Skip to content
2000
Volume 23, Issue 13
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Stroke is a leading cause of severe disability and mortality worldwide. Glial cells in the central nervous system (CNS) not only provide nutritional support but also play crucial roles in the inflammatory response. Microglia and astrocytes, integral components of the innate immune system, are involved in all stages of stroke and are active participants in inducing post-stroke neuroinflammation. Recent studies have increasingly focused on the potential crosstalk between microglia and astrocytes, identifying it as a promising area for understanding the pathogenesis and therapeutic mechanisms of CNS inflammatory diseases. These cells not only undergo dynamic phenotypic changes but also establish an intimate two-way dialogue by releasing various signaling molecules. This review paper elucidates the spatiotemporal dynamics of microglia and astrocytes in post-stroke neuroinflammation and highlights interaction pathways and potential therapeutic strategies for stroke.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X350639250403072430
2025-04-25
2025-10-29
Loading full text...

Full text loading...

References

  1. FeiginV.L. StarkB.A. JohnsonC.O. RothG.A. BisignanoC. AbadyG.G. AbbasifardM. Abbasi-KangevariM. Abd-AllahF. AbediV. AbualhasanA. Abu-RmeilehN.M.E. AbushoukA.I. AdebayoO.M. AgarwalG. AgasthiP. AhinkorahB.O. AhmadS. AhmadiS. Ahmed SalihY. AjiB. AkbarpourS. AkinyemiR.O. Al HamadH. AlahdabF. AlifS.M. AlipourV. AljunidS.M. AlmustanyirS. Al-RaddadiR.M. Al-Shahi SalmanR. Alvis-GuzmanN. AncuceanuR. AnderliniD. AndersonJ.A. AnsarA. AntonazzoI.C. ArablooJ. ÄrnlövJ. ArtantiK.D. AryanZ. AsgariS. AshrafT. AtharM. AtreyaA. AusloosM. BaigA.A. BaltatuO.C. BanachM. BarbozaM.A. Barker-ColloS.L. BärnighausenT.W. BaroneM.T.U. BasuS. BazmandeganG. BeghiE. BeheshtiM. BéjotY. BellA.W. BennettD.A. BensenorI.M. BezabheW.M. BezabihY.M. BhagavathulaA.S. BhardwajP. BhattacharyyaK. BijaniA. BikbovB. BirhanuM.M. BoloorA. BonnyA. BrauerM. BrennerH. BryazkaD. ButtZ.A. Caetano dos SantosF.L. Campos-NonatoI.R. Cantu-BritoC. CarreroJ.J. Castañeda-OrjuelaC.A. CatapanoA.L. ChakrabortyP.A. CharanJ. ChoudhariS.G. ChowdhuryE.K. ChuD-T. ChungS-C. ColozzaD. CostaV.M. CostanzoS. CriquiM.H. DadrasO. DagnewB. DaiX. DalalK. DamascenoA.A.M. D’AmicoE. DandonaL. DandonaR. Darega GelaJ. DavletovK. De la Cruz-GóngoraV. DesaiR. DhamnetiyaD. DharmaratneS.D. DhimalM.L. DhimalM. DiazD. DichgansM. DokovaK. DoshiR. DouiriA. DuncanB.B. EftekharzadehS. EkholuenetaleM. El NahasN. ElgendyI.Y. ElhadiM. El-JaafaryS.I. EndresM. EndriesA.Y. ErkuD.A. FaraonE.J.A. FarooqueU. FarzadfarF. FerozeA.H. FilipI. FischerF. FloodD. GadM.M. GaidhaneS. Ghanei GheshlaghR. GhashghaeeA. GhithN. GhozaliG. GhozyS. GialluisiA. GiampaoliS. GilaniS.A. GillP.S. GnedovskayaE.V. GolechhaM. GoulartA.C. GuoY. GuptaR. GuptaV.B. GuptaV.K. GyanwaliP. Hafezi-NejadN. HamidiS. HanifA. HankeyG.J. HargonoA. HashiA. HassanT.S. HassenH.Y. HavmoellerR.J. HayS.I. HayatK. HegazyM.I. HerteliuC. HollaR. HostiucS. HousehM. HuangJ. HumayunA. HwangB-F. IacovielloL. IavicoliI. IbitoyeS.E. IlesanmiO.S. IlicI.M. IlicM.D. IqbalU. IrvaniS.S.N. IslamS.M.S. IsmailN.E. IsoH. IsolaG. IwagamiM. JacobL. JainV. JangS-I. JayapalS.K. JayaramS. JayawardenaR. JeemonP. JhaR.P. JohnsonW.D. JonasJ.B. JosephN. JozwiakJ.J. JürissonM. KalaniR. KalhorR. KalkondeY. KamathA. KamiabZ. KanchanT. KandelH. KarchA. KatotoP.D.M.C. KayodeG.A. KeshavarzP. KhaderY.S. KhanE.A. KhanI.A. KhanM. KhanM.A.B. KhatibM.N. KhubchandaniJ. KimG.R. KimM.S. KimY.J. KisaA. KisaS. KivimäkiM. KolteD. KoolivandA. Koulmane LaxminarayanaS.L. KoyanagiA. KrishanK. KrishnamoorthyV. KrishnamurthiR.V. KumarG.A. KusumaD. La VecchiaC. LaceyB. LakH.M. LallukkaT. LasradoS. LavadosP.M. LeonardiM. LiB. LiS. LinH. LinR-T. LiuX. LoW.D. LorkowskiS. LucchettiG. Lutzky SauteR. Magdy Abd El RazekH. MagnaniF.G. MahajanP.B. MajeedA. MakkiA. MalekzadehR. MalikA.A. ManafiN. MansourniaM.A. MantovaniL.G. MartiniS. MazzagliaG. MehndirattaM.M. MenezesR.G. MeretojaA. MershaA.G. MiaoJ.J. MiazgowskiB. MiazgowskiT. MichalekI.M. MirrakhimovE.M. MohammadY. Mohammadian-HafshejaniA. MohammedS. MokdadA.H. MokhayeriY. MolokhiaM. MoniM.A. MontasirA.A. MoradzadehR. MorawskaL. MorzeJ. MuruetW. MusaK.I. NagarajanA.J. NaghaviM. Narasimha SwamyS. NascimentoB.R. NegoiR.I. Neupane KandelS. NguyenT.H. NorrvingB. NoubiapJ.J. NwatahV.E. OanceaB. OdukoyaO.O. OlagunjuA.T. OrruH. OwolabiM.O. PadubidriJ.R. PanaA. ParekhT. ParkE-C. Pashazadeh KanF. PathakM. PeresM.F.P. PerianayagamA. PhamT-M. PiradovM.A. PodderV. PolinderS. PostmaM.J. PourshamsA. RadfarA. RafieiA. RaggiA. RahimF. Rahimi-MovagharV. RahmanM. RahmanM.A. RahmaniA.M. RajaiN. RanasingheP. RaoC.R. RaoS.J. RathiP. RawafD.L. RawafS. ReitsmaM.B. RenjithV. RenzahoA.M.N. RezapourA. RodriguezJ.A.B. RoeverL. RomoliM. RynkiewiczA. SaccoS. SadeghiM. Saeedi MoghaddamS. SahebkarA. Saif-Ur-RahmanK.M. SalahR. SamaeiM. SamyA.M. SantosI.S. Santric-MilicevicM.M. SarrafzadeganN. SathianB. SattinD. SchiavolinS. SchlaichM.P. SchmidtM.I. SchutteA.E. SepanlouS.G. SeylaniA. ShaF. ShahabiS. ShaikhM.A. ShannawazM. ShawonM.S.R. SheikhA. SheikhbahaeiS. ShibuyaK. SiabaniS. SilvaD.A.S. SinghJ.A. SinghJ.K. SkryabinV.Y. SkryabinaA.A. SobaihB.H. StorteckyS. StrangesS. TadesseE.G. TariganI.U. TemsahM-H. TeuschlY. ThriftA.G. TonelliM. Tovani-PaloneM.R. TranB.X. TripathiM. TsegayeG.W. UllahA. UnimB. UnnikrishnanB. VakilianA. Valadan TahbazS. VasankariT.J. VenketasubramanianN. VervoortD. VoB. VoloviciV. VosoughiK. VuG.T. VuL.G. WafaH.A. WaheedY. WangY. WijeratneT. WinklerA.S. WolfeC.D.A. WoodwardM. WuJ.H. Wulf HansonS. XuX. YadavL. YadollahpourA. Yahyazadeh JabbariS.H. YamagishiK. YatsuyaH. YonemotoN. YuC. YunusaI. ZamanM.S. ZamanS.B. ZamanianM. ZandR. ZandifarA. ZastrozhinM.S. ZastrozhinaA. ZhangY. ZhangZ-J. ZhongC. ZunigaY.M.H. MurrayC.J.L. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019.Lancet Neurol.2021201079582010.1016/S1474‑4422(21)00252‑0 34487721
    [Google Scholar]
  2. MaQ. LiR. WangL. YinP. WangY. YanC. RenY. QianZ. VaughnM.G. McMillinS.E. HayS.I. NaghaviM. CaiM. WangC. ZhangZ. ZhouM. LinH. YangY. Temporal trend and attributable risk factors of stroke burden in China, 1990–2019: An analysis for the global burden of disease study 2019.Lancet Public Health2021612e897e90610.1016/S2468‑2667(21)00228‑0 34838196
    [Google Scholar]
  3. ShiK. TianD.C. LiZ.G. DucruetA.F. LawtonM.T. ShiF.D. Global brain inflammation in stroke.Lancet Neurol.201918111058106610.1016/S1474‑4422(19)30078‑X 31296369
    [Google Scholar]
  4. TschoeC. BushnellC.D. DuncanP.W. Alexander-MillerM.A. WolfeS.Q. Neuroinflammation after intracerebral hemorrhage and potential therapeutic targets.J. Stroke2020221294610.5853/jos.2019.02236 32027790
