Skip to content
2000
image of Microglia-Astrocyte Crosstalk in Post-Stroke Neuroinflammation: Mechanisms and Therapeutic Strategies

Abstract

Stroke is a leading cause of severe disability and mortality worldwide. Glial cells in the central nervous system (CNS) not only provide nutritional support but also play crucial roles in the inflammatory response. Microglia and astrocytes, integral components of the innate immune system, are involved in all stages of stroke and are active participants in inducing post-stroke neuroinflammation. Recent studies have increasingly focused on the potential crosstalk between microglia and astrocytes, identifying it as a promising area for understanding the pathogenesis and therapeutic mechanisms of CNS inflammatory diseases. These cells not only undergo dynamic phenotypic changes but also establish an intimate two-way dialogue by releasing various signaling molecules. This review paper elucidates the spatiotemporal dynamics of microglia and astrocytes in post-stroke neuroinflammation and highlights interaction pathways and potential therapeutic strategies for stroke.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X350639250403072430
2025-04-25
2025-09-06
Loading full text...

Full text loading...

References

  1. Feigin V.L. Stark B.A. Johnson C.O. Roth G.A. Bisignano C. Abady G.G. Abbasifard M. Abbasi-Kangevari M. Abd-Allah F. Abedi V. Abualhasan A. Abu-Rmeileh N.M.E. Abushouk A.I. Adebayo O.M. Agarwal G. Agasthi P. Ahinkorah B.O. Ahmad S. Ahmadi S. Ahmed Salih Y. Aji B. Akbarpour S. Akinyemi R.O. Al Hamad H. Alahdab F. Alif S.M. Alipour V. Aljunid S.M. Almustanyir S. Al-Raddadi R.M. Al-Shahi Salman R. Alvis-Guzman N. Ancuceanu R. Anderlini D. Anderson J.A. Ansar A. Antonazzo I.C. Arabloo J. Ärnlöv J. Artanti K.D. Aryan Z. Asgari S. Ashraf T. Athar M. Atreya A. Ausloos M. Baig A.A. Baltatu O.C. Banach M. Barboza M.A. Barker-Collo S.L. Bärnighausen T.W. Barone M.T.U. Basu S. Bazmandegan G. Beghi E. Beheshti M. Béjot Y. Bell A.W. Bennett D.A. Bensenor I.M. Bezabhe W.M. Bezabih Y.M. Bhagavathula A.S. Bhardwaj P. Bhattacharyya K. Bijani A. Bikbov B. Birhanu M.M. Boloor A. Bonny A. Brauer M. Brenner H. Bryazka D. Butt Z.A. Caetano dos Santos F.L. Campos-Nonato I.R. Cantu-Brito C. Carrero J.J. Castañeda-Orjuela C.A. Catapano A.L. Chakraborty P.A. Charan J. Choudhari S.G. Chowdhury E.K. Chu D-T. Chung S-C. Colozza D. Costa V.M. Costanzo S. Criqui M.H. Dadras O. Dagnew B. Dai X. Dalal K. Damasceno A.A.M. D’Amico E. Dandona L. Dandona R. Darega Gela J. Davletov K. De la Cruz-Góngora V. Desai R. Dhamnetiya D. Dharmaratne S.D. Dhimal M.L. Dhimal M. Diaz D. Dichgans M. Dokova K. Doshi R. Douiri A. Duncan B.B. Eftekharzadeh S. Ekholuenetale M. El Nahas N. Elgendy I.Y. Elhadi M. El-Jaafary S.I. Endres M. Endries A.Y. Erku D.A. Faraon E.J.A. Farooque U. Farzadfar F. Feroze A.H. Filip I. Fischer F. Flood D. Gad M.M. Gaidhane S. Ghanei Gheshlagh R. Ghashghaee A. Ghith N. Ghozali G. Ghozy S. Gialluisi A. Giampaoli S. Gilani S.A. Gill P.S. Gnedovskaya E.V. Golechha M. Goulart A.C. Guo Y. Gupta R. Gupta V.B. Gupta V.K. Gyanwali P. Hafezi-Nejad N. Hamidi S. Hanif A. Hankey G.J. Hargono A. Hashi A. Hassan T.S. Hassen H.Y. Havmoeller R.J. Hay S.I. Hayat K. Hegazy M.I. Herteliu C. Holla R. Hostiuc S. Househ M. Huang J. Humayun A. Hwang B-F. Iacoviello L. Iavicoli I. Ibitoye S.E. Ilesanmi O.S. Ilic I.M. Ilic M.D. Iqbal U. Irvani S.S.N. Islam S.M.S. Ismail N.E. Iso H. Isola G. Iwagami M. Jacob L. Jain V. Jang S-I. Jayapal S.K. Jayaram S. Jayawardena R. Jeemon P. Jha R.P. Johnson W.D. Jonas J.B. Joseph N. Jozwiak J.J. Jürisson M. Kalani R. Kalhor R. Kalkonde Y. Kamath A. Kamiab Z. Kanchan T. Kandel H. Karch A. Katoto P.D.M.C. Kayode G.A. Keshavarz P. Khader Y.S. Khan E.A. Khan I.A. Khan M. Khan M.A.B. Khatib M.N. Khubchandani J. Kim G.R. Kim M.S. Kim Y.J. Kisa A. Kisa S. Kivimäki M. Kolte D. Koolivand A. Koulmane Laxminarayana S.L. Koyanagi A. Krishan K. Krishnamoorthy V. Krishnamurthi R.V. Kumar G.A. Kusuma D. La Vecchia C. Lacey B. Lak H.M. Lallukka T. Lasrado S. Lavados P.M. Leonardi M. Li B. Li S. Lin H. Lin R-T. Liu X. Lo W.D. Lorkowski S. Lucchetti G. Lutzky Saute R. Magdy Abd El Razek H. Magnani F.G. Mahajan P.B. Majeed A. Makki A. Malekzadeh R. Malik A.A. Manafi N. Mansournia M.A. Mantovani L.G. Martini S. Mazzaglia G. Mehndiratta M.M. Menezes R.G. Meretoja A. Mersha A.G. Miao Jonasson J. Miazgowski B. Miazgowski T. Michalek I.M. Mirrakhimov E.M. Mohammad Y. Mohammadian-Hafshejani A. Mohammed S. Mokdad A.H. Mokhayeri Y. Molokhia M. Moni M.A. Montasir A.A. Moradzadeh R. Morawska L. Morze J. Muruet W. Musa K.I. Nagarajan A.J. Naghavi M. Narasimha Swamy S. Nascimento B.R. Negoi R.I. Neupane Kandel S. Nguyen T.H. Norrving B. Noubiap J.J. Nwatah V.E. Oancea B. Odukoya O.O. Olagunju A.T. Orru H. Owolabi M.O. Padubidri J.R. Pana A. Parekh T. Park E-C. Pashazadeh Kan F. Pathak M. Peres M.F.P. Perianayagam A. Pham T-M. Piradov M.A. Podder V. Polinder S. Postma M.J. Pourshams A. Radfar A. Rafiei A. Raggi A. Rahim F. Rahimi-Movaghar V. Rahman M. Rahman M.A. Rahmani A.M. Rajai N. Ranasinghe P. Rao C.R. Rao S.J. Rathi P. Rawaf D.L. Rawaf S. Reitsma M.B. Renjith V. Renzaho A.M.N. Rezapour A. Rodriguez J.A.B. Roever L. Romoli M. Rynkiewicz A. Sacco S. Sadeghi M. Saeedi Moghaddam S. Sahebkar A. Saif-Ur-Rahman K.M. Salah R. Samaei M. Samy A.M. Santos I.S. Santric-Milicevic M.M. Sarrafzadegan N. Sathian B. Sattin D. Schiavolin S. Schlaich M.P. Schmidt M.I. Schutte A.E. Sepanlou S.G. Seylani A. Sha F. Shahabi S. Shaikh M.A. Shannawaz M. Shawon M.S.R. Sheikh A. Sheikhbahaei S. Shibuya K. Siabani S. Silva D.A.S. Singh J.A. Singh J.K. Skryabin V.Y. Skryabina A.A. Sobaih B.H. Stortecky S. Stranges S. Tadesse E.G. Tarigan I.U. Temsah M-H. Teuschl Y. Thrift A.G. Tonelli M. Tovani-Palone M.R. Tran B.X. Tripathi M. Tsegaye G.W. Ullah A. Unim B. Unnikrishnan B. Vakilian A. Valadan Tahbaz S. Vasankari T.J. Venketasubramanian N. Vervoort D. Vo B. Volovici V. Vosoughi K. Vu G.T. Vu L.G. Wafa H.A. Waheed Y. Wang Y. Wijeratne T. Winkler A.S. Wolfe C.D.A. Woodward M. Wu J.H. Wulf Hanson S. Xu X. Yadav L. Yadollahpour A. Yahyazadeh Jabbari S.H. Yamagishi K. Yatsuya H. Yonemoto N. Yu C. Yunusa I. Zaman M.S. Zaman S.B. Zamanian M. Zand R. Zandifar A. Zastrozhin M.S. Zastrozhina A. Zhang Y. Zhang Z-J. Zhong C. Zuniga Y.M.H. Murray C.J.L. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021 20 10 795 820 10.1016/S1474‑4422(21)00252‑0 34487721
    [Google Scholar]
  2. Ma Q. Li R. Wang L. Yin P. Wang Y. Yan C. Ren Y. Qian Z. Vaughn M.G. McMillin S.E. Hay S.I. Naghavi M. Cai M. Wang C. Zhang Z. Zhou M. Lin H. Yang Y. Temporal trend and attributable risk factors of stroke burden in China, 1990–2019: An analysis for the global burden of disease study 2019. Lancet Public Health 2021 6 12 e897 e906 10.1016/S2468‑2667(21)00228‑0 34838196
    [Google Scholar]
  3. Shi K. Tian D.C. Li Z.G. Ducruet A.F. Lawton M.T. Shi F.D. Global brain inflammation in stroke. Lancet Neurol. 2019 18 11 1058 1066 10.1016/S1474‑4422(19)30078‑X 31296369
    [Google Scholar]
  4. Tschoe C. Bushnell C.D. Duncan P.W. Alexander-Miller M.A. Wolfe S.Q. Neuroinflammation after intracerebral hemorrhage and potential therapeutic targets. J. Stroke 2020 22 1 29 46 10.5853/jos.2019.02236 32027790
    [Google Scholar]
  5. Jayaraj R.L. Azimullah S. Beiram R. Jalal F.Y. Rosenberg G.A. Neuroinflammation: Friend and foe for ischemic stroke. J. Neuroinflammation 2019 16 1 142 10.1186/s12974‑019‑1516‑2 31291966
    [Google Scholar]
  6. Murao A. Aziz M. Wang H. Brenner M. Wang P. Release mechanisms of major DAMPs. Apoptosis 2021 26 3-4 152 162 10.1007/s10495‑021‑01663‑3 33713214
    [Google Scholar]
  7. Maida C.D. Norrito R.L. Daidone M. Tuttolomondo A. Pinto A. Neuroinflammatory mechanisms in ischemic stroke: Focus on cardioembolic stroke, background, and therapeutic approaches. Int. J. Mol. Sci. 2020 21 18 6454 10.3390/ijms21186454 32899616
    [Google Scholar]
  8. Alsbrook D.L. Di Napoli M. Bhatia K. Biller J. Andalib S. Hinduja A. Rodrigues R. Rodriguez M. Sabbagh S.Y. Selim M. Farahabadi M.H. Jafarli A. Divani A.A. Neuroinflammation in acute ischemic and hemorrhagic stroke. Curr. Neurol. Neurosci. Rep. 2023 23 8 407 431 10.1007/s11910‑023‑01282‑2 37395873
