Skip to content
2000
image of The Status and Future Directions of Treatments for Polyglutamine Spinocerebellar Ataxia: A Bibliometric and Visual Analysis

Abstract

Background

Polyglutamine (polyQ) spinocerebellar ataxias (SCA) are a group of autosomal dominant neurodegenerative disorders for which no effective treatments currently exist. These conditions impose a significant burden on patients, their families, and society. Consequently, the treatment of these disorders has attracted significant global interest.

Objective

We conducted this bibliometric analysis to identify the key research hotspots and predict the future research directions of this field.

Methods

Studies relating to the treatment of polyQ SCA published from 1999 to 2024 were retrieved from the Web of Science Core Collection database. Relevant papers were selected using predefined inclusion and exclusion criteria. HistCite, VOSviewer, CiteSpace, and alluvial generator were used in the bibliometric analysis.

Results

Overall, 935 papers were included. The number of publications in this field showed a trend toward a fluctuating increase. The United States and the University of Coimbra were the leading countries and institutions, respectively, in terms of publication number. The two most productive and highly cited authors were Luis Pereira de Almeida and Patricia Maciel. The journals , , and were considered the most influential based on the number of publications and citations. Furthermore, “new SCA types”, “Huntington’s disease”, “clinical trial”, “gene therapy”, “disease models,” and “Aggregation clearance therapy” emerged as current hotspots in this field, as revealed by the reference and keyword analyses.

Conclusion

This study presents a systematic bibliometric analysis of research on the polyQ SCA treatment, which we hope will assist researchers in identifying the key topics and future research directions in this field.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X360111250502055242
2025-05-19
2025-09-29
Loading full text...

Full text loading...

References

  1. Paulson H.L. Shakkottai V.G. Clark H.B. Orr H.T. Polyglutamine spinocerebellar ataxias — From genes to potential treatments. Nat. Rev. Neurosci. 2017 18 10 613 626 10.1038/nrn.2017.92 28855740
    [Google Scholar]
  2. Ashizawa T. Öz G. Paulson H.L. Spinocerebellar ataxias: Prospects and challenges for therapy development. Nat. Rev. Neurol. 2018 14 10 590 605 10.1038/s41582‑018‑0051‑6 30131520
    [Google Scholar]
  3. McLoughlin H.S. Moore L.R. Paulson H.L. Pathogenesis of SCA3 and implications for other polyglutamine diseases. Neurobiol. Dis. 2020 134 104635 10.1016/j.nbd.2019.104635 31669734
    [Google Scholar]
  4. Tan D. Wei C. Chen Z. Huang Y. Deng J. Li J. Liu Y. Bao X. Xu J. Hu Z. Wang S. Fan Y. Jiang Y. Wu Y. Wu Y. Wang S. Liu P. Zhang Y. Yang Z. Jiang Y. Zhang H. Hong D. Zhong N. Jiang H. Xiong H. CAG repeat expansion inTHAP11 is associated with a novel spinocerebellar ataxia. Mov. Disord. 2023 38 7 1282 1293 10.1002/mds.29412 37148549
    [Google Scholar]
  5. Durr A. Autosomal dominant cerebellar ataxias: Polyglutamine expansions and beyond. Lancet Neurol. 2010 9 9 885 894 10.1016/S1474‑4422(10)70183‑6 20723845
    [Google Scholar]
  6. Matos C.A. de Almeida L.P. Nóbrega C. Machado–Joseph disease/spinocerebellar ataxia type 3: Lessons from disease pathogenesis and clues into therapy. J. Neurochem. 2019 148 1 8 28 10.1111/jnc.14541 29959858
    [Google Scholar]
  7. Friedrich J. Kordasiewicz H.B. O’Callaghan B. Handler H.P. Wagener C. Duvick L. Swayze E.E. Rainwater O. Hofstra B. Benneyworth M. Nichols-Meade T. Yang P. Chen Z. Ortiz J.P. Clark H.B. Öz G. Larson S. Zoghbi H.Y. Henzler C. Orr H.T. Antisense oligonucleotide–mediated ataxin-1 reduction prolongs survival in SCA1 mice and reveals disease-associated transcriptome profiles. JCI Insight 2018 3 21 e123193 10.1172/jci.insight.123193 30385727