    [Google Scholar]
  5. JayarajR.L. AzimullahS. BeiramR. JalalF.Y. RosenbergG.A. Neuroinflammation: Friend and foe for ischemic stroke.J. Neuroinflammation201916114210.1186/s12974‑019‑1516‑2 31291966
    [Google Scholar]
  6. MuraoA. AzizM. WangH. BrennerM. WangP. Release mechanisms of major DAMPs.Apoptosis2021263-415216210.1007/s10495‑021‑01663‑3 33713214
    [Google Scholar]
  7. MaidaC.D. NorritoR.L. DaidoneM. TuttolomondoA. PintoA. Neuroinflammatory mechanisms in ischemic stroke: Focus on cardioembolic stroke, background, and therapeutic approaches.Int. J. Mol. Sci.20202118645410.3390/ijms21186454 32899616
    [Google Scholar]
  8. AlsbrookD.L. Di NapoliM. BhatiaK. BillerJ. AndalibS. HindujaA. RodriguesR. RodriguezM. SabbaghS.Y. SelimM. FarahabadiM.H. JafarliA. DivaniA.A. Neuroinflammation in acute ischemic and hemorrhagic stroke.Curr. Neurol. Neurosci. Rep.202323840743110.1007/s11910‑023‑01282‑2 37395873
    [Google Scholar]
  9. GongT. LiuL. JiangW. ZhouR. DAMP-sensing receptors in sterile inflammation and inflammatory diseases.Nat. Rev. Immunol.20202029511210.1038/s41577‑019‑0215‑7 31558839
    [Google Scholar]
  10. KeepR.F. HuaY. XiG. Intracerebral haemorrhage: Mechanisms of injury and therapeutic targets.Lancet Neurol.201211872073110.1016/S1474‑4422(12)70104‑7 22698888
    [Google Scholar]
  11. JinR. LiuL. ZhangS. NandaA. LiG. Role of inflammation and its mediators in acute ischemic stroke.J. Cardiovasc. Transl. Res.20136583485110.1007/s12265‑013‑9508‑6 24006091
    [Google Scholar]
  12. SunM. YouH. HuX. LuoY. ZhangZ. SongY. AnJ. LuH. Microglia–astrocyte interaction in neural development and neural pathogenesis.Cells20231215194210.3390/cells12151942 37566021
    [Google Scholar]
  13. Lopez-OrtizA.O. EyoU.B. Astrocytes and microglia in the coordination of CNS development and homeostasis.J. Neurochem.20241681035993614 37985374
    [Google Scholar]
  14. StreitW. XueQ.S. Microglial senescence.CNS Neurol. Disord. Drug Targets201312676376710.2174/18715273113126660176 24047521
    [Google Scholar]
  15. DuY. BrennanF.H. PopovichP.G. ZhouM. Microglia maintain the normal structure and function of the hippocampal astrocyte network.Glia20227071359137910.1002/glia.24179 35394085
    [Google Scholar]
  16. VainchteinI.D. ChinG. ChoF.S. KelleyK.W. MillerJ.G. ChienE.C. LiddelowS.A. NguyenP.T. Nakao-InoueH. DormanL.C. AkilO. JoshitaS. BarresB.A. PazJ.T. MolofskyA.B. MolofskyA.V. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development.Science201835963811269127310.1126/science.aal3589 29420261
    [Google Scholar]
  17. KirkleyK.S. PopichakK.A. AfzaliM.F. LegareM.E. TjalkensR.B. Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity.J. Neuroinflammation20171419910.1186/s12974‑017‑0871‑0 28476157
    [Google Scholar]
  18. BhusalA. AfridiR. LeeW.H. SukK. Bidirectional communication between microglia and astrocytes in neuroinflammation.Curr. Neuropharmacol.202321102020202910.2174/1570159X21666221129121715 36453496
    [Google Scholar]
  19. GinhouxF. GreterM. LeboeufM. NandiS. SeeP. GokhanS. MehlerM.F. ConwayS.J. NgL.G. StanleyE.R. SamokhvalovI.M. MeradM. Fate mapping analysis reveals that adult microglia derive from primitive macrophages.Science2010330600584184510.1126/science.1194637 20966214
    [Google Scholar]
  20. GaraschukO. VerkhratskyA. Physiology of microglia.Methods Mol. Biol.20192034274010.1007/978‑1‑4939‑9658‑2_3 31392675
    [Google Scholar]
  21. NayakD. RothT.L. McGavernD.B. Microglia development and function.Annu. Rev. Immunol.201432136740210.1146/annurev‑immunol‑032713‑120240 24471431
    [Google Scholar]
  22. FrancoR. Fernández-SuárezD. Alternatively activated microglia and macrophages in the central nervous system.Prog. Neurobiol.2015131658610.1016/j.pneurobio.2015.05.003 26067058
    [Google Scholar]
  23. LaceyD.C. AchuthanA. FleetwoodA.J. DinhH. RoiniotisJ. ScholzG.M. ChangM.W. BeckmanS.K. CookA.D. HamiltonJ.A. Defining GM-CSF- and macrophage-CSF-dependent macrophage responses by in vitro models.J. Immunol.2012188115752576510.4049/jimmunol.1103426 22547697
    [Google Scholar]
  24. ZhaoH. GartonT. KeepR.F. HuaY. XiG. Microglia/macrophage polarization after experimental intracerebral hemorrhage.Transl. Stroke Res.20156640740910.1007/s12975‑015‑0428‑4 26446073
    [Google Scholar]
  25. HuX. LeakR.K. ShiY. SuenagaJ. GaoY. ZhengP. ChenJ. Microglial and macrophage polarization—new prospects for brain repair.Nat. Rev. Neurol.2015111566410.1038/nrneurol.2014.207 25385337
    [Google Scholar]
  26. LiuF. ChengX. ZhaoC. ZhangX. LiuC. ZhongS. LiuZ. LinX. QiuW. ZhangX. Single-cell mapping of brain myeloid cell subsets reveals key transcriptomic changes favoring neuroplasticity after ischemic stroke.Neurosci. Bull.2024401657810.1007/s12264‑023‑01109‑7 37755676
    [Google Scholar]
  27. KimS. LeeW. JoH. SonnS.K. JeongS.J. SeoS. SuhJ. JinJ. KweonH.Y. KimT.K. MoonS.H. JeonS. KimJ.W. KimY.R. LeeE.W. ShinH.K. ParkS.H. OhG.T. The antioxidant enzyme Peroxiredoxin-1 controls stroke-associated microglia against acute ischemic stroke.Redox Biol.20225410234710.1016/j.redox.2022.102347 35688114
    [Google Scholar]
  28. LaiA.Y. ToddK.G. Microglia in cerebral ischemia: Molecular actions and interactions.Can. J. Physiol. Pharmacol.2006841495910.1139/Y05‑143 16845890
    [Google Scholar]
  29. NakajimaK. KohsakaS. Microglia: Neuroprotective and neurotrophic cells in the central nervous system.Curr. Drug Targets Cardiovasc. Haematol. Disord.200441658410.2174/1568006043481284 15032653
    [Google Scholar]
  30. RupallaK. AllegriniP.R. SauerD. WiessnerC. Time course of microglia activation and apoptosis in various brain regions after permanent focal cerebral ischemia in mice.Acta Neuropathol.199896217217810.1007/s004010050878 9705133
    [Google Scholar]
  31. ItoD. TanakaK. SuzukiS. DemboT. FukuuchiY. Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain.Stroke20013251208121510.1161/01.STR.32.5.1208 11340235
    [Google Scholar]
  32. PeregoC. FumagalliS. De SimoniM.G. Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice.J. Neuroinflammation20118117410.1186/1742‑2094‑8‑174 22152337
    [Google Scholar]
  33. ZhuJ. CaoD. GuoC. LiuM. TaoY. ZhouJ. WangF. ZhaoY. WeiJ. ZhangY. FangW. LiY. Berberine facilitates angiogenesis against ischemic stroke through modulating microglial polarization via AMPK signaling.Cell. Mol. Neurobiol.201939675176810.1007/s10571‑019‑00675‑7 31020571
    [Google Scholar]
  34. HuX. LiP. GuoY. WangH. LeakR.K. ChenS. GaoY. ChenJ. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia.Stroke201243113063307010.1161/STROKEAHA.112.659656 22933588
    [Google Scholar]
