Skip to content
2000
Volume 23, Issue 11
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Background

It is now widely established that dopamine, despite its nature as a slow-acting biogenic monoamine, modulates fast neurotransmitters such as GABA. However, the mechanism through which this occurs still needs to be fully elucidated. The dopamine transporter (DAT) is the primary regulator of dopamine homeostasis, controlling extracellular levels of dopamine as well as its storage in vesicles.

Methods

Here, we took advantage of the availability of dopamine transporter knockout (DAT-/-) rats, which provide a unique opportunity to investigate the response of the GABAergic system under hyperactivity of the dopaminergic system, a condition found in different disorders of the Central Nervous System. The expression levels of GABAergic markers have been evaluated by means of western blot in the whole homogenate, cytosolic fraction, and post-synaptic density of the striatum of male DAT-/- rats.

Results

We found a widespread down-regulation of GABAergic markers in the striatum of DAT-/- rats. Our data show that DA overactivity critically reorganizes the striatal GABAergic synapse in a way that GABA neurotransmission appears to be toned down. Such changes are equally distributed among proteins regulating GABA synthesis (GAD67), release (vGAT) and reuptake (GAT1, GAT3). It also involves the main subunits of GABA receptors (GABA-A α1, α2, β1; GABA-B R1), their anchoring proteins (Gephyrin) and adhesion molecules (Neuroligin-2).

Conclusion

Taken together, such changes paint a picture showing a compromised integrity of the striatal GABAergic system under conditions of functional hyperdopaminergia, which may be of interest for several disorders of the central nervous system.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X370747250404060428
2025-04-18
2025-09-03
Loading full text...

Full text loading...

References

  1. LeoD. SukhanovI. ZorattoF. IllianoP. CaffinoL. SannaF. MessaG. EmanueleM. EspositoA. DorofeikovaM. BudyginE.A. MusL. EfimovaE.V. NielloM. EspinozaS. SotnikovaT.D. HoenerM.C. LaviolaG. FumagalliF. AdrianiW. GainetdinovR.R. Pronounced hyperactivity, cognitive dysfunctions, and BDNF dysregulation in dopamine transporter knock-out rats.J. Neurosci.20183881959197210.1523/JNEUROSCI.1931‑17.2018 29348190
    [Google Scholar]
  2. GirosB. JaberM. JonesS.R. WightmanR.M. CaronM.G. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter.Nature1996379656660661210.1038/379606a0 8628395
    [Google Scholar]
  3. SoraI. WichemsC. TakahashiN. LiX.F. ZengZ. RevayR. LeschK.P. MurphyD.L. UhlG.R. Cocaine reward models: Conditioned place preference can be established in dopamine- and in serotonin-transporter knockout mice.Proc. Natl. Acad. Sci. USA199895137699770410.1073/pnas.95.13.7699 9636213
    [Google Scholar]
  4. TargaG. MottarliniF. RizziB. LeoD. CaffinoL. FumagalliF. Dysregulation of AMPA receptor trafficking and intracellular vesicular sorting in the prefrontal cortex of dopamine transporter knock-out rats.Biomolecules202313351610.3390/biom13030516 36979451
    [Google Scholar]
  5. CaffinoL. TargaG. MottarliniF. ThielensS. RizziB. VillersA. Memantine-induced functional rewiring of the glutamate synapse in the striatum of dopamine transporter knockout rats.Br. J. Pharmacol.20248261377139310.1111/bph.17403 39653030
    [Google Scholar]