    [Google Scholar]
  8. McLoughlin H.S. Gundry K. Rainwater O. Schuster K.H. Wellik I.G. Zalon A.J. Benneyworth M.A. Eberly L.E. Öz G. Antisense oligonucleotide silencing reverses abnormal neurochemistry in spinocerebellar ataxia 3 mice. Ann. Neurol. 2023 94 4 658 671 10.1002/ana.26713 37243335
    [Google Scholar]
  9. McLoughlin H.S. Moore L.R. Chopra R. Komlo R. McKenzie M. Blumenstein K.G. Zhao H. Kordasiewicz H.B. Shakkottai V.G. Paulson H.L. Oligonucleotide therapy mitigates disease in spinocerebellar ataxia type 3 mice. Ann. Neurol. 2018 84 1 64 77 10.1002/ana.25264 29908063
    [Google Scholar]
  10. Niu C. Prakash T.P. Kim A. Quach J.L. Huryn L.A. Yang Y. Lopez E. Jazayeri A. Hung G. Sopher B.L. Brooks B.P. Swayze E.E. Bennett C.F. La Spada A.R. Antisense oligonucleotides targeting mutant Ataxin-7 restore visual function in a mouse model of spinocerebellar ataxia type 7. Sci. Transl. Med. 2018 10 465 eaap8677 10.1126/scitranslmed.aap8677 30381411
    [Google Scholar]
  11. O’Callaghan B. Hofstra B. Handler H.P. Kordasiewicz H.B. Cole T. Duvick L. Friedrich J. Rainwater O. Yang P. Benneyworth M. Nichols-Meade T. Heal W. Ter Haar R. Henzler C. Orr H.T. Antisense oligonucleotide therapeutic approach for suppression of ataxin-1 expression: A safety assessment. Mol. Ther. Nucleic Acids 2020 21 1006 1016 10.1016/j.omtn.2020.07.030 32818920
    [Google Scholar]
  12. Schuster K.H. Zalon A.J. DiFranco D.M. Putka A.F. Stec N.R. Jarrah S.I. Naeem A. Haque Z. Zhang H. Guan Y. McLoughlin H.S. ASOs are an effective treatment for disease-associated oligodendrocyte signatures in premanifest and symptomatic SCA3 mice. Mol. Ther. 2024 32 5 1359 1372 10.1016/j.ymthe.2024.02.033 38429929
    [Google Scholar]
  13. Alves S. Nascimento-Ferreira I. Auregan G. Hassig R. Dufour N. Brouillet E. Pedroso de Lima M.C. Hantraye P. Pereira de Almeida L. Déglon N. Allele-specific RNA silencing of mutant ataxin-3 mediates neuroprotection in a rat model of Machado-Joseph disease. PLoS One 2008 3 10 e3341 10.1371/journal.pone.0003341 18841197
    [Google Scholar]
  14. Xia H. Mao Q. Eliason S.L. Harper S.Q. Martins I.H. Orr H.T. Paulson H.L. Yang L. Kotin R.M. Davidson B.L. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat. Med. 2004 10 8 816 820 10.1038/nm1076 15235598
    [Google Scholar]
  15. Miyazaki Y. Du X. Muramatsu S. Gomez C.M. An miRNA-mediated therapy for SCA6 blocks IRES-driven translation of the CACNA1A second cistron. Sci. Transl. Med. 2016 8 347 347ra94 10.1126/scitranslmed.aaf5660 27412786
    [Google Scholar]
  16. Rodríguez-Lebrón E. Costa M. Luna-Cancalon K. Peron T.M. Fischer S. Boudreau R.L. Davidson B.L. Paulson H.L. Silencing mutant ATXN3 expression resolves molecular phenotypes in SCA3 transgenic mice. Mol. Ther. 2013 21 10 1909 1918 10.1038/mt.2013.152 23820820
    [Google Scholar]
  17. He L. Wang S. Peng L. Zhao H. Li S. Han X. Habimana J.D. Chen Z. Wang C. Peng Y. Peng H. Xie Y. Lei L. Deng Q. Wan L. Wan N. Yuan H. Gong Y. Zou G. Li Z. Tang B. Jiang H. CRISPR/Cas9 mediated gene correction ameliorates abnormal phenotypes in spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cells. Transl. Psychiatry 2021 11 1 479 10.1038/s41398‑021‑01605‑2 34535635
    [Google Scholar]
  18. Pappadà M. Bonuccelli O. Buratto M. Fontana R. Sicurella M. Caproni A. Fuselli S. Benazzo A. Bertorelli R. De Sanctis V. Cavallerio P. Simioni V. Tugnoli V. Salvatori F. Marconi P. Suppressing gain-of-function proteins via CRISPR/Cas9 system in SCA1 cells. Sci. Rep. 2022 12 1 20285 10.1038/s41598‑022‑24299‑y 36434031
    [Google Scholar]
  19. Simpson B.P. Yrigollen C.M. Izda A. Davidson B.L. Targeted long-read sequencing captures CRISPR editing and AAV integration outcomes in brain. Mol. Ther. 2023 31 3 760 773 10.1016/j.ymthe.2023.01.004 36617193
    [Google Scholar]