  35. ShuZ.M. ShuX.D. LiH.Q. SunY. ShanH. SunX.Y. DuR.H. LuM. XiaoM. DingJ.H. HuG. GinkgolideB. Ginkgolide B protects against ischemic stroke via modulating microglia polarization in mice.CNS Neurosci. Ther.201622972973910.1111/cns.12577 27306494
    [Google Scholar]
  36. WangJ. DoréS. Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage.Brain200713061643165210.1093/brain/awm095 17525142
    [Google Scholar]
  37. XueM. Del BigioM.R. Intracerebral injection of autologous whole blood in rats: Time course of inflammation and cell death.Neurosci. Lett.2000283323023210.1016/S0304‑3940(00)00971‑X 10754230
    [Google Scholar]
  38. ZhaoX. SunG. ZhangJ. StrongR. SongW. GonzalesN. GrottaJ.C. AronowskiJ. Hematoma resolution as a target for intracerebral hemorrhage treatment: Role for peroxisome proliferator‐activated receptor γ in microglia/macrophages.Ann. Neurol.200761435236210.1002/ana.21097 17457822
    [Google Scholar]
  39. WeiJ. WangM. JingC. KeepR.F. HuaY. XiG. Multinucleated giant cells in experimental intracerebral hemorrhage.Transl. Stroke Res.20201151095110210.1007/s12975‑020‑00790‑4 32090277
    [Google Scholar]
  40. YangS.S. LinL. LiuY. WangJ. ChuJ. ZhangT. NingL.N. ShiY. FangY.Y. ZengP. WangJ.Z. QiuM.Y. TianQ. High morphologic plasticity of microglia/macrophages following experimental intracerebral hemorrhage in rats.Int. J. Mol. Sci.2016177118110.3390/ijms17071181 27455236
    [Google Scholar]
  41. WanS. ChengY. JinH. GuoD. HuaY. KeepR.F. XiG. Microglia activation and polarization after intracerebral hemorrhage in mice: The role of protease-activated receptor-1.Transl. Stroke Res.20167647848710.1007/s12975‑016‑0472‑8 27206851
    [Google Scholar]
  42. LanX. HanX. LiQ. LiQ. GaoY. ChengT. WanJ. ZhuW. WangJ. Pinocembrin protects hemorrhagic brain primarily by inhibiting toll-like receptor 4 and reducing M1 phenotype microglia.Brain Behav. Immun.20176132633910.1016/j.bbi.2016.12.012 28007523
    [Google Scholar]
  43. ZhengZ.V. LyuH. LamS.Y.E. LamP.K. PoonW.S. WongG.K.C. The dynamics of microglial polarization reveal the resident neuroinflammatory responses after subarachnoid hemorrhage.Transl. Stroke Res.202011343344910.1007/s12975‑019‑00728‑5 31628642
    [Google Scholar]
  44. GrisT. LaplanteP. ThebaultP. CayrolR. NajjarA. Joannette-PilonB. Brillant-MarquisF. MagroE. EnglishS.W. LapointeR. BojanowskiM. FrancoeurC.L. CailhierJ.F. Innate immunity activation in the early brain injury period following subarachnoid hemorrhage.J. Neuroinflammation201916125310.1186/s12974‑019‑1629‑7 31801576
    [Google Scholar]
  45. BodhankarS. LapatoA. ChenY. VandenbarkA.A. SaugstadJ.A. OffnerH. Role for microglia in sex differences after ischemic stroke: importance of M2.Metab. Brain Dis.20153061515152910.1007/s11011‑015‑9714‑9 26246072
    [Google Scholar]
  46. SuenagaJ. HuX. PuH. ShiY. HassanS.H. XuM. LeakR.K. StetlerR.A. GaoY. ChenJ. White matter injury and microglia/macrophage polarization are strongly linked with age-related long-term deficits in neurological function after stroke.Exp. Neurol.201527210911910.1016/j.expneurol.2015.03.021 25836044
    [Google Scholar]
  47. SofroniewM.V. Astrocyte reactivity: Subtypes, states, and functions in CNS Innate immunity.Trends Immunol.202041975877010.1016/j.it.2020.07.004 32819810
    [Google Scholar]
  48. LiuL. LiuJ. BaoJ. BaiQ. WangG. Interaction of microglia and astrocytes in the neurovascular unit.Front. Immunol.202011102410.3389/fimmu.2020.01024 32733433
    [Google Scholar]
  49. LiuZ. ChoppM. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke.Prog. Neurobiol.201614410312010.1016/j.pneurobio.2015.09.008 26455456
    [Google Scholar]
  50. PeknyM. WilhelmssonU. TatlisumakT. PeknaM. Astrocyte activation and reactive gliosis—A new target in stroke?Neurosci. Lett.2019689455510.1016/j.neulet.2018.07.021 30025833
    [Google Scholar]
  51. LugerS. WitschJ. DietzA. HamannG.F. MinnerupJ. SchneiderH. SitzerM. WartenbergK.E. NiessnerM. FoerchC. Glial fibrillary acidic protein serum levels distinguish between intracerebral hemorrhage and cerebral ischemia in the early phase of stroke.Clin. Chem.201763137738510.1373/clinchem.2016.263335 27881450
    [Google Scholar]
  52. KitchenP. SalmanM.M. HalseyA.M. Clarke-BlandC. MacDonaldJ.A. IshidaH. VogelH.J. AlmutiriS. LoganA. KreidaS. Al-JubairT. WinkelM.J. GourdonP. Törnroth-HorsefieldS. ConnerM.T. AhmedZ. ConnerA.C. BillR.M. Targeting aquaporin-4 subcellular localization to treat central nervous system edema.Cell20201814784799.e1910.1016/j.cell.2020.03.037 32413299
    [Google Scholar]
  53. ScimemiA. Astrocytes and the warning signs of intracerebral hemorrhagic stroke.Neural Plast.2018201811110.1155/2018/7301623 29531526
    [Google Scholar]
  54. LiddelowS.A. GuttenplanK.A. ClarkeL.E. BennettF.C. BohlenC.J. SchirmerL. BennettM.L. MünchA.E. ChungW.S. PetersonT.C. WiltonD.K. FrouinA. NapierB.A. PanickerN. KumarM. BuckwalterM.S. RowitchD.H. DawsonV.L. DawsonT.M. StevensB. BarresB.A. Neurotoxic reactive astrocytes are induced by activated microglia.Nature2017541763848148710.1038/nature21029 28099414
    [Google Scholar]
  55. Livne-BarI. WeiJ. LiuH.H. AlqawlaqS. WonG.J. TuccittoA. GronertK. FlanaganJ.G. SivakJ.M. Astrocyte-derived lipoxins A4 and B4 promote neuroprotection from acute and chronic injury.J. Clin. Invest.2017127124403441410.1172/JCI77398 29106385
    [Google Scholar]
  56. YuG. ZhangY. NingB. Reactive astrocytes in central nervous system injury: Subgroup and potential therapy.Front. Cell. Neurosci.20211579276410.3389/fncel.2021.792764 35002629
    [Google Scholar]
  57. ZhangQ. LiuC. ShiR. ZhouS. ShanH. DengL. ChenT. GuoY. ZhangZ. YangG.Y. WangY. TangY. Blocking C3d+/GFAP+ A1 astrocyte conversion with semaglutide attenuates blood-brain barrier disruption in mice after ischemic stroke.Aging Dis.202213394395910.14336/AD.2021.1029 35656116
    [Google Scholar]
  58. WangC. LiL. The critical role of KLF4 in regulating the activation of A1/A2 reactive astrocytes following ischemic stroke.J. Neuroinflammation20232014410.1186/s12974‑023‑02742‑9 36823628
    [Google Scholar]
  59. RakersC. SchleifM. BlankN. MatuškováH. UlasT. HändlerK. TorresS.V. SchumacherT. TaiK. SchultzeJ.L. JacksonW.S. PetzoldG.C. Stroke target identification guided by astrocyte transcriptome analysis.Glia201967461963310.1002/glia.23544 30585358
    [Google Scholar]
  60. FeiX. DouY. WangL. WuX. HuanY. WuS. HeX. LvW. WeiJ. FeiZ. Homer1 promotes the conversion of A1 astrocytes to A2 astrocytes and improves the recovery of transgenic mice after intracerebral hemorrhage.J. Neuroinflammation20221916710.1186/s12974‑022‑02428‑8 35287697
    [Google Scholar]
  61. ZhangL. GuoK. ZhouJ. ZhangX. YinS. PengJ. LiaoY. JiangY. Ponesimod protects against neuronal death by suppressing the activation of A1 astrocytes in early brain injury after experimental subarachnoid hemorrhage.J. Neurochem.2021158488089710.1111/jnc.15457 34143505