  6. KubotaY. InagakiS. KitoS. WuJ.Y. Dopaminergic axons directly make synapses with GABAergic neurons in the rat neostriatum.Brain Res.19874061-214715610.1016/0006‑8993(87)90779‑7 2882818
    [Google Scholar]
  7. PickelV.M. TowleA.C. JohT.H. ChanJ. Gamma‐aminobutyric acid in the medial rat nucleus accumbens: Ultrastructural localization in neurons receiving monosynaptic input from catecholaminergic afferents.J. Comp. Neurol.1988272111410.1002/cne.902720102 2898489
    [Google Scholar]
  8. Flores-HernandezJ. HernandezS. SnyderG.L. YanZ. FienbergA.A. MossS.J. GreengardP. SurmeierD.J.D. (1) dopamine receptor activation reduces GABA(A) receptor currents in neostriatal neurons through a PKA/DARPP-32/PP1 signaling cascade.J. Neurophysiol.20008352996300410.1152/jn.2000.83.5.2996 10805695
    [Google Scholar]
  9. MorelloF. PartanenJ. Diversity and development of local inhibitory and excitatory neurons associated with dopaminergic nuclei.FEBS Lett.201558924PartA3693370110.1016/j.febslet.2015.10.001 26453835
    [Google Scholar]
  10. TepperJ.M. MartinL.P. AndersonD.R. GABAA receptor-mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons.J. Neurosci.19951543092310310.1523/JNEUROSCI.15‑04‑03092.1995 7722648
    [Google Scholar]
  11. CyrM. BeaulieuJ.M. LaaksoA. SotnikovaT.D. YaoW.D. BohnL.M. GainetdinovR.R. CaronM.G. Sustained elevation of extracellular dopamine causes motor dysfunction and selective degeneration of striatal GABAergic neurons.Proc. Natl. Acad. Sci. USA200310019110351104010.1073/pnas.1831768100 12958210
    [Google Scholar]
  12. ReinwaldJ.R. GassN. MallienA.S. SartoriusA. BeckerR. SackM. Falfan-MelgozaC. Clemm von HohenbergC. LeoD. PfeifferN. MiddelmanA. Meyer-LindenbergA. HombergJ.R. Weber-FahrW. GassP. Dopamine transporter silencing in the rat: Systems-level alterations in striato-cerebellar and prefrontal-midbrain circuits.Mol. Psychiatry20222742329233910.1038/s41380‑022‑01471‑4 35246636
    [Google Scholar]
  13. BoccalaroI.L. Cristiá-LaraL. SchwerdelC. FritschyJ.M. RubiL. Cell type‐specific distribution of GABAA receptor subtypes in the mouse dorsal striatum.J. Comp. Neurol.2019527122030204610.1002/cne.24665 30773633
    [Google Scholar]
  14. KoósT. TepperJ.M. Inhibitory control of neostriatal projection neurons by GABAergic interneurons.Nat. Neurosci.19992546747210.1038/8138 10321252
    [Google Scholar]
  15. CentonzeD. GrandeC. SaulleE. MartínA.B. GubelliniP. PavónN. PisaniA. BernardiG. MoratallaR. CalabresiP. Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity.J. Neurosci.200323248506851210.1523/JNEUROSCI.23‑24‑08506.2003 13679419
    [Google Scholar]
  16. WiltschkoA.B. PettiboneJ.R. BerkeJ.D. Opposite effects of stimulant and antipsychotic drugs on striatal fast-spiking interneurons.Neuropsychopharmacology20103561261127010.1038/npp.2009.226 20090670
    [Google Scholar]
  17. BracciE. CentonzeD. BernardiG. CalabresiP. Dopamine excites fast-spiking interneurons in the striatum.J. Neurophysiol.20028742190219410.1152/jn.00754.2001 11929936
    [Google Scholar]
  18. TritschN.X. DingJ.B. SabatiniB.L. Dopaminergic neurons inhibit striatal output through non-canonical release of GABA.Nature2012490741926226610.1038/nature11466 23034651
    [Google Scholar]
  19. MöhlerH. GABAA receptor diversity and pharmacology.Cell Tissue Res.2006326250551610.1007/s00441‑006‑0284‑3 16937111
    [Google Scholar]
  20. MacdonaldR.L. OlsenR.W. GABAA receptor channels.Annu. Rev. Neurosci.199417156960210.1146/annurev.ne.17.030194.003033 7516126
    [Google Scholar]