    [Google Scholar]
  9. Gong T. Liu L. Jiang W. Zhou R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol. 2020 20 2 95 112 10.1038/s41577‑019‑0215‑7 31558839
    [Google Scholar]
  10. Keep R.F. Hua Y. Xi G. Intracerebral haemorrhage: Mechanisms of injury and therapeutic targets. Lancet Neurol. 2012 11 8 720 731 10.1016/S1474‑4422(12)70104‑7 22698888
    [Google Scholar]
  11. Jin R. Liu L. Zhang S. Nanda A. Li G. Role of inflammation and its mediators in acute ischemic stroke. J. Cardiovasc. Transl. Res. 2013 6 5 834 851 10.1007/s12265‑013‑9508‑6 24006091
    [Google Scholar]
  12. Sun M. You H. Hu X. Luo Y. Zhang Z. Song Y. An J. Lu H. Microglia–astrocyte interaction in neural development and neural pathogenesis. Cells 2023 12 15 1942 10.3390/cells12151942 37566021
    [Google Scholar]
  13. Lopez-Ortiz A.O. Eyo U.B. Astrocytes and microglia in the coordination of CNS development and homeostasis. J. Neurochem. 2024 168 10 3599 3614 37985374
    [Google Scholar]
  14. Streit W. Xue Q.S. Microglial senescence. CNS Neurol. Disord. Drug Targets 2013 12 6 763 767 10.2174/18715273113126660176 24047521
    [Google Scholar]
  15. Du Y. Brennan F.H. Popovich P.G. Zhou M. Microglia maintain the normal structure and function of the hippocampal astrocyte network. Glia 2022 70 7 1359 1379 10.1002/glia.24179 35394085
    [Google Scholar]
  16. Vainchtein I.D. Chin G. Cho F.S. Kelley K.W. Miller J.G. Chien E.C. Liddelow S.A. Nguyen P.T. Nakao-Inoue H. Dorman L.C. Akil O. Joshita S. Barres B.A. Paz J.T. Molofsky A.B. Molofsky A.V. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 2018 359 6381 1269 1273 10.1126/science.aal3589 29420261
    [Google Scholar]
  17. Kirkley K.S. Popichak K.A. Afzali M.F. Legare M.E. Tjalkens R.B. Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity. J. Neuroinflammation 2017 14 1 99 10.1186/s12974‑017‑0871‑0 28476157
    [Google Scholar]
  18. Bhusal A. Afridi R. Lee W.H. Suk K. Bidirectional communication between microglia and astrocytes in neuroinflammation. Curr. Neuropharmacol. 2023 21 10 2020 2029 10.2174/1570159X21666221129121715 36453496
    [Google Scholar]
  19. Ginhoux F. Greter M. Leboeuf M. Nandi S. See P. Gokhan S. Mehler M.F. Conway S.J. Ng L.G. Stanley E.R. Samokhvalov I.M. Merad M. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010 330 6005 841 845 10.1126/science.1194637 20966214
    [Google Scholar]
  20. Garaschuk O. Verkhratsky A. Physiology of Microglia. Methods Mol. Biol. 2019 2034 27 40 10.1007/978‑1‑4939‑9658‑2_3 31392675
    [Google Scholar]
  21. Nayak D. Roth T.L. McGavern D.B. Microglia development and function. Annu. Rev. Immunol. 2014 32 1 367 402 10.1146/annurev‑immunol‑032713‑120240 24471431
    [Google Scholar]
  22. Franco R. Fernández-Suárez D. Alternatively activated microglia and macrophages in the central nervous system. Prog. Neurobiol. 2015 131 65 86 10.1016/j.pneurobio.2015.05.003 26067058
    [Google Scholar]
  23. Lacey D.C. Achuthan A. Fleetwood A.J. Dinh H. Roiniotis J. Scholz G.M. Chang M.W. Beckman S.K. Cook A.D. Hamilton J.A. Defining GM-CSF- and macrophage-CSF-dependent macrophage responses by in vitro models. J. Immunol. 2012 188 11 5752 5765 10.4049/jimmunol.1103426 22547697
    [Google Scholar]
  24. Zhao H. Garton T. Keep R.F. Hua Y. Xi G. Microglia/macrophage polarization after experimental intracerebral hemorrhage. Transl. Stroke Res. 2015 6 6 407 409 10.1007/s12975‑015‑0428‑4 26446073
    [Google Scholar]
  25. Hu X. Leak R.K. Shi Y. Suenaga J. Gao Y. Zheng P. Chen J. Microglial and macrophage polarization—new prospects for brain repair. Nat. Rev. Neurol. 2015 11 1 56 64 10.1038/nrneurol.2014.207 25385337
    [Google Scholar]
  26. Liu F. Cheng X. Zhao C. Zhang X. Liu C. Zhong S. Liu Z. Lin X. Qiu W. Zhang X. Single-cell mapping of brain myeloid cell subsets reveals key transcriptomic changes favoring neuroplasticity after ischemic stroke. Neurosci. Bull. 2024 40 1 65 78 10.1007/s12264‑023‑01109‑7 37755676
    [Google Scholar]
  27. Kim S. Lee W. Jo H. Sonn S.K. Jeong S.J. Seo S. Suh J. Jin J. Kweon H.Y. Kim T.K. Moon S.H. Jeon S. Kim J.W. Kim Y.R. Lee E.W. Shin H.K. Park S.H. Oh G.T. The antioxidant enzyme Peroxiredoxin-1 controls stroke-associated microglia against acute ischemic stroke. Redox Biol. 2022 54 102347 10.1016/j.redox.2022.102347 35688114
    [Google Scholar]
  28. Lai A.Y. Todd K.G. Microglia in cerebral ischemia: Molecular actions and interactions. Can. J. Physiol. Pharmacol. 2006 84 1 49 59 10.1139/Y05‑143 16845890
    [Google Scholar]
  29. Nakajima K. Kohsaka S. Microglia: Neuroprotective and neurotrophic cells in the central nervous system. Curr. Drug Targets Cardiovasc. Haematol. Disord. 2004 4 1 65 84 10.2174/1568006043481284 15032653
    [Google Scholar]
  30. Rupalla K. Allegrini P.R. Sauer D. Wiessner C. Time course of microglia activation and apoptosis in various brain regions after permanent focal cerebral ischemia in mice. Acta Neuropathol. 1998 96 2 172 178 10.1007/s004010050878 9705133
    [Google Scholar]
  31. Ito D. Tanaka K. Suzuki S. Dembo T. Fukuuchi Y. Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke 2001 32 5 1208 1215 10.1161/01.STR.32.5.1208 11340235
    [Google Scholar]
  32. Perego C. Fumagalli S. De Simoni M.G. Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J. Neuroinflammation 2011 8 1 174 10.1186/1742‑2094‑8‑174 22152337
    [Google Scholar]
  33. Zhu J. Cao D. Guo C. Liu M. Tao Y. Zhou J. Wang F. Zhao Y. Wei J. Zhang Y. Fang W. Li Y. Berberine facilitates angiogenesis against ischemic stroke through modulating microglial polarization via AMPK signaling. Cell. Mol. Neurobiol. 2019 39 6 751 768 10.1007/s10571‑019‑00675‑7 31020571
    [Google Scholar]
  34. Hu X. Li P. Guo Y. Wang H. Leak R.K. Chen S. Gao Y. Chen J. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 2012 43 11 3063 3070 10.1161/STROKEAHA.112.659656 22933588
    [Google Scholar]
  35. Shu Z.M. Shu X.D. Li H.Q. Sun Y. Shan H. Sun X.Y. Du R.H. Lu M. Xiao M. Ding J.H. Hu G. Ginkgolide B. Ginkgolide B protects against ischemic stroke via modulating microglia polarization in mice. CNS Neurosci. Ther. 2016 22 9 729 739 10.1111/cns.12577 27306494
    [Google Scholar]
  36. Wang J. Doré S. Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage. Brain 2007 130 6 1643 1652 10.1093/brain/awm095 17525142
    [Google Scholar]
  37. Xue M. Del Bigio M.R. Intracerebral injection of autologous whole blood in rats: Time course of inflammation and cell death. Neurosci. Lett. 2000 283 3 230 232 10.1016/S0304‑3940(00)00971‑X 10754230
    [Google Scholar]
  38. Zhao X. Sun G. Zhang J. Strong R. Song W. Gonzales N. Grotta J.C. Aronowski J. Hematoma resolution as a target for intracerebral hemorrhage treatment: Role for peroxisome proliferator‐activated receptor γ in microglia/macrophages. Ann. Neurol. 2007 61 4 352 362 10.1002/ana.21097 17457822
    [Google Scholar]
  39. Wei J. Wang M. Jing C. Keep R.F. Hua Y. Xi G. Multinucleated giant cells in experimental intracerebral hemorrhage. Transl. Stroke Res. 2020 11 5 1095 1102 10.1007/s12975‑020‑00790‑4 32090277
    [Google Scholar]
  40. Yang S.S. Lin L. Liu Y. Wang J. Chu J. Zhang T. Ning L.N. Shi Y. Fang Y.Y. Zeng P. Wang J.Z. Qiu M.Y. Tian Q. High morphologic plasticity of microglia/macrophages following experimental intracerebral hemorrhage in rats. Int. J. Mol. Sci. 2016 17 7 1181 10.3390/ijms17071181 27455236
    [Google Scholar]
  41. Wan S. Cheng Y. Jin H. Guo D. Hua Y. Keep R.F. Xi G. Microglia activation and polarization after intracerebral hemorrhage in mice: The role of protease-activated receptor-1. Transl. Stroke Res. 2016 7 6 478 487 10.1007/s12975‑016‑0472‑8 27206851
    [Google Scholar]
  42. Lan X. Han X. Li Q. Li Q. Gao Y. Cheng T. Wan J. Zhu W. Wang J. Pinocembrin protects hemorrhagic brain primarily by inhibiting toll-like receptor 4 and reducing M1 phenotype microglia. Brain Behav. Immun. 2017 61 326 339 10.1016/j.bbi.2016.12.012 28007523
    [Google Scholar]