  20. Ayala I.N. Aziz S. Argudo J.M. Yepez M. Camacho M. Ojeda D. Aguirre A.S. Oña S. Andrade A.F. Vasudhar A. Moncayo J.A. Hassen G. Ortiz J.F. Tambo W. Use of riluzole for the treatment of hereditary ataxias: A systematic review. Brain Sci. 2022 12 8 1040 10.3390/brainsci12081040 36009103
    [Google Scholar]
  21. Coarelli G. Heinzmann A. Ewenczyk C. Fischer C. Chupin M. Monin M.L. Hurmic H. Calvas F. Calvas P. Goizet C. Thobois S. Anheim M. Nguyen K. Devos D. Verny C. Ricigliano V.A.G. Mangin J.F. Brice A. Tezenas du Montcel S. Durr A. Safety and efficacy of riluzole in spinocerebellar ataxia type 2 in France (ATRIL): A multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2022 21 3 225 233 10.1016/S1474‑4422(21)00457‑9 35063116
    [Google Scholar]
  22. Velázquez-Pérez L. Rodríguez-Labrada R. Riluzole and spinocerebellar ataxia type 2: The ATRIL trial. Lancet Neurol. 2022 21 3 204 205 10.1016/S1474‑4422(22)00028‑X 35063118
    [Google Scholar]
  23. Zesiewicz T.A. Wilmot G. Kuo S.H. Perlman S. Greenstein P.E. Ying S.H. Ashizawa T. Subramony S.H. Schmahmann J.D. Figueroa K.P. Mizusawa H. Schöls L. Shaw J.D. Dubinsky R.M. Armstrong M.J. Gronseth G.S. Sullivan K.L. Comprehensive systematic review summary: Treatment of cerebellar motor dysfunction and ataxia: Report of the guideline development, dissemination, and implementation subcommittee of the American academy of neurology. Neurology 2018 90 10 464 471 10.1212/WNL.0000000000005055 29440566
    [Google Scholar]
  24. Esteves S. Duarte-Silva S. Naia L. Neves-Carvalho A. Teixeira-Castro A. Rego A.C. Silva-Fernandes A. Maciel P. Limited effect of chronic valproic acid treatment in a mouse model of machado-joseph disease. PLoS One 2015 10 10 e0141610 10.1371/journal.pone.0141610 26505994
    [Google Scholar]
  25. Lei L.F. Yang G.P. Wang J.L. Chuang D.M. Song W.H. Tang B.S. Jiang H. Safety and efficacy of valproic acid treatment in SCA3/MJD patients. Parkinsonism Relat. Disord. 2016 26 55 61 10.1016/j.parkreldis.2016.03.005 26997655
    [Google Scholar]
  26. Watchon M. Luu L. Robinson K.J. Yuan K.C. De Luca A. Suddull H.J. Tym M.C. Guillemin G.J. Cole N.J. Nicholson G.A. Chung R.S. Lee A. Laird A.S. Sodium valproate increases activity of the sirtuin pathway resulting in beneficial effects for spinocerebellar ataxia-3 in vivo. Mol. Brain 2021 14 1 128 10.1186/s13041‑021‑00839‑x 34416891
    [Google Scholar]
  27. Connolly B.S. Prashanth L.K. Shah B.B. Marras C. Lang A.E. A randomized trial of varenicline (chantix) for the treatment of spinocerebellar ataxia type 3. Neurology 2012 79 22 2218 10.1212/WNL.0b013e318278a059 23183282
    [Google Scholar]
  28. van de Warrenburg B.P.C. van Gaalen J. Boesch S. Burgunder J.M. Dürr A. Giunti P. Klockgether T. Mariotti C. Pandolfo M. Riess O. EFNS / ENS Consensus on the diagnosis and management of chronic ataxias in adulthood. Eur. J. Neurol. 2014 21 4 552 562 10.1111/ene.12341 24418350
    [Google Scholar]
  29. Saccà F. Puorro G. Brunetti A. Capasso G. Cervo A. Cocozza S. de Leva M. Marsili A. Pane C. Quarantelli M. Russo C.V. Trepiccione F. De Michele G. Filla A. Morra V.B. A randomized controlled pilot trial of lithium in spinocerebellar ataxia type 2. J. Neurol. 2015 262 1 149 153 10.1007/s00415‑014‑7551‑0 25346067
    [Google Scholar]
  30. Saute J.A.M. de Castilhos R.M. Monte T.L. Schumacher-Schuh A.F. Donis K.C. D’Ávila R. Souza G.N. Russo A.D. Furtado G.V. Gheno T.C. de Souza D.O.G. Portela L.V.C. Saraiva-Pereira M.L. Camey S.A. Torman V.B.L. de Mello Rieder C.R. Jardim L.B. A randomized, phase 2 clinical trial of lithium carbonate in Machado‐Joseph disease. Mov. Disord. 2014 29 4 568 573 10.1002/mds.25803 24399647
    [Google Scholar]
  31. Watase K. Gatchel J.R. Sun Y. Emamian E. Atkinson R. Richman R. Mizusawa H. Orr H.T. Shaw C. Zoghbi H.Y. Lithium therapy improves neurological function and hippocampal dendritic arborization in a spinocerebellar ataxia type 1 mouse model. PLoS Med. 2007 4 5 e182 10.1371/journal.pmed.0040182 17535104