    [Google Scholar]
  62. MaM. LiH. WuJ. ZhangY. ShenH. LiX. WangZ. ChenG. Roles of prokineticin 2 in subarachnoid hemorrhage-induced early brain injury via regulation of phenotype polarization in astrocytes.Mol. Neurobiol.20205793744375810.1007/s12035‑020‑01990‑7 32572760
    [Google Scholar]
  63. PatabendigeA. SinghA. JenkinsS. SenJ. ChenR. Astrocyte activation in neurovascular damage and repair following ischaemic stroke.Int. J. Mol. Sci.2021228428010.3390/ijms22084280 33924191
    [Google Scholar]
  64. AndersonM.A. BurdaJ.E. RenY. AoY. O’SheaT.M. KawaguchiR. CoppolaG. KhakhB.S. DemingT.J. SofroniewM.V. Astrocyte scar formation aids central nervous system axon regeneration.Nature2016532759819520010.1038/nature17623 27027288
    [Google Scholar]
  65. GrisP. TigheA. LevinD. SharmaR. BrownA. Transcriptional regulation of scar gene expression in primary astrocytes.Glia200755111145115510.1002/glia.20537 17597120
    [Google Scholar]
  66. ChenS.H. OyarzabalE.A. SungY.F. ChuC.H. WangQ. ChenS.L. LuR.B. HongJ.S. Microglial regulation of immunological and neuroprotective functions of astroglia.Glia201563111813110.1002/glia.22738 25130274
    [Google Scholar]
  67. LiddelowS.A. BarresB.A. Reactive astrocytes: Production, function, and therapeutic potential.Immunity201746695796710.1016/j.immuni.2017.06.006 28636962
    [Google Scholar]
  68. HuangY. ChenS. LuoY. HanZ. Crosstalk between inflammation and the BBB in stroke.Curr. Neuropharmacol.202018121227123610.2174/1570159X18666200620230321 32562523
    [Google Scholar]
  69. DejanovicB. WuT. TsaiM.C. GraykowskiD. GandhamV.D. RoseC.M. BakalarskiC.E. NguH. WangY. PandeyS. RezzonicoM.G. FriedmanB.A. EdmondsR. De MazièreA. Rakosi-SchmidtR. SinghT. KlumpermanJ. ForemanO. ChangM.C. XieL. ShengM. HansonJ.E. Complement C1q-dependent excitatory and inhibitory synapse elimination by astrocytes and microglia in Alzheimer’s disease mouse models.Nat. Aging20222983785010.1038/s43587‑022‑00281‑1 37118504
    [Google Scholar]
  70. TangS. HuW. ZouH. LuoQ. DengW. CaoS. The complement system: A potential target for the comorbidity of chronic pain and depression.Korean J. Pain20243729110610.3344/kjp.23284 38433474
    [Google Scholar]
  71. IramT. Ramirez-OrtizZ. ByrneM.H. ColemanU.A. KingeryN.D. MeansT.K. FrenkelD. El KhouryJ. Megf10 is a receptor for C1Q that mediates clearance of apoptotic cells by astrocytes.J. Neurosci.201636195185519210.1523/JNEUROSCI.3850‑15.2016 27170117
    [Google Scholar]
  72. FärberK. CheungG. MitchellD. WallisR. WeiheE. SchwaebleW. KettenmannH. C1q, the recognition subcomponent of the classical pathway of complement, drives microglial activation.J. Neurosci. Res.200987364465210.1002/jnr.21875 18831010
    [Google Scholar]
  73. ZhangW. DingL. ChenH. ZhangM. MaR. ZhengS. GongJ. ZhangZ. XuH. XuP. ZhangY. Cntnap4 partial deficiency exacerbates α-synuclein pathology through astrocyte–microglia C3-C3aR pathway.Cell Death Dis.202314428510.1038/s41419‑023‑05807‑y 37087484
    [Google Scholar]
  74. KorimerlaN. WahlD.R. A complementary strategy to mitigate radiation-induced cognitive decline.Cancer Res.20218171635163610.1158/0008‑5472.CAN‑20‑4277 34003789
    [Google Scholar]
  75. HanischU.K. Microglia as a source and target of cytokines.Glia200240214015510.1002/glia.10161 12379902
    [Google Scholar]
  76. WagnerK.R. BeilerS. BeilerC. KirkmanJ. CaseyK. RobinsonT. LarnardD. de Courten-MyersG.M. LinkeM.J. ZuccarelloM. Delayed profound local brain hypothermia markedly reduces interleukin-1β gene expression and vasogenic edema development in a porcine model of intracerebral hemorrhage.Acta Neurochir. Suppl.20069617718210.1007/3‑211‑30714‑1_39 16671450
    [Google Scholar]
  77. ClausenB.H. LambertsenK.L. BabcockA.A. HolmT.H. Dagnaes-HansenF. FinsenB. Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice.J. Neuroinflammation2008514610.1186/1742‑2094‑5‑46 18947400
    [Google Scholar]
  78. FernandesA. BarateiroA. FalcãoA.S. SilvaS.L.A. VazA.R. BritoM.A. Marques SilvaR.F. BritesD. Astrocyte reactivity to unconjugated bilirubin requires TNF‐α and IL‐1β receptor signaling pathways.Glia2011591142510.1002/glia.21072 20967881
    [Google Scholar]
  79. GiulianD. YoungD.G. WoodwardJ. BrownD.C. LachmanL.B. Interleukin-1 is an astroglial growth factor in the developing brain.J. Neurosci.19888270971410.1523/JNEUROSCI.08‑02‑00709.1988 3257519
    [Google Scholar]
  80. PickeringM. CumiskeyD. O’ConnorJ.J. Actions of TNF‐α on glutamatergic synaptic transmission in the central nervous system.Exp. Physiol.200590566367010.1113/expphysiol.2005.030734 15944202
    [Google Scholar]
  81. VivianiB. BorasoM. MarchettiN. MarinovichM. Perspectives on neuroinflammation and excitotoxicity: A neurotoxic conspiracy?Neurotoxicology201443102010.1016/j.neuro.2014.03.004 24662010
    [Google Scholar]
  82. JiangG. LiX. LiuM. LiH. ShenH. liao, J.; You, W.; Fang, Q.; Chen, G. Remote ischemic postconditioning ameliorates stroke injury via the SDF-1α/CXCR4 signaling axis in rats.Brain Res. Bull.2023197314110.1016/j.brainresbull.2023.03.011 36990325
    [Google Scholar]
  83. ChiazzaF. TammenH. PintanaH. LietzauG. CollinoM. NyströmT. KleinT. DarsaliaV. PatroneC. The effect of DPP-4 inhibition to improve functional outcome after stroke is mediated by the SDF-1α/CXCR4 pathway.Cardiovasc. Diabetol.20181716010.1186/s12933‑018‑0702‑3 29776406
    [Google Scholar]
  84. BonaviaR. BajettoA. BarberoS. PiraniP. FlorioT. SchettiniG. Chemokines and their receptors in the CNS: Expression of CXCL12/SDF-1 and CXCR4 and their role in astrocyte proliferation.Toxicol. Lett.20031392-318118910.1016/S0378‑4274(02)00432‑0 12628753
    [Google Scholar]
  85. HickeyK.N. GrassiS.M. CaplanM.R. StabenfeldtS.E. Stromal cell-derived factor-1a autocrine/paracrine signaling contributes to spatiotemporal gradients in the brain.Cell. Mol. Bioeng.2021141758710.1007/s12195‑020‑00643‑y 33643467
    [Google Scholar]
  86. BezziP. DomercqM. BrambillaL. GalliR. ScholsD. De ClercqE. VescoviA. BagettaG. KolliasG. MeldolesiJ. VolterraA. CXCR4-activated astrocyte glutamate release via TNFα: Amplification by microglia triggers neurotoxicity.Nat. Neurosci.20014770271010.1038/89490 11426226
    [Google Scholar]
  87. YangF. LuoW.J. SunW. WangY. WangJ.L. YangF. LiC.L. WeiN. WangX.L. GuanS.M. ChenJ. SDF1-CXCR4 signaling maintains central post-stroke pain through mediation of glial-neuronal interactions.Front. Mol. Neurosci.20171022610.3389/fnmol.2017.00226 28785202
    [Google Scholar]
  88. HolmT.H. DraebyD. OwensT. Microglia are required for astroglial toll‐like receptor 4 response and for optimal TLR2 and TLR3 response.Glia201260463063810.1002/glia.22296 22271465
    [Google Scholar]
