related behaviors and spatial memory impairment. Behav. Pharmacol. 2014 25 (5 and 6) 575 581 10.1097/FBP.0000000000000063 25083573
    [Google Scholar]
  53. Demirkan A. Isaacs A. Ugocsai P. Liebisch G. Struchalin M. Rudan I. Wilson J.F. Pramstaller P.P. Gyllensten U. Campbell H. Schmitz G. Oostra B.A. van Duijn C.M. Plasma phosphatidylcholine and sphingomyelin concentrations are associated with depression and anxiety symptoms in a Dutch family-based lipidomics study. J. Psychiatr. Res. 2013 47 3 357 362 10.1016/j.jpsychires.2012.11.001 23207112
    [Google Scholar]
  54. Wu C. Li C. Zhao W. Xie N. Yan F. Lian Y. Zhou L. Xu X. Liang Y. Wang L. Ren M. Li S. Cheng X. Zhang L. Ma Q. Song H. Meng R. Ji X. Elevated trimethylamine N -oxide related to ischemic brain lesions after carotid artery stenting. Neurology 2018 90 15 e1283 e1290 10.1212/WNL.0000000000005298 29540587
    [Google Scholar]
  55. Yaqub A. Vojinovic D. Vernooij M.W. Slagboom P.E. Ghanbari M. Beekman M. van der Grond J. Hankemeier T. van Duijn C.M. Ikram M.A. Ahmad S. Plasma trimethylamine N-oxide (TMAO): Associations with cognition, neuroimaging, and dementia. Alzheimers Res. Ther. 2024 16 1 113 10.1186/s13195‑024‑01480‑1 38769578
    [Google Scholar]
  56. Hu Y. Liu Y. Wang H. Wang X. Trimethylamine-N oxide enhances post-stroke depression progression via ROS-p38/MAPK signaling. Hum. Exp. Toxicol. 2024 43 09603271241306396 10.1177/09603271241306396 39652838
    [Google Scholar]
  57. Chen C. Hou G. Zeng C. Ren Y. Chen X. Peng C. Metabolomic profiling reveals amino acid and carnitine alterations as metabolic signatures in psoriasis. Theranostics 2021 11 2 754 767 10.7150/thno.51154 33391503
    [Google Scholar]
  58. Kepka A. Ochocinska A. Borzym-Kluczyk M. Skorupa E. Stasiewicz-Jarocka B. Chojnowska S. Waszkiewicz N. Preventive role of L-carnitine and balanced diet in Alzheimer’s disease. Nutrients 2020 12 7 1987 10.3390/nu12071987 32635400
    [Google Scholar]
  59. Faas M.M. de Vos P. Mitochondrial function in immune cells in health and disease. Biochim. Biophys. Acta Mol. Basis Dis. 2020 1866 10 165845 10.1016/j.bbadis.2020.165845 32473386
    [Google Scholar]
  60. Kolb H. Kempf K. Röhling M. Lenzen-Schulte M. Schloot N.C. Martin S. Ketone bodies: From enemy to friend and guardian angel. BMC Med. 2021 19 1 313 10.1186/s12916‑021‑02185‑0 34879839
    [Google Scholar]
  61. Kalucka J. Bierhansl L. Conchinha N.V. Missiaen R. Elia I. Brüning U. Scheinok S. Treps L. Cantelmo A.R. Dubois C. de Zeeuw P. Goveia J. Zecchin A. Taverna F. Morales-Rodriguez F. Brajic A. Conradi L.C. Schoors S. Harjes U. Vriens K. Pilz G.A. Chen R. Cubbon R. Thienpont B. Cruys B. Wong B.W. Ghesquière B. Dewerchin M. De Bock K. Sagaert X. Jessberger S. Jones E.A.V. Gallez B. Lambrechts D. Mazzone M. Eelen G. Li X. Fendt S.M. Carmeliet P. Quiescent endothelial cells upregulate fatty acid β-oxidation for vasculoprotection via redox homeostasis. Cell Metab. 2018 28 6 881 894.e13 10.1016/j.cmet.2018.07.016 30146488