  43. Zheng Z.V. Lyu H. Lam S.Y.E. Lam P.K. Poon W.S. Wong G.K.C. The dynamics of microglial polarization reveal the resident neuroinflammatory responses after subarachnoid hemorrhage. Transl. Stroke Res. 2020 11 3 433 449 10.1007/s12975‑019‑00728‑5 31628642
    [Google Scholar]
  44. Gris T. Laplante P. Thebault P. Cayrol R. Najjar A. Joannette-Pilon B. Brillant-Marquis F. Magro E. English S.W. Lapointe R. Bojanowski M. Francoeur C.L. Cailhier J.F. Innate immunity activation in the early brain injury period following subarachnoid hemorrhage. J. Neuroinflammation 2019 16 1 253 10.1186/s12974‑019‑1629‑7 31801576
    [Google Scholar]
  45. Bodhankar S. Lapato A. Chen Y. Vandenbark A.A. Saugstad J.A. Offner H. Role for microglia in sex differences after ischemic stroke: importance of M2. Metab. Brain Dis. 2015 30 6 1515 1529 10.1007/s11011‑015‑9714‑9 26246072
    [Google Scholar]
  46. Suenaga J. Hu X. Pu H. Shi Y. Hassan S.H. Xu M. Leak R.K. Stetler R.A. Gao Y. Chen J. White matter injury and microglia/macrophage polarization are strongly linked with age-related long-term deficits in neurological function after stroke. Exp. Neurol. 2015 272 109 119 10.1016/j.expneurol.2015.03.021 25836044
    [Google Scholar]
  47. Sofroniew M.V. Astrocyte reactivity: Subtypes, states, and functions in CNS Innate immunity. Trends Immunol. 2020 41 9 758 770 10.1016/j.it.2020.07.004 32819810
    [Google Scholar]
  48. Liu L. Liu J. Bao J. Bai Q. Wang G. Interaction of microglia and astrocytes in the neurovascular unit. Front. Immunol. 2020 11 1024 10.3389/fimmu.2020.01024 32733433
    [Google Scholar]
  49. Liu Z. Chopp M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog. Neurobiol. 2016 144 103 120 10.1016/j.pneurobio.2015.09.008 26455456
    [Google Scholar]
  50. Pekny M. Wilhelmsson U. Tatlisumak T. Pekna M. Astrocyte activation and reactive gliosis—A new target in stroke? Neurosci. Lett. 2019 689 45 55 10.1016/j.neulet.2018.07.021 30025833
    [Google Scholar]
  51. Luger S. Witsch J. Dietz A. Hamann G.F. Minnerup J. Schneider H. Sitzer M. Wartenberg K.E. Niessner M. Foerch C. Glial fibrillary acidic protein serum levels distinguish between intracerebral hemorrhage and cerebral ischemia in the early phase of stroke. Clin. Chem. 2017 63 1 377 385 10.1373/clinchem.2016.263335 27881450
    [Google Scholar]
  52. Kitchen P. Salman M.M. Halsey A.M. Clarke-Bland C. MacDonald J.A. Ishida H. Vogel H.J. Almutiri S. Logan A. Kreida S. Al-Jubair T. Winkel Missel J. Gourdon P. Törnroth-Horsefield S. Conner M.T. Ahmed Z. Conner A.C. Bill R.M. Targeting aquaporin-4 subcellular localization to treat central nervous system edema. Cell 2020 181 4 784 799.e19 10.1016/j.cell.2020.03.037 32413299
    [Google Scholar]
  53. Scimemi A. Astrocytes and the warning signs of intracerebral hemorrhagic stroke. Neural Plast. 2018 2018 1 11 10.1155/2018/7301623 29531526
    [Google Scholar]
  54. Liddelow S.A. Guttenplan K.A. Clarke L.E. Bennett F.C. Bohlen C.J. Schirmer L. Bennett M.L. Münch A.E. Chung W.S. Peterson T.C. Wilton D.K. Frouin A. Napier B.A. Panicker N. Kumar M. Buckwalter M.S. Rowitch D.H. Dawson V.L. Dawson T.M. Stevens B. Barres B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017 541 7638 481 487 10.1038/nature21029 28099414
    [Google Scholar]
  55. Livne-Bar I. Wei J. Liu H.H. Alqawlaq S. Won G.J. Tuccitto A. Gronert K. Flanagan J.G. Sivak J.M. Astrocyte-derived lipoxins A4 and B4 promote neuroprotection from acute and chronic injury. J. Clin. Invest. 2017 127 12 4403 4414 10.1172/JCI77398 29106385
    [Google Scholar]
  56. Yu G. Zhang Y. Ning B. Reactive astrocytes in central nervous system injury: Subgroup and potential therapy. Front. Cell. Neurosci. 2021 15 792764 10.3389/fncel.2021.792764 35002629
    [Google Scholar]
  57. Zhang Q. Liu C. Shi R. Zhou S. Shan H. Deng L. Chen T. Guo Y. Zhang Z. Yang G.Y. Wang Y. Tang Y. Blocking C3d + /GFAP + A1 astrocyte conversion with semaglutide attenuates blood-brain barrier disruption in mice after ischemic stroke. Aging Dis. 2022 13 3 943 959 10.14336/AD.2021.1029 35656116
    [Google Scholar]
  58. Wang C. Li L. The critical role of KLF4 in regulating the activation of A1/A2 reactive astrocytes following ischemic stroke. J. Neuroinflammation 2023 20 1 44 10.1186/s12974‑023‑02742‑9 36823628
    [Google Scholar]
  59. Rakers C. Schleif M. Blank N. Matušková H. Ulas T. Händler K. Torres S.V. Schumacher T. Tai K. Schultze J.L. Jackson W.S. Petzold G.C. Stroke target identification guided by astrocyte transcriptome analysis. Glia 2019 67 4 619 633 10.1002/glia.23544 30585358
    [Google Scholar]
  60. Fei X. Dou Y. Wang L. Wu X. Huan Y. Wu S. He X. Lv W. Wei J. Fei Z. Homer1 promotes the conversion of A1 astrocytes to A2 astrocytes and improves the recovery of transgenic mice after intracerebral hemorrhage. J. Neuroinflammation 2022 19 1 67 10.1186/s12974‑022‑02428‑8 35287697
    [Google Scholar]
  61. Zhang L. Guo K. Zhou J. Zhang X. Yin S. Peng J. Liao Y. Jiang Y. Ponesimod protects against neuronal death by suppressing the activation of A1 astrocytes in early brain injury after experimental subarachnoid hemorrhage. J. Neurochem. 2021 158 4 880 897 10.1111/jnc.15457 34143505
    [Google Scholar]
  62. Ma M. Li H. Wu J. Zhang Y. Shen H. Li X. Wang Z. Chen G. Roles of prokineticin 2 in subarachnoid hemorrhage-induced early brain injury via regulation of phenotype polarization in astrocytes. Mol. Neurobiol. 2020 57 9 3744 3758 10.1007/s12035‑020‑01990‑7 32572760
    [Google Scholar]
  63. Patabendige A. Singh A. Jenkins S. Sen J. Chen R. Astrocyte activation in neurovascular damage and repair following ischaemic stroke. Int. J. Mol. Sci. 2021 22 8 4280 10.3390/ijms22084280 33924191
    [Google Scholar]
  64. Anderson M.A. Burda J.E. Ren Y. Ao Y. O’Shea T.M. Kawaguchi R. Coppola G. Khakh B.S. Deming T.J. Sofroniew M.V. Astrocyte scar formation aids central nervous system axon regeneration. Nature 2016 532 7598 195 200 10.1038/nature17623 27027288
    [Google Scholar]
  65. Gris P. Tighe A. Levin D. Sharma R. Brown A. Transcriptional regulation of scar gene expression in primary astrocytes. Glia 2007 55 11 1145 1155 10.1002/glia.20537 17597120
    [Google Scholar]
  66. Chen S.H. Oyarzabal E.A. Sung Y.F. Chu C.H. Wang Q. Chen S.L. Lu R.B. Hong J.S. Microglial regulation of immunological and neuroprotective functions of astroglia. Glia 2015 63 1 118 131 10.1002/glia.22738 25130274
    [Google Scholar]
  67. Liddelow S.A. Barres B.A. Reactive astrocytes: Production, function, and therapeutic potential. Immunity 2017 46 6 957 967 10.1016/j.immuni.2017.06.006 28636962
    [Google Scholar]
  68. Huang Y. Chen S. Luo Y. Han Z. Crosstalk between inflammation and the BBB in stroke. Curr. Neuropharmacol. 2020 18 12 1227 1236 10.2174/1570159X18666200620230321 32562523
    [Google Scholar]
  69. Dejanovic B. Wu T. Tsai M.C. Graykowski D. Gandham V.D. Rose C.M. Bakalarski C.E. Ngu H. Wang Y. Pandey S. Rezzonico M.G. Friedman B.A. Edmonds R. De Mazière A. Rakosi-Schmidt R. Singh T. Klumperman J. Foreman O. Chang M.C. Xie L. Sheng M. Hanson J.E. Complement C1q-dependent excitatory and inhibitory synapse elimination by astrocytes and microglia in Alzheimer’s disease mouse models. Nature Aging 2022 2 9 837 850 10.1038/s43587‑022‑00281‑1 37118504
    [Google Scholar]
  70. Tang S. Hu W. Zou H. Luo Q. Deng W. Cao S. The complement system: A potential target for the comorbidity of chronic pain and depression. Korean J. Pain 2024 37 2 91 106 10.3344/kjp.23284 38433474
    [Google Scholar]
  71. Iram T. Ramirez-Ortiz Z. Byrne M.H. Coleman U.A. Kingery N.D. Means T.K. Frenkel D. El Khoury J. Megf10 is a receptor for C1Q that mediates clearance of apoptotic cells by astrocytes. J. Neurosci. 2016 36 19 5185 5192 10.1523/JNEUROSCI.3850‑15.2016 27170117
    [Google Scholar]
  72. Färber K. Cheung G. Mitchell D. Wallis R. Weihe E. Schwaeble W. Kettenmann H. C1q, the recognition subcomponent of the classical pathway of complement, drives microglial activation. J. Neurosci. Res. 2009 87 3 644 652 10.1002/jnr.21875 18831010
    [Google Scholar]
  73. Zhang W. Ding L. Chen H. Zhang M. Ma R. Zheng S. Gong J. Zhang Z. Xu H. Xu P. Zhang Y. Cntnap4 partial deficiency exacerbates α-synuclein pathology through astrocyte–microglia C3-C3aR pathway. Cell Death Dis. 2023 14 4 285 10.1038/s41419‑023‑05807‑y 37087484