  21. KimJ.J. HibbsR.E. Direct structural insights into GABAA receptor pharmacology.Trends Biochem. Sci.202146650251710.1016/j.tibs.2021.01.011 33674151
    [Google Scholar]
  22. LuscherB. FuchsT. KilpatrickC.L. GABAA receptor trafficking-mediated plasticity of inhibitory synapses.Neuron201170338540910.1016/j.neuron.2011.03.024 21555068
    [Google Scholar]
  23. NusserZ. Cull-CandyS. FarrantM. Differences in synaptic GABA(A) receptor number underlie variation in GABA mini amplitude.Neuron199719369770910.1016/S0896‑6273(00)80382‑7 9331359
    [Google Scholar]
  24. OtisT.S. De KoninckY. ModyI. Lasting potentiation of inhibition is associated with an increased number of gamma-aminobutyric acid type A receptors activated during miniature inhibitory postsynaptic currents.Proc. Natl. Acad. Sci. USA199491167698770210.1073/pnas.91.16.7698 8052645
    [Google Scholar]
  25. PoulopoulosA. AramuniG. MeyerG. SoykanT. HoonM. PapadopoulosT. ZhangM. PaarmannI. FuchsC. HarveyK. JedlickaP. SchwarzacherS.W. BetzH. HarveyR.J. BroseN. ZhangW. VaroqueauxF. Neuroligin 2 drives postsynaptic assembly at perisomatic inhibitory synapses through gephyrin and collybistin.Neuron200963562864210.1016/j.neuron.2009.08.023 19755106
    [Google Scholar]
  26. VaroqueauxF. JamainS. BroseN. Neuroligin 2 is exclusively localized to inhibitory synapses.Eur. J. Cell Biol.200483944945610.1078/0171‑9335‑00410 15540461
    [Google Scholar]
  27. PatriziA. ScelfoB. ViltonoL. BriatoreF. FukayaM. WatanabeM. StrataP. VaroqueauxF. BroseN. FritschyJ.M. Sassoè-PognettoM. Synapse formation and clustering of neuroligin-2 in the absence of GABAA receptors.Proc. Natl. Acad. Sci. USA200810535131511315610.1073/pnas.0802390105 18723687
    [Google Scholar]
  28. CowellR.M. BlakeK.R. RussellJ.W. Localization of the transcriptional coactivator PGC‐1α to GABAergic neurons during maturation of the rat brain.J. Comp. Neurol.2007502111810.1002/cne.21211 17335037
    [Google Scholar]
  29. AlcántaraS. RuizM. D’ArcangeloG. EzanF. de LeceaL. CurranT. SoteloC. SorianoE. Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse.J. Neurosci.199818197779779910.1523/JNEUROSCI.18‑19‑07779.1998 9742148
    [Google Scholar]
  30. HerzJ. ChenY. Reelin, lipoprotein receptors and synaptic plasticity.Nat. Rev. Neurosci.200671185085910.1038/nrn2009 17053810
    [Google Scholar]
  31. CarberyI.D. JiD. HarringtonA. BrownV. WeinsteinE.J. LiawL. CuiX. Targeted genome modification in mice using zinc-finger nucleases.Genetics2010186245145910.1534/genetics.110.117002 20628038
    [Google Scholar]
  32. GeurtsA.M. CostG.J. FreyvertY. ZeitlerB. MillerJ.C. ChoiV.M. Knockout rats produced using designed zinc finger nucleases.Science200932543310.1126/science.1172447 19628861
    [Google Scholar]
  33. MottarliniF. TargaG. BottanG. TarenziB. FumagalliF. CaffinoL. Cortical reorganization of the glutamate synapse in the activity‐based anorexia rat model: Impact on cognition.J. Neurochem.2022161435036510.1111/jnc.15605 35257377
    [Google Scholar]
  34. PivaA. CaffinoL. MottarliniF. PintoriN. Castillo DíazF. FumagalliF. ChiamuleraC. Metaplastic effects of ketamine and MK-801 on glutamate receptors expression in rat medial prefrontal cortex and hippocampus.Mol. Neurobiol.20215873443345610.1007/s12035‑021‑02352‑7 33723767
    [Google Scholar]
  35. CaffinoL. TargaG. MallienA.S. MottarliniF. RizziB. HombergJ.R. Chronic lithium treatment alters NMDA and AMPA receptor synaptic availability and dendritic spine organization in the rat hippocampus.Curr. Neuropharmacol.202422220452048 37711124