    [Google Scholar]
  32. Rodríguez-Díaz J.C. Velázquez-Pérez L. Rodríguez Labrada R. Aguilera Rodríguez R. Laffita Pérez D. Canales Ochoa N. Medrano Montero J. Estupiñán Rodríguez A. Osorio Borjas M. Góngora Marrero M. Reynaldo Cejas L. González Zaldivar Y. Almaguer Gotay D. Neurorehabilitation therapy in spinocerebellar ataxia type 2: A 24‐week, rater‐blinded, randomized, controlled trial. Mov. Disord. 2018 33 9 1481 1487 10.1002/mds.27437 30132999
    [Google Scholar]
  33. Velázquez-Pérez L. Rodríguez-Diaz J.C. Rodríguez-Labrada R. Medrano-Montero J. Aguilera Cruz A.B. Reynaldo-Cejas L. Góngora-Marrero M. Estupiñán-Rodríguez A. Vázquez-Mojena Y. Torres-Vega R. Neurorehabilitation improves the motor features in prodromal SCA2: A randomized, controlled trial. Mov. Disord. 2019 34 7 1060 1068 10.1002/mds.27676 30958572
    [Google Scholar]
  34. Ciricugno A. Oldrati V. Cattaneo Z. Leggio M. Urgesi C. Olivito G. Cerebellar neurostimulation for boosting social and affective functions: Implications for the rehabilitation of hereditary ataxia patients. Cerebellum 2024 23 4 1651 1677 10.1007/s12311‑023‑01652‑z 38270782
    [Google Scholar]
  35. Yap K.H. Azmin S. Che Hamzah J. Ahmad N. van de Warrenburg B. Mohamed Ibrahim N. Pharmacological and non-pharmacological management of spinocerebellar ataxia: A systematic review. J. Neurol. 2022 269 5 2315 2337 10.1007/s00415‑021‑10874‑2 34743220
    [Google Scholar]
  36. Hu Z. Tao X. Huang Z. Xie K. Zhu S. Weng X. Lin D. Zhang Y. Wang L. Efficacy of high-frequency repetitive transcranial magnetic stimulation in a family with spinocerebellar ataxia type 3: A case report. Heliyon 2023 9 5 e16190 10.1016/j.heliyon.2023.e16190 37215811
    [Google Scholar]
  37. Shi Y. Zou G. Chen Z. Wan L. Peng L. Peng H. Shen L. Xia K. Qiu R. Tang B. Jiang H. Efficacy of cerebellar transcranial magnetic stimulation in spinocerebellar ataxia type 3: A randomized, single-blinded, controlled trial. J. Neurol. 2023 270 11 5372 5379 10.1007/s00415‑023‑11848‑2 37433893
    [Google Scholar]
  38. Liu Y. Ma Y. Zhang J. Yan X. Ouyang Y. Effects of non-invasive brain stimulation on hereditary ataxia: A systematic review and meta-analysis. Cerebellum 2023 23 4 1614 1625 10.1007/s12311‑023‑01638‑x 38019418
    [Google Scholar]
  39. Grobe-Einsler M. Bork F. Faikus A. Hurlemann R. Kaut O. Effects of cerebellar repetitive transcranial magnetic stimulation plus physiotherapy in spinocerebellar ataxias – A randomized clinical trial. CNS Neurosci. Ther. 2024 30 6 e14797 10.1111/cns.14797 38887169
    [Google Scholar]
  40. Cui Z.T. Mao Z.T. Yang R. Li J.J. Jia S.S. Zhao J.L. Zhong F.T. Yu P. Dong M. Spinocerebellar ataxias: From pathogenesis to recent therapeutic advances. Front. Neurosci. 2024 18 1422442 10.3389/fnins.2024.1422442 38894941
    [Google Scholar]
  41. Déglon N. Gene editing as a therapeutic strategy for spinocerebellar ataxia type-3. Rev. Neurol. 2024 180 5 378 382 10.1016/j.neurol.2024.03.003 38580500
    [Google Scholar]
  42. Niewiadomska-Cimicka A. Fievet L. Surdyka M. Jesion E. Keime C. Singer E. Eisenmann A. Kalinowska-Poska Z. Nguyen H.H.P. Fiszer A. Figiel M. Trottier Y. AAV-mediated CAG-targeting selectively reduces polyglutamine-expanded protein and attenuates disease phenotypes in a spinocerebellar ataxia mouse model. Int. J. Mol. Sci. 2024 25 8 4354 10.3390/ijms25084354 38673939
    [Google Scholar]
  43. Ninkov A. Frank J.R. Maggio L.A. Bibliometrics: Methods for studying academic publishing. Perspect. Med. Educ. 2021 11 3 173 176 10.1007/S40037‑021‑00695‑4 34914027
    [Google Scholar]
  44. Jiang S. Pan X. Li H. Su Y. Global trends and developments in mindfulness interventions for diabetes: A bibliometric study. Diabetol. Metab. Syndr. 2024 16 1 43 10.1186/s13098‑024‑01288‑x 38360701
    [Google Scholar]