  89. van der BliekA.M. ShenQ. KawajiriS. Mechanisms of mitochondrial fission and fusion.Cold Spring Harb. Perspect. Biol.201356a01107210.1101/cshperspect.a011072 23732471
    [Google Scholar]
  90. HeM. WangX. LiuZ. CuiQ. ChenY. GengW. ZhuJ. ShenJ. CDK5 mediates proinflammatory effects of microglia through activated DRP1 phosphorylation in rat model of intracerebral hemorrhage.Dis. Markers202220221910.1155/2022/1919064 35795154
    [Google Scholar]
  91. HerstP.M. RoweM.R. CarsonG.M. BerridgeM.V. Functional mitochondria in health and disease.Front. Endocrinol.2017829610.3389/fendo.2017.00296 29163365
    [Google Scholar]
  92. LiaudanskayaV. FioreN.J. ZhangY. MiltonY. KellyM.F. CoeM. BarreiroA. RoseV.K. ShapiroM.R. MullisA.S. Shevzov-ZebrunA. Blurton-JonesM. WhalenM.J. SymesA.J. GeorgakoudiI. NielandT.J.F. KaplanD.L. Mitochondria dysregulation contributes to secondary neurodegeneration progression post-contusion injury in human 3D in vitro triculture brain tissue model.Cell Death Dis.202314849610.1038/s41419‑023‑05980‑0 37537168
    [Google Scholar]
  93. JoshiA.U. MinhasP.S. LiddelowS.A. HaileselassieB. AndreassonK.I. DornG.W.II Mochly-RosenD. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration.Nat. Neurosci.201922101635164810.1038/s41593‑019‑0486‑0 31551592
    [Google Scholar]
  94. LiuW. QiZ. LiW. LiangJ. ZhaoL. ShiY. M1 microglia induced neuronal injury on ischemic stroke via mitochondrial crosstalk between microglia and neurons.Oxid. Med. Cell. Longev.2022202211610.1155/2022/4335272 36478988
    [Google Scholar]
  95. LinY. ZhangJ-C. YaoC-Y. WuY. AbdelgawadA.F. YaoS-L. YuanS-Y. Critical role of astrocytic interleukin-17 A in post-stroke survival and neuronal differentiation of neural precursor cells in adult mice.Cell Death Dis.201676e227310.1038/cddis.2015.284 27336717
    [Google Scholar]
  96. DaiQ. LiS. LiuT. ZhengJ. HanS. QuA. LiJ. Interleukin‐17A‐mediated alleviation of cortical astrocyte ischemic injuries affected the neurological outcome of mice with ischemic stroke.J. Cell. Biochem.20191207114981150910.1002/jcb.28429 30746745
    [Google Scholar]
  97. YuA. DuanH. ZhangT. PanY. KouZ. ZhangX. LuY. WangS. YangZ. IL-17A promotes microglial activation and neuroinflammation in mouse models of intracerebral haemorrhage.Mol. Immunol.20167315115710.1016/j.molimm.2016.04.003 27107665
    [Google Scholar]
  98. ElainG. JeanneauK. RutkowskaA. MirA.K. DevK.K. The selective anti-IL17A monoclonal antibody secukinumab (AIN457) attenuates IL17A-induced levels of IL6 in human astrocytes.Glia201462572573510.1002/glia.22637 24677511
    [Google Scholar]
  99. ChenX. ZhangY. DingQ. HeY. LiH. Role of IL-17A in different stages of ischemic stroke.Int. Immunopharmacol.202311710992610.1016/j.intimp.2023.109926 37012860
    [Google Scholar]
  100. LiuG. GuoJ. LiuJ. WangZ. LiangD. Toll-like receptor signaling directly increases functional IL-17RA expression in neuroglial cells.Clin. Immunol.2014154212714010.1016/j.clim.2014.07.006 25076485
    [Google Scholar]
  101. LiS. DaiQ. YuJ. LiuT. LiuS. MaL. ZhangY. HanS. LiJ. Identification of IL-17A-derived neural cell type and dynamic changes of IL-17A in serum/CSF of mice with ischemic stroke.Neurol. Res.201739655255810.1080/01616412.2017.1315863 28441917
    [Google Scholar]
  102. MaL. PanX. ZhouF. LiuK. WangL. Hyperforin protects against acute cerebral ischemic injury through inhibition of interleukin-17A-mediated microglial activation.Brain Res.2018167825426110.1016/j.brainres.2017.08.023 28870826
    [Google Scholar]
  103. LiM. LiZ. YaoY. JinW.N. WoodK. LiuQ. ShiF.D. HaoJ. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity.Proc. Natl. Acad. Sci. USA20171143E396E40510.1073/pnas.1612930114 27994144
    [Google Scholar]
  104. Gómez-NicolaD. Valle-ArgosB. Pita-ThomasD.W. Nieto-SampedroM. Interleukin 15 expression in the CNS: Blockade of its activity prevents glial activation after an inflammatory injury.Glia200856549450510.1002/glia.20628 18240307
    [Google Scholar]
  105. LeeG.A. LinT.N. ChenC.Y. MauS.Y. HuangW.Z. KaoY.C. MaR. LiaoN.S. Interleukin 15 blockade protects the brain from cerebral ischemia-reperfusion injury.Brain Behav. Immun.20187356257010.1016/j.bbi.2018.06.021 29959050
    [Google Scholar]
  106. PereraL.P. GoldmanC.K. WaldmannT.A. IL-15 induces the expression of chemokines and their receptors in T lymphocytes.J. Immunol.199916252606261210.4049/jimmunol.162.5.2606 10072502
    [Google Scholar]
  107. BudagianV. BulanovaE. PausR. BulfonepausS. IL-15/IL-15 receptor biology: A guided tour through an expanding universe.Cytokine Growth Factor Rev.200617425928010.1016/j.cytogfr.2006.05.001 16815076
    [Google Scholar]
  108. StoklasekT.A. SchlunsK.S. LefrançoisL. Combined IL-15/IL-15Ralpha immunotherapy maximizes IL-15 activity in vivo.J. Immunol.200617796072608010.4049/jimmunol.177.9.6072 17056533
    [Google Scholar]
  109. LeeY.B. NagaiA. KimS.U. Cytokines, chemokines, and cytokine receptors in human microglia.J. Neurosci. Res.20026919410310.1002/jnr.10253 12111820
    [Google Scholar]
  110. ShiS.X. LiY.J. ShiK. WoodK. DucruetA.F. LiuQ. IL (Interleukin)-15 bridges astrocyte-microglia crosstalk and exacerbates brain injury following intracerebral hemorrhage.Stroke202051396797410.1161/STROKEAHA.119.028638 32019481
    [Google Scholar]
  111. MayoL. TraugerS.A. BlainM. NadeauM. PatelB. AlvarezJ.I. MascanfroniI.D. YesteA. KivisäkkP. KallasK. EllezamB. BakshiR. PratA. AntelJ.P. WeinerH.L. QuintanaF.J. Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation.Nat. Med.201420101147115610.1038/nm.3681 25216636
    [Google Scholar]
  112. KooijG. MizeeM.R. van HorssenJ. ReijerkerkA. WitteM.E. DrexhageJ.A.R. van der PolS.M.A. van het HofB. SchefferG. ScheperR. DijkstraC.D. van der ValkP. de VriesH.E. Adenosine triphosphate-binding cassette transporters mediate chemokine (C-C motif) ligand 2 secretion from reactive astrocytes: Relevance to multiple sclerosis pathogenesis.Brain2011134255557010.1093/brain/awq330 21183485
    [Google Scholar]
  113. TsukudaK. MogiM. IwanamiJ. MinL.J. JingF. OshimaK. HoriuchiM. Irbesartan attenuates ischemic brain damage by inhibition of MCP-1/CCR2 signaling pathway beyond AT1 receptor blockade.Biochem. Biophys. Res. Commun.2011409227527910.1016/j.bbrc.2011.04.142 21575596
    [Google Scholar]
  114. YaoY. TsirkaS.E. The CCL2‐CCR2 system affects the progression and clearance of intracerebral hemorrhage.Glia201260690891810.1002/glia.22323 22419223
    [Google Scholar]
  115. ZhangJ. ShiX.Q. EcheverryS. MogilJ.S. De KoninckY. RivestS. Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain.J. Neurosci.20072745123961240610.1523/JNEUROSCI.3016‑07.2007 17989304
    [Google Scholar]