    [Google Scholar]
  74. Korimerla N. Wahl D.R. A complementary strategy to mitigate radiation-induced cognitive decline. Cancer Res. 2021 81 7 1635 1636 10.1158/0008‑5472.CAN‑20‑4277 34003789
    [Google Scholar]
  75. Hanisch U.K. Microglia as a source and target of cytokines. Glia 2002 40 2 140 155 10.1002/glia.10161 12379902
    [Google Scholar]
  76. Wagner K.R. Beiler S. Beiler C. Kirkman J. Casey K. Robinson T. Larnard D. de Courten-Myers G.M. Linke M.J. Zuccarello M. Delayed profound local brain hypothermia markedly reduces interleukin-1β gene expression and vasogenic edema development in a porcine model of intracerebral hemorrhage. Acta Neurochir. Suppl. 2006 96 177 182 10.1007/3‑211‑30714‑1_39 16671450
    [Google Scholar]
  77. Clausen B.H. Lambertsen K.L. Babcock A.A. Holm T.H. Dagnaes-Hansen F. Finsen B. Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J. Neuroinflammation 2008 5 1 46 10.1186/1742‑2094‑5‑46 18947400
    [Google Scholar]
  78. Fernandes A. Barateiro A. Falcão A.S. Silva S.L.A. Vaz A.R. Brito M.A. Marques Silva R.F. Brites D. Astrocyte reactivity to unconjugated bilirubin requires TNF‐α and IL‐1β receptor signaling pathways. Glia 2011 59 1 14 25 10.1002/glia.21072 20967881
    [Google Scholar]
  79. Giulian D. Young D.G. Woodward J. Brown D.C. Lachman L.B. Interleukin-1 is an astroglial growth factor in the developing brain. J. Neurosci. 1988 8 2 709 714 10.1523/JNEUROSCI.08‑02‑00709.1988 3257519
    [Google Scholar]
  80. Pickering M. Cumiskey D. O’Connor J.J. Actions of TNF‐α on glutamatergic synaptic transmission in the central nervous system. Exp. Physiol. 2005 90 5 663 670 10.1113/expphysiol.2005.030734 15944202
    [Google Scholar]
  81. Viviani B. Boraso M. Marchetti N. Marinovich M. Perspectives on neuroinflammation and excitotoxicity: A neurotoxic conspiracy? Neurotoxicology 2014 43 10 20 10.1016/j.neuro.2014.03.004 24662010
    [Google Scholar]
  82. Jiang G. Li X. Liu M. Li H. Shen H. liao J. You W. Fang Q. Chen G. Remote ischemic postconditioning ameliorates stroke injury via the SDF-1α/CXCR4 signaling axis in rats. Brain Res. Bull. 2023 197 31 41 10.1016/j.brainresbull.2023.03.011 36990325
    [Google Scholar]
  83. Chiazza F. Tammen H. Pintana H. Lietzau G. Collino M. Nyström T. Klein T. Darsalia V. Patrone C. The effect of DPP-4 inhibition to improve functional outcome after stroke is mediated by the SDF-1α/CXCR4 pathway. Cardiovasc. Diabetol. 2018 17 1 60 10.1186/s12933‑018‑0702‑3 29776406
    [Google Scholar]
  84. Bonavia R. Bajetto A. Barbero S. Pirani P. Florio T. Schettini G. Chemokines and their receptors in the CNS: Expression of CXCL12/SDF-1 and CXCR4 and their role in astrocyte proliferation. Toxicol. Lett. 2003 139 2-3 181 189 10.1016/S0378‑4274(02)00432‑0 12628753
    [Google Scholar]
  85. Hickey K.N. Grassi S.M. Caplan M.R. Stabenfeldt S.E. Stromal cell-derived factor-1a autocrine/paracrine signaling contributes to spatiotemporal gradients in the brain. Cell. Mol. Bioeng. 2021 14 1 75 87 10.1007/s12195‑020‑00643‑y 33643467
    [Google Scholar]
  86. Bezzi P. Domercq M. Brambilla L. Galli R. Schols D. De Clercq E. Vescovi A. Bagetta G. Kollias G. Meldolesi J. Volterra A. CXCR4-activated astrocyte glutamate release via TNFα: Amplification by microglia triggers neurotoxicity. Nat. Neurosci. 2001 4 7 702 710 10.1038/89490 11426226
    [Google Scholar]
  87. Yang F. Luo W.J. Sun W. Wang Y. Wang J.L. Yang F. Li C.L. Wei N. Wang X.L. Guan S.M. Chen J. SDF1-CXCR4 signaling maintains central post-stroke pain through mediation of glial-neuronal interactions. Front. Mol. Neurosci. 2017 10 226 10.3389/fnmol.2017.00226 28785202
    [Google Scholar]
  88. Holm T.H. Draeby D. Owens T. Microglia are required for astroglial toll‐like receptor 4 response and for optimal TLR2 and TLR3 response. Glia 2012 60 4 630 638 10.1002/glia.22296 22271465
    [Google Scholar]
  89. van der Bliek A.M. Shen Q. Kawajiri S. Mechanisms of mitochondrial fission and fusion. Cold Spring Harb. Perspect. Biol. 2013 5 6 a011072 10.1101/cshperspect.a011072 23732471
    [Google Scholar]
  90. He M. Wang X. Liu Z. Cui Q. Chen Y. Geng W. Zhu J. Shen J. CDK5 mediates proinflammatory effects of microglia through activated DRP1 phosphorylation in rat model of intracerebral hemorrhage. Dis. Markers 2022 2022 1 9 10.1155/2022/1919064 35795154
    [Google Scholar]
  91. Herst P.M. Rowe M.R. Carson G.M. Berridge M.V. Functional mitochondria in health and disease. Front. Endocrinol. 2017 8 296 10.3389/fendo.2017.00296 29163365
    [Google Scholar]
  92. Liaudanskaya V. Fiore N.J. Zhang Y. Milton Y. Kelly M.F. Coe M. Barreiro A. Rose V.K. Shapiro M.R. Mullis A.S. Shevzov-Zebrun A. Blurton-Jones M. Whalen M.J. Symes A.J. Georgakoudi I. Nieland T.J.F. Kaplan D.L. Mitochondria dysregulation contributes to secondary neurodegeneration progression post-contusion injury in human 3D in vitro triculture brain tissue model. Cell Death Dis. 2023 14 8 496 10.1038/s41419‑023‑05980‑0 37537168
    [Google Scholar]
  93. Joshi A.U. Minhas P.S. Liddelow S.A. Haileselassie B. Andreasson K.I. Dorn G.W. II Mochly-Rosen D. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat. Neurosci. 2019 22 10 1635 1648 10.1038/s41593‑019‑0486‑0 31551592
    [Google Scholar]
  94. Liu W. Qi Z. Li W. Liang J. Zhao L. Shi Y. M1 microglia induced neuronal injury on ischemic stroke via mitochondrial crosstalk between microglia and neurons. Oxid. Med. Cell. Longev. 2022 2022 1 16 10.1155/2022/4335272 36478988
    [Google Scholar]
  95. Lin Y. Zhang J-C. Yao C-Y. Wu Y. Abdelgawad A.F. Yao S-L. Yuan S-Y. Critical role of astrocytic interleukin-17 A in post-stroke survival and neuronal differentiation of neural precursor cells in adult mice. Cell Death Dis. 2016 7 6 e2273 10.1038/cddis.2015.284 27336717
    [Google Scholar]
  96. Dai Q. Li S. Liu T. Zheng J. Han S. Qu A. Li J. Interleukin‐17A‐mediated alleviation of cortical astrocyte ischemic injuries affected the neurological outcome of mice with ischemic stroke. J. Cell. Biochem. 2019 120 7 11498 11509 10.1002/jcb.28429 30746745
    [Google Scholar]
  97. Yu A. Duan H. Zhang T. Pan Y. Kou Z. Zhang X. Lu Y. Wang S. Yang Z. IL-17A promotes microglial activation and neuroinflammation in mouse models of intracerebral haemorrhage. Mol. Immunol. 2016 73 151 157 10.1016/j.molimm.2016.04.003 27107665
    [Google Scholar]
  98. Elain G. Jeanneau K. Rutkowska A. Mir A.K. Dev K.K. The selective anti-IL17A monoclonal antibody secukinumab (AIN457) attenuates IL17A-induced levels of IL6 in human astrocytes. Glia 2014 62 5 725 735 10.1002/glia.22637 24677511
    [Google Scholar]
  99. Chen X. Zhang Y. Ding Q. He Y. Li H. Role of IL-17A in different stages of ischemic stroke. Int. Immunopharmacol. 2023 117 109926 10.1016/j.intimp.2023.109926 37012860
    [Google Scholar]
  100. Liu G. Guo J. Liu J. Wang Z. Liang D. Toll-like receptor signaling directly increases functional IL-17RA expression in neuroglial cells. Clin. Immunol. 2014 154 2 127 140 10.1016/j.clim.2014.07.006 25076485
    [Google Scholar]
  101. Li S. Dai Q. Yu J. Liu T. Liu S. Ma L. Zhang Y. Han S. Li J. Identification of IL-17A-derived neural cell type and dynamic changes of IL-17A in serum/CSF of mice with ischemic stroke. Neurol. Res. 2017 39 6 552 558 10.1080/01616412.2017.1315863 28441917
    [Google Scholar]
  102. Ma L. Pan X. Zhou F. Liu K. Wang L. Hyperforin protects against acute cerebral ischemic injury through inhibition of interleukin-17A-mediated microglial activation. Brain Res. 2018 1678 254 261 10.1016/j.brainres.2017.08.023 28870826
    [Google Scholar]
  103. Li M. Li Z. Yao Y. Jin W.N. Wood K. Liu Q. Shi F.D. Hao J. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc. Natl. Acad. Sci. USA 2017 114 3 E396 E405 10.1073/pnas.1612930114 27994144
    [Google Scholar]
  104. Gómez-Nicola D. Valle-Argos B. Pita-Thomas D.W. Nieto-Sampedro M. Interleukin 15 expression in the CNS: Blockade of its activity prevents glial activation after an inflammatory injury. Glia 2008 56 5 494 505 10.1002/glia.20628 18240307
    [Google Scholar]