    [Google Scholar]
  36. CaffinoL. VerheijM.M.M. RoversiK. TargaG. MottarliniF. PopikP. NikiforukA. GolebiowskaJ. FumagalliF. HombergJ.R. Hypersensitivity to amphetamine’s psychomotor and reinforcing effects in serotonin transporter knockout rats: Glutamate in the nucleus accumbens.Br. J. Pharmacol.2020177194532454710.1111/bph.15211 32721055
    [Google Scholar]
  37. DumoulinA. RostaingP. BedetC. LéviS. IsambertM.F. HenryJ.P. TrillerA. GasnierB. Presence of the vesicular inhibitory amino acid transporter in GABAergic and glycinergic synaptic terminal boutons.J. Cell Sci.1999112681182310.1242/jcs.112.6.811 10036231
    [Google Scholar]
  38. SheikhS.N. MartinS.B. MartinD.L. Regional distribution and relative amounts of glutamate decarboxylase isoforms in rat and mouse brain.Neurochem. Int.1999351738010.1016/S0197‑0186(99)00063‑7 10403432
    [Google Scholar]
  39. SoghomonianJ.J. MartinD.L. Two isoforms of glutamate decarboxylase: Why?Trends Pharmacol. Sci.1998191250050510.1016/S0165‑6147(98)01270‑X 9871412
    [Google Scholar]
  40. BaimbridgeK.G. CelioM.R. RogersJ.H. Calcium-binding proteins in the nervous system.Trends Neurosci.199215830330810.1016/0166‑2236(92)90081‑I 1384200
    [Google Scholar]
  41. FergusonB.R. GaoW.J. PV interneurons: Critical regulators of E/I balance for prefrontal cortex-dependent behavior and psychiatric disorders.Front. Neural Circuits2018123710.3389/fncir.2018.00037 29867371
    [Google Scholar]
  42. EsclapezM. TillakaratneN.J. KaufmanD.L. TobinA.J. HouserC.R. Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms.J. Neurosci.19941431834185510.1523/JNEUROSCI.14‑03‑01834.1994 8126575
    [Google Scholar]
  43. LapradeN. SoghomonianJ.J. Differential regulation of mRNA levels encoding for the two isoforms of glutamate decarboxylase (GAD65 and GAD67) by dopamine receptors in the rat striatum.Brain Res. Mol. Brain Res.1995341657410.1016/0169‑328X(95)00139‑J 8750862
    [Google Scholar]
  44. AugoodS.J. HerbisonA.E. EmsonP.C. Localization of GAT-1 GABA transporter mRNA in rat striatum: Cellular coexpression with GAD67 mRNA, GAD67 immunoreactivity, and parvalbumin mRNA.J. Neurosci.199515186587410.1523/JNEUROSCI.15‑01‑00865.1995 7823186
    [Google Scholar]
  45. KirmseK. KirischukS. GrantynR. Role of GABA transporter 3 in GABAergic synaptic transmission at striatal output neurons.Synapse2009631092192910.1002/syn.20675 19588470
    [Google Scholar]
  46. MandelaP. OrdwayG.A. The norepinephrine transporter and its regulation.J. Neurochem.200697231033310.1111/j.1471‑4159.2006.03717.x 16539676
    [Google Scholar]
  47. NepalB. DasS. ReithM.E. KortagereS. Overview of the structure and function of the dopamine transporter and its protein interactions.Front. Physiol.202314115035510.3389/fphys.2023.1150355 36935752
    [Google Scholar]
  48. ContiF. MeloneM. FattoriniG. BraginaL. CiappelloniS. A role for GAT-1 in presynaptic GABA homeostasis?Front. Cell. Neurosci.20115210.3389/fncel.2011.00002 21503156
    [Google Scholar]
  49. ZengC. LuY. WeiX. SunL. WeiL. OuS. HuangQ. WuY. Parvalbumin regulates GAD expression through calcium ion concentration to affect the balance of Glu-GABA and improve KA-induced status epilepticus in PV-Cre transgenic mice.ACS Chem. Neurosci.202415101951196610.1021/acschemneuro.3c00600 38696478
    [Google Scholar]
  50. LucasE.K. MarkwardtS.J. GuptaS. Meador-WoodruffJ.H. LinJ.D. Overstreet-WadicheL. CowellR.M. Parvalbumin deficiency and GABAergic dysfunction in mice lacking PGC-1α.J. Neurosci.201030217227723510.1523/JNEUROSCI.0698‑10.2010 20505089