  116. HeM. DongH. HuangY. LuS. ZhangS. QianY. JinW. Astrocyte-derived CCL2 is associated with M1 activation and recruitment of cultured microglial cells.Cell. Physiol. Biochem.201638385987010.1159/000443040 26910882
    [Google Scholar]
  117. WheelerM.A. ClarkI.C. TjonE.C. LiZ. ZandeeS.E.J. CouturierC.P. WatsonB.R. ScalisiG. AlkwaiS. RothhammerV. RotemA. HeymanJ.A. ThaplooS. SanmarcoL.M. RagoussisJ. WeitzD.A. PetreccaK. MoffittJ.R. BecherB. AntelJ.P. PratA. QuintanaF.J. MAFG-driven astrocytes promote CNS inflammation.Nature2020578779659359910.1038/s41586‑020‑1999‑0 32051591
    [Google Scholar]
  118. ParajuliB. SonobeY. KawanokuchiJ. DoiY. NodaM. TakeuchiH. MizunoT. SuzumuraA. GM-CSF increases LPS-induced production of proinflammatory mediators via upregulation of TLR4 and CD14 in murine microglia.J. Neuroinflammation20129126810.1186/1742‑2094‑9‑268 23234315
    [Google Scholar]
  119. McLayR. KimuraM. BanksW.A. KastinA.J. Granulocyte-macrophage colony-stimulating factor crosses the blood-- brain and blood-spinal cord barriers.Brain1997120112083209110.1093/brain/120.11.2083 9397023
    [Google Scholar]
  120. ReF. BelyanskayaS.L. RieseR.J. CiprianiB. FischerF.R. GranucciF. Ricciardi-CastagnoliP. BrosnanC. SternL.J. StromingerJ.L. SantambrogioL. Granulocyte-macrophage colony-stimulating factor induces an expression program in neonatal microglia that primes them for antigen presentation.J. Immunol.200216952264227310.4049/jimmunol.169.5.2264 12193691
    [Google Scholar]
  121. KimS. SonY. Astrocytes stimulate microglial proliferation and m2 polarization in vitro through crosstalk between astrocytes and microglia.Int. J. Mol. Sci.20212216880010.3390/ijms22168800 34445510
    [Google Scholar]
  122. GonzalezL.L. GarrieK. TurnerM.D. Role of S100 proteins in health and disease.Biochim. Biophys. Acta Mol. Cell Res.20201867611867710.1016/j.bbamcr.2020.118677 32057918
    [Google Scholar]
  123. KabadiS.V. StoicaB.A. ZimmerD.B. AfanadorL. DuffyK.B. LoaneD.J. FadenA.I. S100B inhibition reduces behavioral and pathologic changes in experimental traumatic brain injury.J. Cereb. Blood Flow Metab.201535122010202010.1038/jcbfm.2015.165 26154869
    [Google Scholar]
  124. XuJ. WangH. WonS.J. BasuJ. KapfhamerD. SwansonR.A. Microglial activation induced by the alarmin S100B is regulated by poly(ADP‐ribose) polymerase‐1.Glia201664111869187810.1002/glia.23026 27444121
    [Google Scholar]
  125. BianchiR. KastrisianakiE. GiambancoI. DonatoR. S100B protein stimulates microglia migration via RAGE-dependent up-regulation of chemokine expression and release.J. Biol. Chem.201128697214722610.1074/jbc.M110.169342 21209080
    [Google Scholar]
  126. ZhouS. ZhuW. ZhangY. PanS. BaoJ. S100B promotes microglia M1 polarization and migration to aggravate cerebral ischemia.Inflamm. Res.20186711-1293794910.1007/s00011‑018‑1187‑y 30229393
    [Google Scholar]
  127. CordeiroJ.L. NevesJ.D. NicolaF. VizueteA.F. SanchesE.F. GonçalvesC.A. NettoC.A. Arundic acid (ONO-2506) attenuates neuroinflammation and prevents motor impairment in rats with intracerebral hemorrhage.Cell. Mol. Neurobiol.202242373975110.1007/s10571‑020‑00964‑6 32918255
    [Google Scholar]
  128. Freitas-AndradeM. WangN. BechbergerJ.F. De BockM. LampeP.D. LeybaertL. NausC.C. Targeting MAPK phosphorylation of Connexin43 provides neuroprotection in stroke.J. Exp. Med.2019216491693510.1084/jem.20171452 30872361
    [Google Scholar]
  129. RetamalM.A. FrogerN. Palacios-PradoN. EzanP. SáezP.J. SáezJ.C. GiaumeC. Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia.J. Neurosci.20072750137811379210.1523/JNEUROSCI.2042‑07.2007 18077690
    [Google Scholar]
  130. VerderioC. MatteoliM. ATP mediates calcium signaling between astrocytes and microglial cells: modulation by IFN-gamma.J. Immunol.2001166106383639110.4049/jimmunol.166.10.6383 11342663
    [Google Scholar]
  131. KimY. DavidsonJ.O. GreenC.R. NicholsonL.F.B. O’CarrollS.J. ZhangJ. Connexins and pannexins in cerebral ischemia.Biochim. Biophys. Acta Biomembr.20181860122423610.1016/j.bbamem.2017.03.018 28347700
    [Google Scholar]
  132. ArbeloaJ. Pérez-SamartínA. GottliebM. MatuteC. P2X7 receptor blockade prevents ATP excitotoxicity in neurons and reduces brain damage after ischemia.Neurobiol. Dis.201245395496110.1016/j.nbd.2011.12.014 22186422
    [Google Scholar]
  133. SperlághB. IllesP. P2X7 receptor: An emerging target in central nervous system diseases.Trends Pharmacol. Sci.2014351053754710.1016/j.tips.2014.08.002 25223574
    [Google Scholar]
  134. ChenY. LuanP. LiuJ. WeiY. WangC. WuR. WuZ. JingM. Spatiotemporally selective astrocytic ATP dynamics encode injury information sensed by microglia following brain injury in mice.Nat. Neurosci.20242781522153310.1038/s41593‑024‑01680‑w 38862791
    [Google Scholar]
  135. GoemaereJ. KnoopsB. Peroxiredoxin distribution in the mouse brain with emphasis on neuronal populations affected in neurodegenerative disorders.J. Comp. Neurol.2012520225828010.1002/cne.22689 21674491
    [Google Scholar]
  136. AsuniA.A. GuridiM. SanchezS. SadowskiM.J. Antioxidant peroxiredoxin 6 protein rescues toxicity due to oxidative stress and cellular hypoxia in vitro, and attenuates prion-related pathology in vivo.Neurochem. Int.20159015216510.1016/j.neuint.2015.08.006 26265052
    [Google Scholar]
  137. YuS. WangX. LeiS. ChenX. LiuY. ZhouY. ZhouY. WuJ. ZhaoY. Sulfiredoxin-1 protects primary cultured astrocytes from ischemia-induced damage.Neurochem. Int.201582192710.1016/j.neuint.2015.01.005 25620665
    [Google Scholar]
  138. ShanshanY. BeibeiJ. LiT. MinnaG. ShipengL. LiP. YongZ. Phospholipase A2 of peroxiredoxin 6 plays a critical role in cerebral ischemia/reperfusion inflammatory injury.Front. Cell. Neurosci.2017119910.3389/fncel.2017.00099 28424593
    [Google Scholar]
  139. PengL. JiY. LiY. YouY. ZhouY. PRDX6-iPLA2 aggravates neuroinflammation after ischemic stroke via regulating astrocytes-induced M1 microglia.Cell Commun. Signal.20242217610.1186/s12964‑024‑01476‑2 38287382
    [Google Scholar]
  140. SaraivaM. O’GarraA. The regulation of IL-10 production by immune cells.Nat. Rev. Immunol.201010317018110.1038/nri2711 20154735
    [Google Scholar]
  141. PiepkeM. ClausenB.H. LudewigP. VienhuesJ.H. BedkeT. JavidiE. RissiekB. JankL. BrockmannL. SandrockI. DegenhardtK. JanderA. RothV. SchädlichI.S. PrinzI. FlavellR.A. KobayashiY. RennéT. GerloffC. HuberS. MagnusT. GelderblomM. Interleukin-10 improves stroke outcome by controlling the detrimental Interleukin-17A response.J. Neuroinflammation202118126510.1186/s12974‑021‑02316‑7 34772416
    [Google Scholar]
  142. BugbeeE. WangA.A. GommermanJ.L. Under the influence: environmental factors as modulators of neuroinflammation through the IL-10/IL-10R axis.Front. Immunol.202314118875010.3389/fimmu.2023.1188750 37600781
    [Google Scholar]