  45. Yuan K. Zhang X. Wu B. Zeng R. Hu R. Wang C. Research trends between diabetes mellitus and bariatric surgery researches: Bibliometric analysis and visualization from 1998 to 2023. Obes. Rev. 2024 25 6 e13730 10.1111/obr.13730 38424660
    [Google Scholar]
  46. Zhao M. Wang K. Lin R. Mu F. Cui J. Tao X. Weng Y. Wang J. Influence of glutamine metabolism on diabetes development:A scientometric review. Heliyon 2024 10 4 e25258 10.1016/j.heliyon.2024.e25258 38375272
    [Google Scholar]
  47. Zeng N. Sun J.X. Liu C.Q. Xu J.Z. An Y. Xu M.Y. Zhang S.H. Zhong X.Y. Ma S.Y. He H.D. Wang S.G. Xia Q.D. Knowledge mapping of application of image-guided surgery in prostate cancer: A bibliometric analysis (2013–2023). Int. J. Surg. 2024 110 5 2992 3007 10.1097/JS9.0000000000001232 38445538
    [Google Scholar]
  48. Ammirabile A. Mastroleo F. Marvaso G. Alterio D. Franzese C. Scorsetti M. Franco P. Giannitto C. Jereczek-Fossa B.A. Mapping the research landscape of HPV-positive oropharyngeal cancer: A bibliometric analysis. Crit. Rev. Oncol. Hematol. 2024 196 104318 10.1016/j.critrevonc.2024.104318 38431241
    [Google Scholar]
  49. Fu Y. Gong C. Zhu C. Zhong W. Guo J. Chen B. Research trends and hotspots of neuropathic pain in neurodegenerative diseases: A bibliometric analysis. Front. Immunol. 2023 14 1182411 10.3389/fimmu.2023.1182411 37503342
    [Google Scholar]
  50. Wang W. Li T. Wang Z. Yin Y. Zhang S. Wang C. Hu X. Lu S. Bibliometric analysis of research on neurodegenerative diseases and single-cell RNA sequencing: Opportunities and challenges. iScience 2023 26 10 107833 10.1016/j.isci.2023.107833 37736042
    [Google Scholar]
  51. Zhang T. Yang R. Pan J. Huang S. Parkinson’s disease related depression and anxiety: A 22-year bibliometric analysis (2000-2022). Neuropsychiatr. Dis. Treat. 2023 19 1477 1489 10.2147/NDT.S403002 37404573
    [Google Scholar]
  52. Tao Z. Wang F. Jiang Z. Wang C. Jiang C. Ye S. Yang W. Wang M. A bibliometric analysis of hepatolenticular degeneration research in traditional Chinese medicine using CiteSpace and VOSviewer: A study protocol for systematic review. Medicine 2024 103 49 e40781 10.1097/MD.0000000000040781 39654180
    [Google Scholar]
  53. Lu Y. Hu Y. Wang S. Pan S. An K. Wang T. He Y. Tian C. Lei J. Hereditary hearing loss: A systematic review of potential treatments and interventions. Am. J. Audiol. 2023 32 4 972 989 10.1044/2023_AJA‑23‑00069 37889166
    [Google Scholar]
  54. Chen C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006 57 3 359 377 10.1002/asi.20317
    [Google Scholar]
  55. Garfield E. Paris S.W Stock W.G HistCite™: A software tool for informetric analysis of citation linkage. NFD Inf. Wiss. Praxis. 2006 57 8 391 400
    [Google Scholar]
  56. van Eck N.J. Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010 84 2 523 538 10.1007/s11192‑009‑0146‑3 20585380
    [Google Scholar]
  57. Aria M. Cuccurullo C. bibliometrix : An R-tool for comprehensive science mapping analysis. J. Informetrics 2017 11 4 959 975 10.1016/j.joi.2017.08.007
    [Google Scholar]
  58. Klockgether T. Mariotti C. Paulson H.L. Spinocerebellar ataxia. Nat. Rev. Dis. Primers 2019 5 1 24 10.1038/s41572‑019‑0074‑3 30975995
    [Google Scholar]
  59. Moore L.R. Rajpal G. Dillingham I.T. Qutob M. Blumenstein K.G. Gattis D. Hung G. Kordasiewicz H.B. Paulson H.L. McLoughlin H.S. Evaluation of antisense oligonucleotides targeting ATXN3 in SCA3 mouse models. Mol. Ther. Nucleic Acids 2017 7 200 210 10.1016/j.omtn.2017.04.005 28624196
    [Google Scholar]
  60. Dunah A.W. Jeong H. Griffin A. Kim Y.M. Standaert D.G. Hersch S.M. Mouradian M.M. Young A.B. Tanese N. Krainc D. Sp1 and TAFII130 transcriptional activity disrupted in early Huntington’s disease. Science 2002 296 5576 2238 2243 10.1126/science.1072613 11988536
    [Google Scholar]