    [Google Scholar]
  51. WangJ. SongH.R. GuoM.N. MaS.F. YunQ. ZhangW.N. Adult conditional knockout of PGC-1α in GABAergic neurons causes exaggerated startle reactivity, impaired short-term habituation and hyperactivity.Brain Res. Bull.202015712813910.1016/j.brainresbull.2020.02.005 32057952
    [Google Scholar]
  52. OkamotoS. PouladiM.A. TalantovaM. YaoD. XiaP. EhrnhoeferD.E. ZaidiR. ClementeA. KaulM. GrahamR.K. ZhangD. Vincent ChenH-S. TongG. HaydenM.R. LiptonS.A. Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin.Nat. Med.200915121407141310.1038/nm.2056 19915593
    [Google Scholar]
  53. GoffinD. AliA.B. RampersaudN. HarkavyiA. FuchsC. WhittonP.S. NairnA.C. JovanovicJ.N. Dopamine-dependent tuning of striatal inhibitory synaptogenesis.J. Neurosci.20103082935295010.1523/JNEUROSCI.4411‑09.2010 20181591
    [Google Scholar]
  54. ViciniS. FergusonC. PrybylowskiK. KralicJ. MorrowA.L. HomanicsG.E. GABA(A) receptor alpha1 subunit deletion prevents developmental changes of inhibitory synaptic currents in cerebellar neurons.J. Neurosci.20012193009301610.1523/JNEUROSCI.21‑09‑03009.2001 11312285
    [Google Scholar]
  55. DuX. HaoH. YangY. HuangS. WangC. GigoutS. RamliR. LiX. JaworskaE. EdwardsI. DeucharsJ. YanagawaY. QiJ. GuanB. JaffeD.B. ZhangH. GamperN. Local GABAergic signaling within sensory ganglia controls peripheral nociceptive transmission.J. Clin. Invest.201712751741175610.1172/JCI86812 28375159
    [Google Scholar]
  56. FrankowskaM. WydraK. Faron-GóreckaA. ZaniewskaM. KuśmiderM. Dziedzicka-WasylewskaM. FilipM. Neuroadaptive changes in the rat brain GABAB receptors after withdrawal from cocaine self-administration.Eur. J. Pharmacol.20085991-3586410.1016/j.ejphar.2008.09.018 18848829
    [Google Scholar]
  57. EssrichC. LorezM. BensonJ.A. FritschyJ.M. LüscherB. Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin.Nat. Neurosci.19981756357110.1038/2798 10196563
    [Google Scholar]
  58. JacobT.C. BogdanovY.D. MagnusC. SalibaR.S. KittlerJ.T. HaydonP.G. MossS.J. Gephyrin regulates the cell surface dynamics of synaptic GABAA receptors.J. Neurosci.20052545104691047810.1523/JNEUROSCI.2267‑05.2005 16280585
    [Google Scholar]
  59. PesoldC. ImpagnatielloF. PisuM.G. UzunovD.P. CostaE. GuidottiA. CarunchoH.J. Reelin is preferentially expressed in neurons synthesizing γ-aminobutyric acid in cortex and hippocampus of adult rats.Proc. Natl. Acad. Sci. USA19989563221322610.1073/pnas.95.6.3221 9501244
    [Google Scholar]
  60. RomanoE. FusoA. LaviolaG. Nicotine restores Wt-like levels of reelin and GAD67 gene expression in brain of heterozygous reeler mice.Neurotox. Res.201324220521510.1007/s12640‑013‑9378‑3 23385624
    [Google Scholar]
  61. MarroneM.C. MarinelliS. BiamonteF. KellerF. SgobioC.A. Ammassari-TeuleM. BernardiG. MercuriN.B. Altered cortico‐striatal synaptic plasticity and related behavioural impairments in reeler mice.Eur. J. Neurosci.20062472061207010.1111/j.1460‑9568.2006.05083.x 17067303
    [Google Scholar]
  62. PardoM. GregorioS. MontalbanE. PujadasL. Elias-TersaA. MasachsN. Vílchez-AcostaA. ParentA. AuladellC. GiraultJ.A. VilaM. NairnA.C. MansoY. SorianoE. Adult-specific Reelin expression alters striatal neuronal organization: implications for neuropsychiatric disorders.Front. Cell. Neurosci.202317114331910.3389/fncel.2023.1143319 37153634
    [Google Scholar]