  143. LiQ. LanX. HanX. DurhamF. WanJ. WeilandA. KoehlerR.C. WangJ. Microglia-derived interleukin-10 accelerates post-intracerebral hemorrhage hematoma clearance by regulating CD36.Brain Behav. Immun.20219443745710.1016/j.bbi.2021.02.001 33588074
    [Google Scholar]
  144. NayakA.R. KashyapR.S. PurohitH.J. KabraD. TaoriG.M. DaginawalaH.F. Evaluation of the inflammatory response in sera from acute ischemic stroke patients by measurement of IL-2 and IL-10.Inflamm. Res.2009581068769110.1007/s00011‑009‑0036‑4 19340396
    [Google Scholar]
  145. WorthmannH. TrycA.B. DirksM. SchuppnerR. BrandK. KlawonnF. LichtinghagenR. WeissenbornK. Lipopolysaccharide binding protein, interleukin-10, interleukin-6 and C-reactive protein blood levels in acute ischemic stroke patients with post-stroke infection.J. Neuroinflammation20151211310.1186/s12974‑014‑0231‑2 25613713
    [Google Scholar]
  146. NordenD.M. FennA.M. DuganA. GodboutJ.P. TGFβ produced by IL‐10 redirected astrocytes attenuates microglial activation.Glia201462688189510.1002/glia.22647 24616125
    [Google Scholar]
  147. WuW. LuoZ. ShenD. LanT. XiaoZ. LiuM. HuL. SunT. WangY. ZhangJ.N. ZhangC. WangP. LuY. YangF. LiQ. IL-10 protects against OPC ferroptosis by regulating lipid reactive oxygen species levels post stroke.Redox Biol.20246910298210.1016/j.redox.2023.102982 38070317
    [Google Scholar]
  148. FernandezA.M. Torres-AlemánI. The many faces of insulin-like peptide signalling in the brain.Nat. Rev. Neurosci.201213422523910.1038/nrn3209 22430016
    [Google Scholar]
  149. ZhuW. FanY. HaoQ. ShenF. HashimotoT. YangG.Y. GasmiM. BartusR.T. YoungW.L. ChenY. Postischemic IGF-1 gene transfer promotes neurovascular regeneration after experimental stroke.J. Cereb. Blood Flow Metab.20092991528153710.1038/jcbfm.2009.75 19513085
    [Google Scholar]
  150. SuhH.S. ZhaoM.L. DericoL. ChoiN. LeeS.C. Insulin-like growth factor 1 and 2 (IGF1, IGF2) expression in human microglia: differential regulation by inflammatory mediators.J. Neuroinflammation201310180510.1186/1742‑2094‑10‑37 23497056
    [Google Scholar]
  151. ZhengJ. WuH. WangX. ZhangG. LuJ. XuW. XuS. FangY. ZhangA. ShaoA. ChenS. ZhaoZ. ZhangJ. YuJ. Temporal dynamics of microglia-astrocyte interaction in neuroprotective glial scar formation after intracerebral hemorrhage.J. Pharm. Anal.202313886287910.1016/j.jpha.2023.02.007 37719195
    [Google Scholar]
  152. PengJ. YuZ. XiaoR. HuX. XiaY. Exosomal ZEB1 derived from neural stem cells reduces inflammation injury in OGD/R-treated microglia via the GPR30-TLR4-NF-κB Axis.Neurochem. Res.20234861811182110.1007/s11064‑023‑03866‑3 36717511
    [Google Scholar]
  153. de BarriosO. Sanchez-MoralL. CortésM. NinfaliC. Profitós-PelejàN. Martínez-CampanarioM.C. SilesL. del CampoR. Fernández-AceñeroM.J. DarlingD.S. CastellsA. MaurelJ. SalasA. DeanD.C. PostigoA. ZEB1 promotes inflammation and progression towards inflammation-driven carcinoma through repression of the DNA repair glycosylase MPG in epithelial cells.Gut201968122129214110.1136/gutjnl‑2018‑317294 31366457
    [Google Scholar]
  154. PoonakiE. KahlertU.D. MeuthS.G. GorjiA. The role of the ZEB1–neuroinflammation axis in CNS disorders.J. Neuroinflammation202219127510.1186/s12974‑022‑02636‑2 36402997
    [Google Scholar]
  155. BuiT. SequeiraJ. WenT.C. SolaA. HigashiY. KondohH. GenettaT. ZEB1 links p63 and p73 in a novel neuronal survival pathway rapidly induced in response to cortical ischemia.PLoS One200942e437310.1371/journal.pone.0004373 19194497
    [Google Scholar]
  156. LiD. LangW. ZhouC. WuC. ZhangF. LiuQ. YangS. HaoJ. Upregulation of microglial ZEB1 ameliorates brain damage after acute ischemic stroke.Cell Rep.201822133574358610.1016/j.celrep.2018.03.011 29590624
    [Google Scholar]
  157. PanY. LiuY. WeiW. YangX. WangZ. XinW. Extracellular vesicles as delivery shippers for noncoding RNA‐based modulation of angiogenesis: Insights from ischemic stroke and cancer.Small20231917220573910.1002/smll.202205739 36592424
    [Google Scholar]
  158. WilsonC.M. BelkozhayevA.M. Al-YozbakiM. GeorgeA. Ye NiyazovaR. SharipovK.O. ByrneL.J. Extracellular vesicles, stem cells and the role of miRNAs in neurodegeneration.Curr. Neuropharmacol.20222081450147810.2174/1570159X19666210817150141 34414870
    [Google Scholar]
  159. LiZ. SongY. HeT. WenR. LiY. ChenT. HuangS. WangY. TangY. ShenF. TianH.L. YangG.Y. ZhangZ. M2 microglial small extracellular vesicles reduce glial scar formation via the miR-124/STAT3 pathway after ischemic stroke in mice.Theranostics20211131232124810.7150/thno.48761 33391532
    [Google Scholar]
  160. XinW. PanY. WeiW. TatenhorstL. GrafI. Popa-WagnerA. GernerS.T. HuberS. KilicE. HermannD.M. BährM. HuttnerH.B. DoeppnerT.R. Preconditioned extracellular vesicles from hypoxic microglia reduce poststroke AQP4 depolarization, disturbed cerebrospinal fluid flow, astrogliosis, and neuroinflammation.Theranostics202313124197421610.7150/thno.84059 37554272
    [Google Scholar]
  161. HanP. MiW.L. WangY.Q. Research progress on interleukin-33 and its roles in the central nervous system.Neurosci. Bull.201127535135710.1007/s12264‑011‑1025‑5 21934731
    [Google Scholar]
  162. SchmitzJ. OwyangA. OldhamE. SongY. MurphyE. McClanahanT.K. ZurawskiG. MoshrefiM. QinJ. LiX. GormanD.M. BazanJ.F. KasteleinR.A. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines.Immunity200523547949010.1016/j.immuni.2005.09.015 16286016
    [Google Scholar]
  163. GadaniS.P. WalshJ.T. SmirnovI. ZhengJ. KipnisJ. The glia-derived alarmin IL-33 orchestrates the immune response and promotes recovery following CNS injury.Neuron201585470370910.1016/j.neuron.2015.01.013 25661185
    [Google Scholar]
  164. WicherG. WallenquistU. LeiY. EnokssonM. LiX. FuchsB. Abu HamdehS. MarklundN. HilleredL. NilssonG. Forsberg-NilssonK. Interleukin-33 promotes recruitment of microglia/macrophages in response to traumatic brain injury.J. Neurotrauma201734223173318210.1089/neu.2016.4900 28490277
    [Google Scholar]
  165. YangD. SunY. LinD. LiS. ZhangY. WuA. WeiC. Interleukin-33 ameliorates perioperative neurocognitive disorders by modulating microglial state.Neuropharmacology202425310998210.1016/j.neuropharm.2024.109982 38701943
    [Google Scholar]
  166. NguyenP.T. DormanL.C. PanS. VainchteinI.D. HanR.T. Nakao-InoueH. TalomaS.E. BarronJ.J. MolofskyA.B. KheirbekM.A. MolofskyA.V. Microglial remodeling of the extracellular matrix promotes synapse plasticity.Cell20201822388403.e1510.1016/j.cell.2020.05.050 32615087
    [Google Scholar]
  167. GaoY. MaL. LuoC. WangT. ZhangM. ShenX. MengH. JiM. WangZ. ChenX. TaoL. IL-33 exerts neuroprotective effect in mice intracerebral hemorrhage model through suppressing inflammation/apoptotic/autophagic pathway.Mol. Neurobiol.20175453879389210.1007/s12035‑016‑9947‑6 27405469