    [Google Scholar]
  62. Sun L. Liang L. Gao X. Zhang H. Yao P. Hu Y. Ma Y. Wang F. Jin Q. Li H. Li R. Liu Y. Hu F.B. Zeng R. Lin X. Wu J. Early prediction of developing type 2 diabetes by plasma acylcarnitines: A population-based study. Diabetes Care 2016 39 9 1563 1570 10.2337/dc16‑0232 27388475
    [Google Scholar]
  63. Aguer C. McCoin C.S. Knotts T.A. Thrush A.B. Ono-Moore K. McPherson R. Dent R. Hwang D.H. Adams S.H. Harper M.E. Acylcarnitines: Potential implications for skeletal muscle insulin resistance. FASEB J. 2015 29 1 336 345 10.1096/fj.14‑255901 25342132
    [Google Scholar]
  64. Seo W.K. Jo G. Shin M.J. Oh K. Medium-chain acylcarnitines are associated with cardioembolic stroke and stroke recurrence. Arterioscler. Thromb. Vasc. Biol. 2018 38 9 2245 2253 10.1161/ATVBAHA.118.311373 30026276
    [Google Scholar]
  65. Lillo A. Marin S. Serrano-Marín J. Binetti N. Navarro G. Cascante M. Sánchez-Navés J. Franco R. Targeted metabolomics shows that the level of glutamine, kynurenine, acyl-carnitines and lysophosphatidylcholines is significantly increased in the aqueous humor of glaucoma patients. Front. Med. 2022 9 935084 10.3389/fmed.2022.935084 35935793
    [Google Scholar]
  66. Sun Y. Chen Q. Liu Y. Jiao M. Dai Z. Hou X. Liu R. Li Y. Zhu C. Decanoylcarnitine improves liver mitochondrial dysfunction in hepatitis B virus infection by enhancing fatty acid β-oxidation. J. Infect. Dis. 2025 jiaf014 10.1093/infdis/jiaf014 39774664
    [Google Scholar]
  67. Zhou H. Wei Y.J. Xie G.Y. Research progress on post-stroke depression. Exp. Neurol. 2024 373 114660 10.1016/j.expneurol.2023.114660 38141804
    [Google Scholar]
  68. Jiang Y. Zhang Z. Wang W. Huang W. Chen C. Xi S. Ahmad M.U. Ren Y. Sang S. Xie J. Wang J.Y. Xiong W. Li T. Han Z. Yuan Q. Xu Y. Xing L. Poultsides G.A. Li G. Li R. Biology-guided deep learning predicts prognosis and cancer immunotherapy response. Nat. Commun. 2023 14 1 5135 10.1038/s41467‑023‑40890‑x 37612313
    [Google Scholar]
  69. Parizadeh M. Arrieta M.C. The global human gut microbiome: Genes, lifestyles, and diet. Trends Mol. Med. 2023 29 10 789 801 10.1016/j.molmed.2023.07.002 37516570
    [Google Scholar]
  70. Chen L. Zhernakova D.V. Kurilshikov A. Andreu-Sánchez S. Wang D. Augustijn H.E. Vich Vila A. Weersma R.K. Medema M.H. Netea M.G. Kuipers F. Wijmenga C. Zhernakova A. Fu J. Influence of the microbiome, diet and genetics on inter-individual variation in the human plasma metabolome. Nat. Med. 2022 28 11 2333 2343 10.1038/s41591‑022‑02014‑8 36216932
    [Google Scholar]
/content/journals/cn/10.2174/011570159X390349250818115524
Loading
/content/journals/cn/10.2174/011570159X390349250818115524
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: biomarkers ; gut bacteria ; metabolites ; Post-stroke depression ; prediction
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test