  63. LiuW.S. PesoldC. RodriguezM.A. CarboniG. AutaJ. LacorP. LarsonJ. CondieB.G. GuidottiA. CostaE. Down-regulation of dendritic spine and glutamic acid decarboxylase 67 expressions in the reelin haploinsufficient heterozygous reeler mouse.Proc. Natl. Acad. Sci. USA20019863477348210.1073/pnas.051614698 11248103
    [Google Scholar]
  64. Gonzalez-BurgosG. HashimotoT. LewisD.A. Alterations of cortical GABA neurons and network oscillations in schizophrenia.Curr. Psychiatry Rep.201012433534410.1007/s11920‑010‑0124‑8 20556669
    [Google Scholar]
  65. LismanJ.E. CoyleJ.T. GreenR.W. JavittD.C. BenesF.M. HeckersS. GraceA.A. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia.Trends Neurosci.200831523424210.1016/j.tins.2008.02.005 18395805
    [Google Scholar]
  66. WilliamsS. BoksaP. Gamma oscillations and schizophrenia.J. Psychiatry Neurosci.2010352757710.1503/jpn.100021 20184803
    [Google Scholar]
  67. WilsonT.W. RojasD.C. ReiteM.L. TealeP.D. RogersS.J. Children and adolescents with autism exhibit reduced MEG steady-state gamma responses.Biol. Psychiatry200762319219710.1016/j.biopsych.2006.07.002 16950225
    [Google Scholar]
  68. MarínO. Parvalbumin interneuron deficits in schizophrenia.Eur. Neuropsychopharmacol.202482445210.1016/j.euroneuro.2024.02.010 38490084
    [Google Scholar]
  69. GuidottiA. AutaJ. DavisJ.M. GereviniV.D.G. DwivediY. GraysonD.R. ImpagnatielloF. PandeyG. PesoldC. SharmaR. UzunovD. CostaE. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: A postmortem brain study.Arch. Gen. Psychiatry200057111061106910.1001/archpsyc.57.11.1061 11074872
    [Google Scholar]
  70. DuZ. TertraisM. CourtandG. Leste-LasserreT. CardoitL. MasmejeanF. HalgandC. ChoY.H. GarretM. Differential alteration in expression of striatal GABAAR subunits in mouse models of huntington’s disease.Front. Mol. Neurosci.20171019810.3389/fnmol.2017.00198 28676743
    [Google Scholar]
  71. HsuY.T. ChangY.G. ChernY. Insights into GABAA ergic system alteration in Huntington’s disease.Open Biol.201881218016510.1098/rsob.180165 30518638
    [Google Scholar]
  72. ReinerA. ShelbyE. WangH. DeMarchZ. DengY. GuleyN.H. HoggV. RoxburghR. TippettL.J. WaldvogelH.J. FaullR.L.M. Striatal parvalbuminergic neurons are lost in Huntington’s disease: Implications for dystonia.Mov. Disord.201328121691169910.1002/mds.25624 24014043
    [Google Scholar]
  73. GittisA.H. LeventhalD.K. FensterheimB.A. PettiboneJ.R. BerkeJ.D. KreitzerA.C. Selective inhibition of striatal fast-spiking interneurons causes dyskinesias.J. Neurosci.20113144157271573110.1523/JNEUROSCI.3875‑11.2011 22049415
    [Google Scholar]
  74. LevyL.M. HallettM. Impaired brain GABA in focal dystonia.Ann. Neurol.20025119310110.1002/ana.10073 11782988
    [Google Scholar]
  75. KalanithiP.S.A. ZhengW. KataokaY. DiFigliaM. GrantzH. SaperC.B. SchwartzM.L. LeckmanJ.F. VaccarinoF.M. Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome.Proc. Natl. Acad. Sci. USA200510237133071331210.1073/pnas.0502624102 16131542
    [Google Scholar]
  76. KataokaY. KalanithiP.S.A. GrantzH. SchwartzM.L. SaperC. LeckmanJ.F. VaccarinoF.M. Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome.J. Comp. Neurol.2010518327729110.1002/cne.22206 19941350
    [Google Scholar]
/content/journals/cn/10.2174/011570159X370747250404060428
Loading
/content/journals/cn/10.2174/011570159X370747250404060428
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): dopamine homeostasis; Dopamine transporter; GABA; GABA-A receptors; GAD67; striatum
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test