  61. Bowman A.B. Lam Y.C. Jafar-Nejad P. Chen H.K. Richman R. Samaco R.C. Fryer J.D. Kahle J.J. Orr H.T. Zoghbi H.Y. Duplication of Atxn1l suppresses SCA1 neuropathology by decreasing incorporation of polyglutamine-expanded ataxin-1 into native complexes. Nat. Genet. 2007 39 3 373 379 10.1038/ng1977 17322884
    [Google Scholar]
  62. Hu J. Matsui M. Gagnon K.T. Schwartz J.C. Gabillet S. Arar K. Wu J. Bezprozvanny I. Corey D.R. Allele-specific silencing of mutant huntingtin and ataxin-3 genes by targeting expanded CAG repeats in mRNAs. Nat. Biotechnol. 2009 27 5 478 484 10.1038/nbt.1539 19412185
    [Google Scholar]
  63. Chou A.H. Chen S.Y. Yeh T.H. Weng Y.H. Wang H.L. HDAC inhibitor sodium butyrate reverses transcriptional downregulation and ameliorates ataxic symptoms in a transgenic mouse model of SCA3. Neurobiol. Dis. 2011 41 2 481 488 10.1016/j.nbd.2010.10.019 21047555
    [Google Scholar]
  64. Den Dunnen W.F.A. Trinucleotide repeat disorders. Handb. Clin. Neurol. 2018 145 383 391 10.1016/B978‑0‑12‑802395‑2.00027‑4 28987184
    [Google Scholar]
  65. Lieberman A.P. Shakkottai V.G. Albin R.L. Polyglutamine repeats in neurodegenerative diseases. Annu. Rev. Pathol. 2019 14 1 1 27 10.1146/annurev‑pathmechdis‑012418‑012857 30089230
    [Google Scholar]
  66. Buijsen R.A.M. Toonen L.J.A. Gardiner S.L. van Roon-Mom W.M.C. Genetics, mechanisms, and therapeutic progress in polyglutamine spinocerebellar ataxias. Neurotherapeutics 2019 16 2 263 286 10.1007/s13311‑018‑00696‑y 30607747
    [Google Scholar]
  67. Soto-Piña A.E. Pulido-Alvarado C.C. Dulski J. Wszolek Z.K. Magaña J.J. Specific biomarkers in spinocerebellar ataxia type 3: A systematic review of their potential uses in disease staging and treatment assessment. Int. J. Mol. Sci. 2024 25 15 8074 10.3390/ijms25158074 39125644
    [Google Scholar]
  68. Marcelo A. Afonso I.T. Afonso-Reis R. Brito D.V.C. Costa R.G. Rosa A. Alves-Cruzeiro J. Ferreira B. Henriques C. Nobre R.J. Matos C.A. de Almeida L.P. Nóbrega C. Autophagy in Spinocerebellar ataxia type 2, a dysregulated pathway, and a target for therapy. Cell Death Dis. 2021 12 12 1117 10.1038/s41419‑021‑04404‑1 34845184
    [Google Scholar]
  69. Nóbrega C. Carmo-Silva S. Albuquerque D. Vasconcelos-Ferreira A. Vijayakumar U.G. Mendonça L. Hirai H. Pereira de Almeida L. Re-establishing ataxin-2 downregulates translation of mutant ataxin-3 and alleviates Machado–Joseph disease. Brain 2015 138 12 3537 3554 10.1093/brain/awv298 26490332
    [Google Scholar]
  70. Gonçalves N. Simões A.T. Cunha R.A. de Almeida L.P. Caffeine and adenosine A 2A receptor inactivation decrease striatal neuropathology in a lentiviral‐based model of Machado–Joseph disease. Ann. Neurol. 2013 73 5 655 666 10.1002/ana.23866 23625556
    [Google Scholar]
  71. Seixas A.I. Loureiro J.R. Costa C. Ordóñez-Ugalde A. Marcelino H. Oliveira C.L. Loureiro J.L. Dhingra A. Brandão E. Cruz V.T. Timóteo A. Quintáns B. Rouleau G.A. Rizzu P. Carracedo Á. Bessa J. Heutink P. Sequeiros J. Sobrido M.J. Coutinho P. Silveira I. A pentanucleotide ATTTC repeat insertion in the non-coding region of DAB1, mapping to SCA37, causes spinocerebellar ataxia. Am. J. Hum. Genet. 2017 101 1 87 103 10.1016/j.ajhg.2017.06.007 28686858
    [Google Scholar]
  72. Nibbeling E.A.R. Duarri A. Verschuuren-Bemelmans C.C. Fokkens M.R. Karjalainen J.M. Smeets C.J.L.M. de Boer-Bergsma J.J. van der Vries G. Dooijes D. Bampi G.B. van Diemen C. Brunt E. Ippel E. Kremer B. Vlak M. Adir N. Wijmenga C. van de Warrenburg B.P.C. Franke L. Sinke R.J. Verbeek D.S. Exome sequencing and network analysis identifies shared mechanisms underlying spinocerebellar ataxia. Brain 2017 140 11 2860 2878 10.1093/brain/awx251 29053796
    [Google Scholar]
  73. Dijk G.W. Wokke J.H.J. Oey P.L. Franseen H. Ippel P.F. Veldman H. A new variant of sensory ataxic neuropathy with autosomal dominant inheritance. Brain 1995 118 6 1557 1563 10.1093/brain/118.6.1557 8595484
    [Google Scholar]