  105. Lee G.A. Lin T.N. Chen C.Y. Mau S.Y. Huang W.Z. Kao Y.C. Ma R. Liao N.S. Interleukin 15 blockade protects the brain from cerebral ischemia-reperfusion injury. Brain Behav. Immun. 2018 73 562 570 10.1016/j.bbi.2018.06.021 29959050
    [Google Scholar]
  106. Perera L.P. Goldman C.K. Waldmann T.A. IL-15 induces the expression of chemokines and their receptors in T lymphocytes. J. Immunol. 1999 162 5 2606 2612 10.4049/jimmunol.162.5.2606 10072502
    [Google Scholar]
  107. Budagian V. Bulanova E. Paus R. Bulfonepaus S. IL-15/IL-15 receptor biology: A guided tour through an expanding universe. Cytokine Growth Factor Rev. 2006 17 4 259 280 10.1016/j.cytogfr.2006.05.001 16815076
    [Google Scholar]
  108. Stoklasek T.A. Schluns K.S. Lefrançois L. Combined IL-15/IL-15Ralpha immunotherapy maximizes IL-15 activity in vivo. J. Immunol. 2006 177 9 6072 6080 10.4049/jimmunol.177.9.6072 17056533
    [Google Scholar]
  109. Lee Y.B. Nagai A. Kim S.U. Cytokines, chemokines, and cytokine receptors in human microglia. J. Neurosci. Res. 2002 69 1 94 103 10.1002/jnr.10253 12111820
    [Google Scholar]
  110. Shi S.X. Li Y.J. Shi K. Wood K. Ducruet A.F. Liu Q. IL (Interleukin)-15 bridges astrocyte-microglia crosstalk and exacerbates brain injury following intracerebral hemorrhage. Stroke 2020 51 3 967 974 10.1161/STROKEAHA.119.028638 32019481
    [Google Scholar]
  111. Mayo L. Trauger S.A. Blain M. Nadeau M. Patel B. Alvarez J.I. Mascanfroni I.D. Yeste A. Kivisäkk P. Kallas K. Ellezam B. Bakshi R. Prat A. Antel J.P. Weiner H.L. Quintana F.J. Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat. Med. 2014 20 10 1147 1156 10.1038/nm.3681 25216636
    [Google Scholar]
  112. Kooij G. Mizee M.R. van Horssen J. Reijerkerk A. Witte M.E. Drexhage J.A.R. van der Pol S.M.A. van het Hof B. Scheffer G. Scheper R. Dijkstra C.D. van der Valk P. de Vries H.E. Adenosine triphosphate-binding cassette transporters mediate chemokine (C-C motif) ligand 2 secretion from reactive astrocytes: relevance to multiple sclerosis pathogenesis. Brain 2011 134 2 555 570 10.1093/brain/awq330 21183485
    [Google Scholar]
  113. Tsukuda K. Mogi M. Iwanami J. Min L.J. Jing F. Oshima K. Horiuchi M. Irbesartan attenuates ischemic brain damage by inhibition of MCP-1/CCR2 signaling pathway beyond AT1 receptor blockade. Biochem. Biophys. Res. Commun. 2011 409 2 275 279 10.1016/j.bbrc.2011.04.142 21575596
    [Google Scholar]
  114. Yao Y. Tsirka S.E. The CCL2‐CCR2 system affects the progression and clearance of intracerebral hemorrhage. Glia 2012 60 6 908 918 10.1002/glia.22323 22419223
    [Google Scholar]
  115. Zhang J. Shi X.Q. Echeverry S. Mogil J.S. De Koninck Y. Rivest S. Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain. J. Neurosci. 2007 27 45 12396 12406 10.1523/JNEUROSCI.3016‑07.2007 17989304
    [Google Scholar]
  116. He M. Dong H. Huang Y. Lu S. Zhang S. Qian Y. Jin W. Astrocyte-derived CCL2 is associated with M1 activation and recruitment of cultured microglial cells. Cell. Physiol. Biochem. 2016 38 3 859 870 10.1159/000443040 26910882
    [Google Scholar]
  117. Wheeler M.A. Clark I.C. Tjon E.C. Li Z. Zandee S.E.J. Couturier C.P. Watson B.R. Scalisi G. Alkwai S. Rothhammer V. Rotem A. Heyman J.A. Thaploo S. Sanmarco L.M. Ragoussis J. Weitz D.A. Petrecca K. Moffitt J.R. Becher B. Antel J.P. Prat A. Quintana F.J. MAFG-driven astrocytes promote CNS inflammation. Nature 2020 578 7796 593 599 10.1038/s41586‑020‑1999‑0 32051591
    [Google Scholar]
  118. Parajuli B. Sonobe Y. Kawanokuchi J. Doi Y. Noda M. Takeuchi H. Mizuno T. Suzumura A. GM-CSF increases LPS-induced production of proinflammatory mediators via upregulation of TLR4 and CD14 in murine microglia. J. Neuroinflammation 2012 9 1 268 10.1186/1742‑2094‑9‑268 23234315
    [Google Scholar]
  119. McLay R. Kimura M. Banks W.A. Kastin A.J. Granulocyte-macrophage colony-stimulating factor crosses the blood-- brain and blood--spinal cord barriers. Brain 1997 120 11 2083 2091 10.1093/brain/120.11.2083 9397023
    [Google Scholar]
  120. Re F. Belyanskaya S.L. Riese R.J. Cipriani B. Fischer F.R. Granucci F. Ricciardi-Castagnoli P. Brosnan C. Stern L.J. Strominger J.L. Santambrogio L. Granulocyte-macrophage colony-stimulating factor induces an expression program in neonatal microglia that primes them for antigen presentation. J. Immunol. 2002 169 5 2264 2273 10.4049/jimmunol.169.5.2264 12193691
    [Google Scholar]
  121. Kim S. Son Y. Astrocytes stimulate microglial proliferation and m2 polarization in vitro through crosstalk between astrocytes and microglia. Int. J. Mol. Sci. 2021 22 16 8800 10.3390/ijms22168800 34445510
    [Google Scholar]
  122. Gonzalez L.L. Garrie K. Turner M.D. Role of S100 proteins in health and disease. Biochim. Biophys. Acta Mol. Cell Res. 2020 1867 6 118677 10.1016/j.bbamcr.2020.118677 32057918
    [Google Scholar]
  123. Kabadi S.V. Stoica B.A. Zimmer D.B. Afanador L. Duffy K.B. Loane D.J. Faden A.I. S100B inhibition reduces behavioral and pathologic changes in experimental traumatic brain injury. J. Cereb. Blood Flow Metab. 2015 35 12 2010 2020 10.1038/jcbfm.2015.165 26154869
    [Google Scholar]
  124. Xu J. Wang H. Won S.J. Basu J. Kapfhamer D. Swanson R.A. Microglial activation induced by the alarmin S100B is regulated by poly(ADP‐ribose) polymerase‐1. Glia 2016 64 11 1869 1878 10.1002/glia.23026 27444121
    [Google Scholar]
  125. Bianchi R. Kastrisianaki E. Giambanco I. Donato R. S100B protein stimulates microglia migration via RAGE-dependent up-regulation of chemokine expression and release. J. Biol. Chem. 2011 286 9 7214 7226 10.1074/jbc.M110.169342 21209080
    [Google Scholar]
  126. Zhou S. Zhu W. Zhang Y. Pan S. Bao J. S100B promotes microglia M1 polarization and migration to aggravate cerebral ischemia. Inflamm. Res. 2018 67 11-12 937 949 10.1007/s00011‑018‑1187‑y 30229393
    [Google Scholar]
  127. Cordeiro J.L. Neves J.D. Nicola F. Vizuete A.F. Sanches E.F. Gonçalves C.A. Netto C.A. Arundic acid (ONO-2506) attenuates neuroinflammation and prevents motor impairment in rats with intracerebral hemorrhage. Cell. Mol. Neurobiol. 2022 42 3 739 751 10.1007/s10571‑020‑00964‑6 32918255
    [Google Scholar]
  128. Freitas-Andrade M. Wang N. Bechberger J.F. De Bock M. Lampe P.D. Leybaert L. Naus C.C. Targeting MAPK phosphorylation of Connexin43 provides neuroprotection in stroke. J. Exp. Med. 2019 216 4 916 935 10.1084/jem.20171452 30872361
    [Google Scholar]
  129. Retamal M.A. Froger N. Palacios-Prado N. Ezan P. Sáez P.J. Sáez J.C. Giaume C. Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J. Neurosci. 2007 27 50 13781 13792 10.1523/JNEUROSCI.2042‑07.2007 18077690
    [Google Scholar]
  130. Verderio C. Matteoli M. ATP mediates calcium signaling between astrocytes and microglial cells: modulation by IFN-gamma. J. Immunol. 2001 166 10 6383 6391 10.4049/jimmunol.166.10.6383 11342663
    [Google Scholar]
  131. Kim Y. Davidson J.O. Green C.R. Nicholson L.F.B. O’Carroll S.J. Zhang J. Connexins and Pannexins in cerebral ischemia. Biochim. Biophys. Acta Biomembr. 2018 1860 1 224 236 10.1016/j.bbamem.2017.03.018 28347700
    [Google Scholar]
  132. Arbeloa J. Pérez-Samartín A. Gottlieb M. Matute C. P2X7 receptor blockade prevents ATP excitotoxicity in neurons and reduces brain damage after ischemia. Neurobiol. Dis. 2012 45 3 954 961 10.1016/j.nbd.2011.12.014 22186422
    [Google Scholar]
  133. Sperlágh B. Illes P. P2X7 receptor: An emerging target in central nervous system diseases. Trends Pharmacol. Sci. 2014 35 10 537 547 10.1016/j.tips.2014.08.002 25223574
    [Google Scholar]
  134. Chen Y. Luan P. Liu J. Wei Y. Wang C. Wu R. Wu Z. Jing M. Spatiotemporally selective astrocytic ATP dynamics encode injury information sensed by microglia following brain injury in mice. Nat. Neurosci. 2024 27 8 1522 1533 10.1038/s41593‑024‑01680‑w 38862791
    [Google Scholar]
  135. Goemaere J. Knoops B. Peroxiredoxin distribution in the mouse brain with emphasis on neuronal populations affected in neurodegenerative disorders. J. Comp. Neurol. 2012 520 2 258 280 10.1002/cne.22689 21674491
    [Google Scholar]