  74. Gennarino V.A. Palmer E.E. McDonell L.M. Wang L. Adamski C.J. Koire A. See L. Chen C.A. Schaaf C.P. Rosenfeld J.A. Panzer J.A. Moog U. Hao S. Bye A. Kirk E.P. Stankiewicz P. Breman A.M. McBride A. Kandula T. Dubbs H.A. Macintosh R. Cardamone M. Zhu Y. Ying K. Dias K.R. Cho M.T. Henderson L.B. Baskin B. Morris P. Tao J. Cowley M.J. Dinger M.E. Roscioli T. Caluseriu O. Suchowersky O. Sachdev R.K. Lichtarge O. Tang J. Boycott K.M. Holder J.L. Jr Zoghbi H.Y. A mild PUM1 mutation is associated with adult-onset ataxia, whereas haploinsufficiency causes developmental delay and seizures. Cell 2018 172 5 924 936.e11 10.1016/j.cell.2018.02.006 29474920
    [Google Scholar]
  75. Genis D. Ortega-Cubero S. San Nicolás H. Corral J. Gardenyes J. de Jorge L. López E. Campos B. Lorenzo E. Tonda R. Beltran S. Negre M. Obón M. Beltran B. Fàbregas L. Alemany B. Márquez F. Ramió-Torrentà L. Gich J. Volpini V. Pastor P. Heterozygous STUB1 mutation causes familial ataxia with cognitive affective syndrome (SCA48). Neurology 2018 91 21 e1988 e1998 10.1212/WNL.0000000000006550 30381368
    [Google Scholar]
  76. Coutelier M. Jacoupy M. Janer A. Renaud F. Auger N. Saripella G.V. Ancien F. Pucci F. Rooman M. Gilis D. Larivière R. Sgarioto N. Valter R. Guillot-Noel L. Le Ber I. Sayah S. Charles P. Nümann A. Pauly M.G. Helmchen C. Deininger N. Haack T.B. Brais B. Brice A. Trégouët D.A. El Hachimi K.H. Shoubridge E.A. Durr A. Stevanin G. NPTX1 mutations trigger endoplasmic reticulum stress and cause autosomal dominant cerebellar ataxia. Brain 2022 145 4 1519 1534 10.1093/brain/awab407 34788392
    [Google Scholar]
  77. Barbier M. Bahlo M. Pennisi A. Jacoupy M. Tankard R.M. Ewenczyk C. Davies K.C. Lino-Coulon P. Colace C. Rafehi H. Auger N. Ansell B.R.E. van der Stelt I. Howell K.B. Coutelier M. Amor D.J. Mundwiller E. Guillot-Noël L. Storey E. Gardner R.J.M. Wallis M.J. Brusco A. Corti O. Rötig A. Leventer R.J. Brice A. Delatycki M.B. Stevanin G. Lockhart P.J. Durr A. HeterozygousPNPT1 variants cause spinocerebellar ataxia type 25. Ann. Neurol. 2022 92 1 122 137 10.1002/ana.26366 35411967
    [Google Scholar]
  78. Corral-Juan M. Casquero P. Giraldo-Restrepo N. Laurie S. Martinez-Piñeiro A. Mateo-Montero R.C. Ispierto L. Vilas D. Tolosa E. Volpini V. Alvarez-Ramo R. Sánchez I. Matilla-Dueñas A. New spinocerebellar ataxia subtype caused by SAMD9L mutation triggering mitochondrial dysregulation (SCA49). Brain Commun. 2022 4 2 fcac030 10.1093/braincomms/fcac030 35310830
    [Google Scholar]
  79. Rafehi H. Read J. Szmulewicz D.J. Davies K.C. Snell P. Fearnley L.G. Scott L. Thomsen M. Gillies G. Pope K. Bennett M.F. Munro J.E. Ngo K.J. Chen L. Wallis M.J. Butler E.G. Kumar K.R. Wu K.H.C. Tomlinson S.E. Tisch S. Malhotra A. Lee-Archer M. Dolzhenko E. Eberle M.A. Roberts L.J. Fogel B.L. Brüggemann N. Lohmann K. Delatycki M.B. Bahlo M. Lockhart P.J. An intronic GAA repeat expansion in FGF14 causes the autosomal-dominant adult-onset ataxia SCA27B/ATX-FGF14. Am. J. Hum. Genet. 2023 110 1 105 119 10.1016/j.ajhg.2022.11.015 36493768
    [Google Scholar]
  80. Hsiao C.T. Liao N.Y. Liao Y.C. Lee Y.C. THAP11 CAG repeat expansion is rare or absent in the taiwanese cohort with cerebellar ataxia. Mov. Disord. 2024 39 5 924 925 10.1002/mds.29800 38757579
    [Google Scholar]
  81. Zhu C-Y. Li C-Y. Li Y. Zhan Y-Q. Li Y-H. Xu C-W. Xu W-X. Sun H.B. Yang X-M. Cell growth suppression by thanatos-associated protein 11(THAP11) is mediated by transcriptional downregulation of c-Myc. Cell Death Differ. 2009 16 3 395 405 10.1038/cdd.2008.160 19008924
    [Google Scholar]
  82. Ross C.A. Tabrizi S.J. Huntington’s disease: From molecular pathogenesis to clinical treatment. Lancet Neurol. 2011 10 1 83 98 10.1016/S1474‑4422(10)70245‑3 21163446
    [Google Scholar]
  83. Jin J.L. Liu Z. Lu Z.J. Guan D.N. Wang C. Chen Z.B. Zhang J. Zhang W.Y. Wu J.Y. Xu Y. Safety and efficacy of umbilical cord mesenchymal stem cell therapy in hereditary spinocerebellar ataxia. Curr. Neurovasc. Res. 2013 10 1 11 20 10.2174/156720213804805936 23151076
    [Google Scholar]
  84. Tsai Y.A. Liu R.S. Lirng J.F. Yang B.H. Chang C.H. Wang Y.C. Wu Y.S. Ho J.H.C. Lee O.K. Soong B.W. Treatment of spinocerebellar ataxia with mesenchymal stem cells: A phase I/IIa clinical study. Cell Transplant. 2017 26 3 503 512 10.3727/096368916X694373 28195034
    [Google Scholar]
  85. Vázquez-Mojena Y. León-Arcia K. González-Zaldivar Y. Rodríguez-Labrada R. Velázquez-Pérez L. Gene therapy for polyglutamine spinocerebellar ataxias: Advances, challenges, and perspectives. Mov. Disord. 2021 36 12 2731 2744 10.1002/mds.28819 34628681
    [Google Scholar]
  86. Costa M.C. Paulson H.L. Toward understanding Machado–Joseph disease. Prog. Neurobiol. 2012 97 2 239 257 10.1016/j.pneurobio.2011.11.006 22133674
    [Google Scholar]
  87. Ingram M.A.C. Orr H.T. Clark H.B. Genetically engineered mouse models of the trinucleotide-repeat spinocerebellar ataxias. Brain Res. Bull. 2012 88 1 33 42 10.1016/j.brainresbull.2011.07.016 21810454
    [Google Scholar]
  88. Burright E.N. Brent Clark H. Servadio A. Matilla T. Feddersen R.M. Yunis W.S. Duvick L.A. Zoghbi H.Y. Orr H.T. SCA1 transgenic mice: A model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell 1995 82 6 937 948 10.1016/0092‑8674(95)90273‑2 7553854
    [Google Scholar]
  89. Huynh D.P. Figueroa K. Hoang N. Pulst S.M. Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nat. Genet. 2000 26 1 44 50 10.1038/79162 10973246
    [Google Scholar]
  90. Ikeda H. Yamaguchi M. Sugai S. Aze Y. Narumiya S. Kakizuka A. Expanded polyglutamine in the Machado–Joseph disease protein induces cell death in vitro and in vivo. Nat. Genet. 1996 13 2 196 202 10.1038/ng0696‑196 8640226
    [Google Scholar]
  91. Saegusa H. Wakamori M. Matsuda Y. Wang J. Mori Y. Zong S. Tanabe T. Properties of human Cav2.1 channel with a spinocerebellar ataxia type 6 mutation expressed in Purkinje cells. Mol. Cell. Neurosci. 2007 34 2 261 270 10.1016/j.mcn.2006.11.006 17188510
    [Google Scholar]
  92. Yvert G. Lindenberg K.S. Picaud S. Landwehrmeyer G.B. Sahel J.A. Mandel J.L. Expanded polyglutamines induce neurodegeneration and trans-neuronal alterations in cerebellum and retina of SCA7 transgenic mice. Hum. Mol. Genet. 2000 9 17 2491 2506 10.1093/hmg/9.17.2491 11030754
    [Google Scholar]
  93. Friedman M.J. Shah A.G. Fang Z.H. Ward E.G. Warren S.T. Li S. Li X.J. Polyglutamine domain modulates the TBP-TFIIB interaction: Implications for its normal function and neurodegeneration. Nat. Neurosci. 2007 10 12 1519 1528 10.1038/nn2011 17994014
    [Google Scholar]
  94. Hasuike Y. Tanaka H. Gall-Duncan T. Mehkary M. Nakatani K. Pearson C.E. Tsuji S. Mochizuki H. Nakamori M. CAG repeat-binding small molecule improves motor coordination impairment in a mouse model of Dentatorubral–pallidoluysian atrophy. Neurobiol. Dis. 2022 163 105604 10.1016/j.nbd.2021.105604 34968706
    [Google Scholar]
  95. Tower C. Fu L. Gill R. Prichard M. Lesort M. Sztul E. Human cytomegalovirus UL97 kinase prevents the deposition of mutant protein aggregates in cellular models of Huntington’s disease and Ataxia. Neurobiol. Dis. 2011 41 1 11 22 10.1016/j.nbd.2010.08.013 20732421
    [Google Scholar]
  96. Ito N. Kamiguchi K. Nakanishi K. Sokolovskya A. Hirohashi Y. Tamura Y. Murai A. Yamamoto E. Kanaseki T. Tsukahara T. Kochin V. Chiba S. Shimohama S. Sato N. Torigoe T. A novel nuclear DnaJ protein, DNAJC8, can suppress the formation of spinocerebellar ataxia 3 polyglutamine aggregation in a J-domain independent manner. Biochem. Biophys. Res. Commun. 2016 474 4 626 633 10.1016/j.bbrc.2016.03.152 27133716
    [Google Scholar]
/content/journals/cn/10.2174/011570159X360111250502055242
Loading
/content/journals/cn/10.2174/011570159X360111250502055242
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test