  136. Asuni A.A. Guridi M. Sanchez S. Sadowski M.J. Antioxidant peroxiredoxin 6 protein rescues toxicity due to oxidative stress and cellular hypoxia in vitro, and attenuates prion-related pathology in vivo. Neurochem. Int. 2015 90 152 165 10.1016/j.neuint.2015.08.006 26265052
    [Google Scholar]
  137. Yu S. Wang X. Lei S. Chen X. Liu Y. Zhou Y. Zhou Y. Wu J. Zhao Y. Sulfiredoxin-1 protects primary cultured astrocytes from ischemia-induced damage. Neurochem. Int. 2015 82 19 27 10.1016/j.neuint.2015.01.005 25620665
    [Google Scholar]
  138. Shanshan Y. Beibei J. Li T. Minna G. Shipeng L. Li P. Yong Z. Phospholipase A2 of peroxiredoxin 6 plays a critical role in cerebral ischemia/reperfusion inflammatory injury. Front. Cell. Neurosci. 2017 11 99 10.3389/fncel.2017.00099 28424593
    [Google Scholar]
  139. Peng L. Ji Y. Li Y. You Y. Zhou Y. PRDX6-iPLA2 aggravates neuroinflammation after ischemic stroke via regulating astrocytes-induced M1 microglia. Cell Commun. Signal. 2024 22 1 76 10.1186/s12964‑024‑01476‑2 38287382
    [Google Scholar]
  140. Saraiva M. O’Garra A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 2010 10 3 170 181 10.1038/nri2711 20154735
    [Google Scholar]
  141. Piepke M. Clausen B.H. Ludewig P. Vienhues J.H. Bedke T. Javidi E. Rissiek B. Jank L. Brockmann L. Sandrock I. Degenhardt K. Jander A. Roth V. Schädlich I.S. Prinz I. Flavell R.A. Kobayashi Y. Renné T. Gerloff C. Huber S. Magnus T. Gelderblom M. Interleukin-10 improves stroke outcome by controlling the detrimental Interleukin-17A response. J. Neuroinflammation 2021 18 1 265 10.1186/s12974‑021‑02316‑7 34772416
    [Google Scholar]
  142. Bugbee E. Wang A.A. Gommerman J.L. Under the influence: environmental factors as modulators of neuroinflammation through the IL-10/IL-10R axis. Front. Immunol. 2023 14 1188750 10.3389/fimmu.2023.1188750 37600781
    [Google Scholar]
  143. Li Q. Lan X. Han X. Durham F. Wan J. Weiland A. Koehler R.C. Wang J. Microglia-derived interleukin-10 accelerates post-intracerebral hemorrhage hematoma clearance by regulating CD36. Brain Behav. Immun. 2021 94 437 457 10.1016/j.bbi.2021.02.001 33588074
    [Google Scholar]
  144. Nayak A.R. Kashyap R.S. Purohit H.J. Kabra D. Taori G.M. Daginawala H.F. Evaluation of the inflammatory response in sera from acute ischemic stroke patients by measurement of IL-2 and IL-10. Inflamm. Res. 2009 58 10 687 691 10.1007/s00011‑009‑0036‑4 19340396
    [Google Scholar]
  145. Worthmann H. Tryc A.B. Dirks M. Schuppner R. Brand K. Klawonn F. Lichtinghagen R. Weissenborn K. Lipopolysaccharide binding protein, interleukin-10, interleukin-6 and C-reactive protein blood levels in acute ischemic stroke patients with post-stroke infection. J. Neuroinflammation 2015 12 1 13 10.1186/s12974‑014‑0231‑2 25613713
    [Google Scholar]
  146. Norden D.M. Fenn A.M. Dugan A. Godbout J.P. TGFβ produced by IL‐10 redirected astrocytes attenuates microglial activation. Glia 2014 62 6 881 895 10.1002/glia.22647 24616125
    [Google Scholar]
  147. Wu W. Luo Z. Shen D. Lan T. Xiao Z. Liu M. Hu L. Sun T. Wang Y. Zhang J.N. Zhang C. Wang P. Lu Y. Yang F. Li Q. IL-10 protects against OPC ferroptosis by regulating lipid reactive oxygen species levels post stroke. Redox Biol. 2024 69 102982 10.1016/j.redox.2023.102982 38070317
    [Google Scholar]
  148. Fernandez A.M. Torres-Alemán I. The many faces of insulin-like peptide signalling in the brain. Nat. Rev. Neurosci. 2012 13 4 225 239 10.1038/nrn3209 22430016
    [Google Scholar]
  149. Zhu W. Fan Y. Hao Q. Shen F. Hashimoto T. Yang G.Y. Gasmi M. Bartus R.T. Young W.L. Chen Y. Postischemic IGF-1 gene transfer promotes neurovascular regeneration after experimental stroke. J. Cereb. Blood Flow Metab. 2009 29 9 1528 1537 10.1038/jcbfm.2009.75 19513085
    [Google Scholar]
  150. Suh H.S. Zhao M.L. Derico L. Choi N. Lee S.C. Insulin-like growth factor 1 and 2 (IGF1, IGF2) expression in human microglia: differential regulation by inflammatory mediators. J. Neuroinflammation 2013 10 1 805 10.1186/1742‑2094‑10‑37 23497056
    [Google Scholar]
  151. Zheng J. Wu H. Wang X. Zhang G. Lu J. Xu W. Xu S. Fang Y. Zhang A. Shao A. Chen S. Zhao Z. Zhang J. Yu J. Temporal dynamics of microglia-astrocyte interaction in neuroprotective glial scar formation after intracerebral hemorrhage. J. Pharm. Anal. 2023 13 8 862 879 10.1016/j.jpha.2023.02.007 37719195
    [Google Scholar]
  152. Peng J. Yu Z. Xiao R. Hu X. Xia Y. Exosomal ZEB1 derived from neural stem cells reduces inflammation injury in OGD/R-treated microglia via the GPR30-TLR4-NF-κB Axis. Neurochem. Res. 2023 48 6 1811 1821 10.1007/s11064‑023‑03866‑3 36717511
    [Google Scholar]
  153. de Barrios O. Sanchez-Moral L. Cortés M. Ninfali C. Profitós-Pelejà N. Martínez-Campanario M.C. Siles L. del Campo R. Fernández-Aceñero M.J. Darling D.S. Castells A. Maurel J. Salas A. Dean D.C. Postigo A. ZEB1 promotes inflammation and progression towards inflammation-driven carcinoma through repression of the DNA repair glycosylase MPG in epithelial cells. Gut 2019 68 12 2129 2141 10.1136/gutjnl‑2018‑317294 31366457
    [Google Scholar]
  154. Poonaki E. Kahlert U.D. Meuth S.G. Gorji A. The role of the ZEB1–neuroinflammation axis in CNS disorders. J. Neuroinflammation 2022 19 1 275 10.1186/s12974‑022‑02636‑2 36402997
    [Google Scholar]
  155. Bui T. Sequeira J. Wen T.C. Sola A. Higashi Y. Kondoh H. Genetta T. ZEB1 links p63 and p73 in a novel neuronal survival pathway rapidly induced in response to cortical ischemia. PLoS One 2009 4 2 e4373 10.1371/journal.pone.0004373 19194497
    [Google Scholar]
  156. Li D. Lang W. Zhou C. Wu C. Zhang F. Liu Q. Yang S. Hao J. Upregulation of microglial ZEB1 ameliorates brain damage after acute ischemic stroke. Cell Rep. 2018 22 13 3574 3586 10.1016/j.celrep.2018.03.011 29590624
    [Google Scholar]
  157. Pan Y. Liu Y. Wei W. Yang X. Wang Z. Xin W. Extracellular vesicles as delivery shippers for noncoding RNA‐based modulation of angiogenesis: Insights from ischemic stroke and cancer. Small 2023 19 17 2205739 10.1002/smll.202205739 36592424
    [Google Scholar]
  158. Wilson C.M. Belkozhayev A.M. Al-Yozbaki M. George A. Ye Niyazova R. Sharipov K.O. Byrne L.J. Extracellular vesicles, stem cells and the role of miRNAs in neurodegeneration. Curr. Neuropharmacol. 2022 20 8 1450 1478 10.2174/1570159X19666210817150141 34414870
    [Google Scholar]
  159. Li Z. Song Y. He T. Wen R. Li Y. Chen T. Huang S. Wang Y. Tang Y. Shen F. Tian H.L. Yang G.Y. Zhang Z. M2 microglial small extracellular vesicles reduce glial scar formation via the miR-124/STAT3 pathway after ischemic stroke in mice. Theranostics 2021 11 3 1232 1248 10.7150/thno.48761 33391532
    [Google Scholar]
  160. Xin W. Pan Y. Wei W. Tatenhorst L. Graf I. Popa-Wagner A. Gerner S.T. Huber S. Kilic E. Hermann D.M. Bähr M. Huttner H.B. Doeppner T.R. Preconditioned extracellular vesicles from hypoxic microglia reduce poststroke AQP4 depolarization, disturbed cerebrospinal fluid flow, astrogliosis, and neuroinflammation. Theranostics 2023 13 12 4197 4216 10.7150/thno.84059 37554272
    [Google Scholar]
  161. Han P. Mi W.L. Wang Y.Q. Research progress on interleukin-33 and its roles in the central nervous system. Neurosci. Bull. 2011 27 5 351 357 10.1007/s12264‑011‑1025‑5 21934731
    [Google Scholar]
  162. Schmitz J. Owyang A. Oldham E. Song Y. Murphy E. McClanahan T.K. Zurawski G. Moshrefi M. Qin J. Li X. Gorman D.M. Bazan J.F. Kastelein R.A. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 2005 23 5 479 490 10.1016/j.immuni.2005.09.015 16286016
    [Google Scholar]
  163. Gadani S.P. Walsh J.T. Smirnov I. Zheng J. Kipnis J. The glia-derived alarmin IL-33 orchestrates the immune response and promotes recovery following CNS injury. Neuron 2015 85 4 703 709 10.1016/j.neuron.2015.01.013 25661185
    [Google Scholar]
  164. Wicher G. Wallenquist U. Lei Y. Enoksson M. Li X. Fuchs B. Abu Hamdeh S. Marklund N. Hillered L. Nilsson G. Forsberg-Nilsson K. Interleukin-33 promotes recruitment of microglia/macrophages in response to traumatic brain injury. J. Neurotrauma 2017 34 22 3173 3182 10.1089/neu.2016.4900 28490277
    [Google Scholar]
  165. Yang D. Sun Y. Lin D. Li S. Zhang Y. Wu A. Wei C. Interleukin-33 ameliorates perioperative neurocognitive disorders by modulating microglial state. Neuropharmacology 2024 253 109982 10.1016/j.neuropharm.2024.109982 38701943
    [Google Scholar]
  166. Nguyen P.T. Dorman L.C. Pan S. Vainchtein I.D. Han R.T. Nakao-Inoue H. Taloma S.E. Barron J.J. Molofsky A.B. Kheirbek M.A. Molofsky A.V. Microglial remodeling of the extracellular matrix promotes synapse plasticity. Cell 2020 182 2 388 403.e15 10.1016/j.cell.2020.05.050 32615087
    [Google Scholar]
  167. Gao Y. Ma L. Luo C. Wang T. Zhang M. Shen X. Meng H. Ji M. Wang Z. Chen X. Tao L. IL-33 exerts neuroprotective effect in mice intracerebral hemorrhage model through suppressing inflammation/apoptotic/autophagic pathway. Mol. Neurobiol. 2017 54 5 3879 3892 10.1007/s12035‑016‑9947‑6 27405469
    [Google Scholar]
  168. Xie D. Liu H. Xu F. Su W. Ye Q. Yu F. Austin T.J. Chen J. Hu X. IL33 (Interleukin 33)/ST2 (Interleukin 1 Receptor-Like 1) axis drives protective microglial responses and promotes white matter integrity after stroke. Stroke 2021 52 6 2150 2161 10.1161/STROKEAHA.120.032444 33902297
    [Google Scholar]
  169. Yang Y. Liu H. Zhang H. Ye Q. Wang J. Yang B. Mao L. Zhu W. Leak R.K. Xiao B. Lu B. Chen J. Hu X. ST2/IL-33-dependent microglial response limits acute ischemic brain injury. J. Neurosci. 2017 37 18 4692 4704 10.1523/JNEUROSCI.3233‑16.2017 28389473
    [Google Scholar]
  170. Han S. Lone M.A. Schneiter R. Chang A. Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control. Proc. Natl. Acad. Sci. USA 2010 107 13 5851 5856 10.1073/pnas.0911617107 20212121
    [Google Scholar]
  171. Luo Z. Lei H. Sun Y. Liu X. Su D.F. Orosomucoid, an acute response protein with multiple modulating activities. J. Physiol. Biochem. 2015 71 2 329 340 10.1007/s13105‑015‑0389‑9 25711902
    [Google Scholar]
  172. Wan J.J. Wang P.Y. Zhang Y. Qin Z. Sun Y. Hu B.H. Su D.F. Xu D.P. Liu X. Role of acute‐phase protein ORM in a mice model of ischemic stroke. J. Cell. Physiol. 2019 234 11 20533 20545 10.1002/jcp.28653 31026065
    [Google Scholar]
  173. Jo M. Kim J.H. Song G.J. Seo M. Hwang E.M. Suk K. Astrocytic orosomucoid-2 modulates microglial activation and neuroinflammation. J. Neurosci. 2017 37 11 2878 2894 10.1523/JNEUROSCI.2534‑16.2017 28193696
    [Google Scholar]
  174. Liu X. Lv X. Liu Z. Zhang M. Leng Y. MircoRNA-29a in astrocyte-derived extracellular vesicles suppresses brain ischemia reperfusion injury via TP53INP1 and the NF-κB/NLRP3 axis. Cell. Mol. Neurobiol. 2022 42 5 1487 1500 10.1007/s10571‑021‑01040‑3 33620674
    [Google Scholar]
  175. Long X. Yao X. Jiang Q. Yang Y. He X. Tian W. Zhao K. Zhang H. Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury. J. Neuroinflammation 2020 17 1 89 10.1186/s12974‑020‑01761‑0 32192523
    [Google Scholar]
  176. Qian Y. Li X. Li G. Liu H. Li Q. Liu X. Zhang Y. He Z. Zhao Y. Fan H. Astrocyte-derived exosomal miR-148a-3p suppresses neuroinflammation and restores neurological function in traumatic brain injury by regulating the microglial phenotype. eNeuro 2024 11 2 ENEURO.0336-23.2024 10.1523/ENEURO.0336‑23.2024
    [Google Scholar]
  177. Hayakawa K. Esposito E. Wang X. Terasaki Y. Liu Y. Xing C. Ji X. Lo E.H. Transfer of mitochondria from astrocytes to neurons after stroke. Nature 2016 535 7613 551 555 10.1038/nature18928 27466127
    [Google Scholar]
  178. Jung J.E. Sun G. Bautista Garrido J. Obertas L. Mobley A.S. Ting S.M. Zhao X. Aronowski J. The mitochondria-derived peptide humanin improves recovery from intracerebral hemorrhage: Implication of mitochondria transfer and microglia phenotype change. J. Neurosci. 2020 40 10 2154 2165 10.1523/JNEUROSCI.2212‑19.2020 31980585
    [Google Scholar]
  179. Tashiro R. Bautista-Garrido J. Ozaki D. Sun G. Obertas L. Mobley A.S. Kim G.S. Aronowski J. Jung J.E. Transplantation of astrocytic mitochondria modulates neuronal antioxidant defense and neuroplasticity and promotes functional recovery after intracerebral hemorrhage. J. Neurosci. 2022 42 36 7001 7014 10.1523/JNEUROSCI.2222‑21.2022 35970559
    [Google Scholar]
  180. Perez-de-Puig I. Miró-Mur F. Ferrer-Ferrer M. Gelpi E. Pedragosa J. Justicia C. Urra X. Chamorro A. Planas A.M. Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol. 2015 129 2 239 257 10.1007/s00401‑014‑1381‑0 25548073
    [Google Scholar]
  181. Soto-Díaz K. Juda M.B. Blackmore S. Walsh C. Steelman A.J. TAK1 inhibition in mouse astrocyte cultures ameliorates cytokine‐induced chemokine production and neutrophil migration. J. Neurochem. 2020 152 6 697 709 10.1111/jnc.14930 31782806
    [Google Scholar]
  182. Qian H. Zhang H.N. Gao T. Wang X.S. Wang X. Yu M.Y. Li M.K. Huang J. Upregulation of TRPC1 in microglia promotes neutrophil infiltration after ischemic stroke. Brain Res. Bull. 2024 208 110894 10.1016/j.brainresbull.2024.110894 38325758
    [Google Scholar]
  183. Cuartero M.I. Ballesteros I. Moraga A. Nombela F. Vivancos J. Hamilton J.A. Corbí Á.L. Lizasoain I. Moro M.A. N2 neutrophils, novel players in brain inflammation after stroke: Modulation by the PPARγ agonist rosiglitazone. Stroke 2013 44 12 3498 3508 10.1161/STROKEAHA.113.002470 24135932
    [Google Scholar]
  184. Kim Y.R. Kim Y.M. Lee J. Park J. Lee J.E. Hyun Y.M. Neutrophils return to bloodstream through the brain blood vessel after crosstalk with microglia during LPS-induced neuroinflammation. Front. Cell Dev. Biol. 2020 8 613733 10.3389/fcell.2020.613733 33364241
    [Google Scholar]
  185. Cai W. Liu S. Hu M. Huang F. Zhu Q. Qiu W. Hu X. Colello J. Zheng S.G. Lu Z. Functional dynamics of neutrophils after ischemic stroke. Transl. Stroke Res. 2020 11 1 108 121 10.1007/s12975‑019‑00694‑y 30847778
    [Google Scholar]
  186. Otxoa-de-Amezaga A. Miró-Mur F. Pedragosa J. Gallizioli M. Justicia C. Gaja-Capdevila N. Ruíz-Jaen F. Salas-Perdomo A. Bosch A. Calvo M. Márquez-Kisinousky L. Denes A. Gunzer M. Planas A.M. Microglial cell loss after ischemic stroke favors brain neutrophil accumulation. Acta Neuropathol. 2019 137 2 321 341 10.1007/s00401‑018‑1954‑4 30580383
    [Google Scholar]
  187. Zhao X. Ting S.M. Liu C.H. Sun G. Kruzel M. Roy-O’Reilly M. Aronowski J. Neutrophil polarization by IL-27 as a therapeutic target for intracerebral hemorrhage. Nat. Commun. 2017 8 1 602 10.1038/s41467‑017‑00770‑7 28928459
    [Google Scholar]
  188. Miró-Mur F. Pérez-de-Puig I. Ferrer-Ferrer M. Urra X. Justicia C. Chamorro A. Planas A.M. Immature monocytes recruited to the ischemic mouse brain differentiate into macrophages with features of alternative activation. Brain Behav. Immun. 2016 53 18 33 10.1016/j.bbi.2015.08.010 26275369
    [Google Scholar]
  189. Fang W. Zhai X. Han D. Xiong X. Wang T. Zeng X. He S. Liu R. Miyata M. Xu B. Zhao H. CCR2-dependent monocytes/macrophages exacerbate acute brain injury but promote functional recovery after ischemic stroke in mice. Theranostics 2018 8 13 3530 3543 10.7150/thno.24475 30026864
    [Google Scholar]
  190. Park J. Kim J.Y. Kim Y.R. Huang M. Chang J.Y. Sim A.Y. Jung H. Lee W.T. Hyun Y.M. Lee J.E. Reparative system arising from CCR2(+) monocyte conversion attenuates neuroinflammation following ischemic stroke. Transl. Stroke Res. 2021 12 5 879 893 10.1007/s12975‑020‑00878‑x 33409730
    [Google Scholar]
  191. Gliem M. Krammes K. Liaw L. van Rooijen N. Hartung H.P. Jander S. Macrophage-derived osteopontin induces reactive astrocyte polarization and promotes re-establishment of the blood brain barrier after ischemic stroke. Glia 2015 63 12 2198 2207 10.1002/glia.22885 26148976
    [Google Scholar]
  192. Ortega S.B. Noorbhai I. Poinsatte K. Kong X. Anderson A. Monson N.L. Stowe A.M. Stroke induces a rapid adaptive autoimmune response to novel neuronal antigens. Discov. Med. 2015 19 106 381 392 26105701
    [Google Scholar]
  193. Dolati S. Ahmadi M. Khalili M. Taheraghdam A.A. Siahmansouri H. Babaloo Z. Aghebati-Maleki L. Jadidi-Niaragh F. Younesi V. Yousefi M. Peripheral Th17/Treg imbalance in elderly patients with ischemic stroke. Neurol. Sci. 2018 39 4 647 654 10.1007/s10072‑018‑3250‑4 29353353
    [Google Scholar]
  194. Shi Z. Yu P. Lin W.J. Chen S. Hu X. Chen S. Cheng J. Liu Q. Yang Y. Li S. Zhang Z. Xie J. Jiang J. He B. Li Y. Li H. Xu Y. Zeng J. Huang J. Mei J. Cai J. Chen J. Wu L.J. Ko H. Tang Y. Microglia drive transient insult-induced brain injury by chemotactic recruitment of CD8+ T lymphocytes. Neuron 2023 111 5 696 710.e9 10.1016/j.neuron.2022.12.009 36603584
    [Google Scholar]
  195. Ito M. Komai K. Mise-Omata S. Iizuka-Koga M. Noguchi Y. Kondo T. Sakai R. Matsuo K. Nakayama T. Yoshie O. Nakatsukasa H. Chikuma S. Shichita T. Yoshimura A. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 2019 565 7738 246 250 10.1038/s41586‑018‑0824‑5 30602786
    [Google Scholar]
  196. Shu L. Xu C. Yan Z.Y. Yan Y. Jiang S.Z. Wang Y.R. Post-stroke microglia induce sirtuin2 expression to suppress the anti-inflammatory function of infiltrating regulatory T cells. Inflammation 2019 42 6 1968 1979 10.1007/s10753‑019‑01057‑3 31297748
    [Google Scholar]
  197. Arunachalam P. Ludewig P. Melich P. Arumugam T.V. Gerloff C. Prinz I. Magnus T. Gelderblom M. CCR6 (CC chemokine receptor 6) is essential for the migration of detrimental natural interleukin-17–producing γδ T cells in stroke. Stroke 2017 48 7 1957 1965 10.1161/STROKEAHA.117.016753 28611085
    [Google Scholar]
  198. Mo Y. Xu W. Fu K. Chen H. Wen J. Huang Q. Guo F. Mo L. Yan J. The dual function of microglial polarization and its treatment targets in ischemic stroke. Front. Neurol. 2022 13 921705 10.3389/fneur.2022.921705 36212660
    [Google Scholar]
  199. Yang S. Wang H. Yang Y. Wang R. Wang Y. Wu C. Du G. Baicalein administered in the subacute phase ameliorates ischemia-reperfusion-induced brain injury by reducing neuroinflammation and neuronal damage. Biomed. Pharmacother. 2019 117 109102 10.1016/j.biopha.2019.109102 31228802
    [Google Scholar]
  200. Wang Q. Lv C. Sun Y. Han X. Wang S. Mao Z. Xin Y. Zhang B. The role of alpha-lipoic acid in the pathomechanism of acute ischemic stroke. Cell. Physiol. Biochem. 2018 48 1 42 53 10.1159/000491661 29996116
    [Google Scholar]
  201. Shi H. Zheng K. Su Z. Su H. Zhong M. He X. Zhou C. Chen H. Xiong Q. Zhang Y. Sinomenine enhances microglia M2 polarization and attenuates inflammatory injury in intracerebral hemorrhage. J. Neuroimmunol. 2016 299 28 34 10.1016/j.jneuroim.2016.08.010 27725118
    [Google Scholar]
  202. Chen W. Guo C. Huang S. Jia Z. Wang J. Zhong J. Ge H. Yuan J. Chen T. Liu X. Hu R. Yin Y. Feng H. MitoQ attenuates brain damage by polarizing microglia towards the M2 phenotype through inhibition of the NLRP3 inflammasome after ICH. Pharmacol. Res. 2020 161 105122 10.1016/j.phrs.2020.105122 32791262
    [Google Scholar]
  203. Wang W. Redecker C. Yu Z.Y. Xie M.J. Tian D.S. Zhang L. Bu B.T. Witte O.W. Rat focal cerebral ischemia induced astrocyte proliferation and delayed neuronal death are attenuated by cyclin-dependent kinase inhibition. J. Clin. Neurosci. 2008 15 3 278 285 10.1016/j.jocn.2007.02.004 18207409
    [Google Scholar]
  204. Sun C. Lin L. Yin L. Hao X. Tian J. Zhang X. Ren Y. Li C. Yang Y. Acutely inhibiting AQP4 With TGN-020 improves functional outcome by attenuating edema and peri-infarct astrogliosis after cerebral ischemia. Front. Immunol. 2022 13 870029 10.3389/fimmu.2022.870029 35592320
    [Google Scholar]
  205. Yang Y. Yi J. Pan M. Hu B. Duan H. Edaravone alleviated propofol‐induced neural injury in developing rats by BDNF/TrkB pathway. J. Cell. Mol. Med. 2021 25 11 4974 4987 10.1111/jcmm.16422 33932098
    [Google Scholar]
  206. Ni X.C. Wang H.F. Cai Y.Y. Yang D. Alolga R.N. Liu B. Li J. Huang F.Q. Ginsenoside Rb1 inhibits astrocyte activation and promotes transfer of astrocytic mitochondria to neurons against ischemic stroke. Redox Biol. 2022 54 102363 10.1016/j.redox.2022.102363 35696763
    [Google Scholar]
  207. Song X. Gong Z. Liu K. Kou J. Liu B. Liu K. Baicalin combats glutamate excitotoxicity via protecting glutamine synthetase from ROS-induced 20S proteasomal degradation. Redox Biol. 2020 34 101559 10.1016/j.redox.2020.101559 32473460
    [Google Scholar]
  208. Cao J. Dong L. Luo J. Zeng F. Hong Z. Liu Y. Zhao Y. Xia Z. Zuo D. Xu L. Tao T. Supplemental N‐3 polyunsaturated fatty acids limit A1‐specific astrocyte polarization via attenuating mitochondrial dysfunction in ischemic stroke in mice. Oxid. Med. Cell. Longev. 2021 2021 1 5524705 10.1155/2021/5524705 34211624
    [Google Scholar]
  209. Jin W.N. Shi S.X.Y. Li Z. Li M. Wood K. Gonzales R.J. Liu Q. Depletion of microglia exacerbates postischemic inflammation and brain injury. J. Cereb. Blood Flow Metab. 2017 37 6 2224 2236 10.1177/0271678X17694185 28273719
    [Google Scholar]
  210. Marino Lee S. Hudobenko J. McCullough L.D. Chauhan A. Microglia depletion increase brain injury after acute ischemic stroke in aged mice. Exp. Neurol. 2021 336 113530 10.1016/j.expneurol.2020.113530 33221396
    [Google Scholar]
  211. Li T. Zhao J. Gao H. Depletion of Arg1-positive microglia/macrophages exacerbates cerebral ischemic damage by facilitating the inflammatory response. Int. J. Mol. Sci. 2022 23 21 13055 10.3390/ijms232113055 36361836
    [Google Scholar]
  212. Zeyen T. Noristani R. Habib S. Heinisch O. Slowik A. Huber M. Schulz J.B. Reich A. Habib P. Microglial-specific depletion of TAK1 is neuroprotective in the acute phase after ischemic stroke. J. Mol. Med. 2020 98 6 833 847 10.1007/s00109‑020‑01916‑9 32382778
    [Google Scholar]
  213. Li M. Li Z. Ren H. Jin W.N. Wood K. Liu Q. Sheth K.N. Shi F.D. Colony stimulating factor 1 receptor inhibition eliminates microglia and attenuates brain injury after intracerebral hemorrhage. J. Cereb. Blood Flow Metab. 2017 37 7 2383 2395 10.1177/0271678X16666551 27596835
    [Google Scholar]
  214. Wang Q. Ding H. Chen S. Liu X. Deng Y. Jiang W. Li Y. Huang L. Han Y. Wen M. Wang M. Zeng H. Hypertonic saline mediates the NLRP3/IL‐1β signaling axis in microglia to alleviate ischemic blood‐brain barrier permeability by downregulating astrocyte‐derived VEGF in rats. CNS Neurosci. Ther. 2020 26 10 1045 1057 10.1111/cns.13427 32529750
    [Google Scholar]
  215. Zheng J. Lu J. Mei S. Wu H. Sun Z. Fang Y. Xu S. Wang X. Shi L. Xu W. Chen S. Yu J. Liang F. Zhang J. Ceria nanoparticles ameliorate white matter injury after intracerebral hemorrhage: Microglia-astrocyte involvement in remyelination. J. Neuroinflammation 2021 18 1 43 10.1186/s12974‑021‑02101‑6 33588866
    [Google Scholar]
  216. Takei R. Nakashima M. Gotoh M. Endo M. Hashimoto K. Miyamoto Y. Murakami-Murofushi K. 2-carba-cyclic phosphatidic acid modulates astrocyte-to-microglia communication and influences microglial polarization towards an anti-inflammatory phenotype. Neurosci. Lett. 2023 797 137063 10.1016/j.neulet.2023.137063 36634888
    [Google Scholar]
  217. Kano S. Choi E.Y. Dohi E. Agarwal S. Chang D.J. Wilson A.M. Lo B.D. Rose I.V.L. Gonzalez S. Imai T. Sawa A. Glutathione S -transferases promote proinflammatory astrocyte-microglia communication during brain inflammation. Sci. Signal. 2019 12 569 eaar2124 10.1126/scisignal.aar2124 30783009
    [Google Scholar]
  218. Saviano A. Henderson N.C. Baumert T.F. Single-cell genomics and spatial transcriptomics: Discovery of novel cell states and cellular interactions in liver physiology and disease biology. J. Hepatol. 2020 73 5 1219 1230 10.1016/j.jhep.2020.06.004 32534107
    [Google Scholar]
  219. Smajić S. Prada-Medina C.A. Landoulsi Z. Ghelfi J. Delcambre S. Dietrich C. Jarazo J. Henck J. Balachandran S. Pachchek S. Morris C.M. Antony P. Timmermann B. Sauer S. Pereira S.L. Schwamborn J.C. May P. Grünewald A. Spielmann M. Single-cell sequencing of human midbrain reveals glial activation and a Parkinson-specific neuronal state. Brain 2022 145 3 964 978 10.1093/brain/awab446 34919646
    [Google Scholar]
  220. Akbar M. MacDonald L. Crowe L.A.N. Carlberg K. Kurowska-Stolarska M. Ståhl P.L. Snelling S.J.B. McInnes I.B. Millar N.L. Single cell and spatial transcriptomics in human tendon disease indicate dysregulated immune homeostasis. Ann. Rheum. Dis. 2021 80 11 1494 1497 10.1136/annrheumdis‑2021‑220256 34001518
    [Google Scholar]
/content/journals/cn/10.2174/011570159X350639250403072430
Loading
/content/journals/cn/10.2174/011570159X350639250403072430
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test