    [Google Scholar]
  168. XieD. LiuH. XuF. SuW. YeQ. YuF. AustinT.J. ChenJ. HuX. IL33 (Interleukin 33)/ST2 (Interleukin 1 Receptor-Like 1) axis drives protective microglial responses and promotes white matter integrity after stroke.Stroke20215262150216110.1161/STROKEAHA.120.032444 33902297
    [Google Scholar]
  169. YangY. LiuH. ZhangH. YeQ. WangJ. YangB. MaoL. ZhuW. LeakR.K. XiaoB. LuB. ChenJ. HuX. ST2/IL-33-dependent microglial response limits acute ischemic brain injury.J. Neurosci.201737184692470410.1523/JNEUROSCI.3233‑16.2017 28389473
    [Google Scholar]
  170. HanS. LoneM.A. SchneiterR. ChangA. Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control.Proc. Natl. Acad. Sci. USA2010107135851585610.1073/pnas.0911617107 20212121
    [Google Scholar]
  171. LuoZ. LeiH. SunY. LiuX. SuD.F. Orosomucoid, an acute response protein with multiple modulating activities.J. Physiol. Biochem.201571232934010.1007/s13105‑015‑0389‑9 25711902
    [Google Scholar]
  172. WanJ.J. WangP.Y. ZhangY. QinZ. SunY. HuB.H. SuD.F. XuD.P. LiuX. Role of acute‐phase protein ORM in a mice model of ischemic stroke.J. Cell. Physiol.201923411205332054510.1002/jcp.28653 31026065
    [Google Scholar]
  173. JoM. KimJ.H. SongG.J. SeoM. HwangE.M. SukK. Astrocytic orosomucoid-2 modulates microglial activation and neuroinflammation.J. Neurosci.201737112878289410.1523/JNEUROSCI.2534‑16.2017 28193696
    [Google Scholar]
  174. LiuX. LvX. LiuZ. ZhangM. LengY. MircoRNA-29a in astrocyte-derived extracellular vesicles suppresses brain ischemia reperfusion injury via TP53INP1 and the NF-κB/NLRP3 axis.Cell. Mol. Neurobiol.20224251487150010.1007/s10571‑021‑01040‑3 33620674
    [Google Scholar]
  175. LongX. YaoX. JiangQ. YangY. HeX. TianW. ZhaoK. ZhangH. Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury.J. Neuroinflammation20201718910.1186/s12974‑020‑01761‑0 32192523
    [Google Scholar]
  176. QianY. LiX. LiG. LiuH. LiQ. LiuX. ZhangY. HeZ. ZhaoY. FanH. Astrocyte-derived exosomal miR-148a-3p suppresses neuroinflammation and restores neurological function in traumatic brain injury by regulating the microglial phenotype.eNeuro2024112ENEURO.0336-23.202410.1523/ENEURO.0336‑23.2024
    [Google Scholar]
  177. HayakawaK. EspositoE. WangX. TerasakiY. LiuY. XingC. JiX. LoE.H. Transfer of mitochondria from astrocytes to neurons after stroke.Nature2016535761355155510.1038/nature18928 27466127
    [Google Scholar]
  178. JungJ.E. SunG. Bautista GarridoJ. ObertasL. MobleyA.S. TingS.M. ZhaoX. AronowskiJ. The mitochondria-derived peptide humanin improves recovery from intracerebral hemorrhage: Implication of mitochondria transfer and microglia phenotype change.J. Neurosci.202040102154216510.1523/JNEUROSCI.2212‑19.2020 31980585
    [Google Scholar]
  179. TashiroR. Bautista-GarridoJ. OzakiD. SunG. ObertasL. MobleyA.S. KimG.S. AronowskiJ. JungJ.E. Transplantation of astrocytic mitochondria modulates neuronal antioxidant defense and neuroplasticity and promotes functional recovery after intracerebral hemorrhage.J. Neurosci.202242367001701410.1523/JNEUROSCI.2222‑21.2022 35970559
    [Google Scholar]
  180. Perez-de-PuigI. Miró-MurF. Ferrer-FerrerM. GelpiE. PedragosaJ. JusticiaC. UrraX. ChamorroA. PlanasA.M. Neutrophil recruitment to the brain in mouse and human ischemic stroke.Acta Neuropathol.2015129223925710.1007/s00401‑014‑1381‑0 25548073
    [Google Scholar]
  181. Soto-DíazK. JudaM.B. BlackmoreS. WalshC. SteelmanA.J. TAK1 inhibition in mouse astrocyte cultures ameliorates cytokine‐induced chemokine production and neutrophil migration.J. Neurochem.2020152669770910.1111/jnc.14930 31782806
    [Google Scholar]
  182. QianH. ZhangH.N. GaoT. WangX.S. WangX. YuM.Y. LiM.K. HuangJ. Upregulation of TRPC1 in microglia promotes neutrophil infiltration after ischemic stroke.Brain Res. Bull.202420811089410.1016/j.brainresbull.2024.110894 38325758
    [Google Scholar]
  183. CuarteroM.I. BallesterosI. MoragaA. NombelaF. VivancosJ. HamiltonJ.A. CorbíÁ.L. LizasoainI. MoroM.A. N2 neutrophils, novel players in brain inflammation after stroke: Modulation by the PPARγ agonist rosiglitazone.Stroke201344123498350810.1161/STROKEAHA.113.002470 24135932
    [Google Scholar]
  184. KimY.R. KimY.M. LeeJ. ParkJ. LeeJ.E. HyunY.M. Neutrophils return to bloodstream through the brain blood vessel after crosstalk with microglia during LPS-induced neuroinflammation.Front. Cell Dev. Biol.2020861373310.3389/fcell.2020.613733 33364241
    [Google Scholar]
  185. CaiW. LiuS. HuM. HuangF. ZhuQ. QiuW. HuX. ColelloJ. ZhengS.G. LuZ. Functional dynamics of neutrophils after ischemic stroke.Transl. Stroke Res.202011110812110.1007/s12975‑019‑00694‑y 30847778
    [Google Scholar]
  186. Otxoa-de-AmezagaA. Miró-MurF. PedragosaJ. GallizioliM. JusticiaC. Gaja-CapdevilaN. Ruíz-JaenF. Salas-PerdomoA. BoschA. CalvoM. Márquez-KisinouskyL. DenesA. GunzerM. PlanasA.M. Microglial cell loss after ischemic stroke favors brain neutrophil accumulation.Acta Neuropathol.2019137232134110.1007/s00401‑018‑1954‑4 30580383
    [Google Scholar]
  187. ZhaoX. TingS.M. LiuC.H. SunG. KruzelM. Roy-O’ReillyM. AronowskiJ. Neutrophil polarization by IL-27 as a therapeutic target for intracerebral hemorrhage.Nat. Commun.20178160210.1038/s41467‑017‑00770‑7 28928459
    [Google Scholar]
  188. Miró-MurF. Pérez-de-PuigI. Ferrer-FerrerM. UrraX. JusticiaC. ChamorroA. PlanasA.M. Immature monocytes recruited to the ischemic mouse brain differentiate into macrophages with features of alternative activation.Brain Behav. Immun.201653183310.1016/j.bbi.2015.08.010 26275369
    [Google Scholar]
  189. FangW. ZhaiX. HanD. XiongX. WangT. ZengX. HeS. LiuR. MiyataM. XuB. ZhaoH. CCR2-dependent monocytes/macrophages exacerbate acute brain injury but promote functional recovery after ischemic stroke in mice.Theranostics20188133530354310.7150/thno.24475 30026864
    [Google Scholar]
  190. ParkJ. KimJ.Y. KimY.R. HuangM. ChangJ.Y. SimA.Y. JungH. LeeW.T. HyunY.M. LeeJ.E. Reparative system arising from CCR2(+) monocyte conversion attenuates neuroinflammation following ischemic stroke.Transl. Stroke Res.202112587989310.1007/s12975‑020‑00878‑x 33409730
    [Google Scholar]
  191. GliemM. KrammesK. LiawL. van RooijenN. HartungH.P. JanderS. Macrophage-derived osteopontin induces reactive astrocyte polarization and promotes re-establishment of the blood brain barrier after ischemic stroke.Glia201563122198220710.1002/glia.22885 26148976
    [Google Scholar]
  192. OrtegaS.B. NoorbhaiI. PoinsatteK. KongX. AndersonA. MonsonN.L. StoweA.M. Stroke induces a rapid adaptive autoimmune response to novel neuronal antigens.Discov. Med.201519106381392 26105701
    [Google Scholar]
  193. DolatiS. AhmadiM. KhaliliM. TaheraghdamA.A. SiahmansouriH. BabalooZ. Aghebati-MalekiL. Jadidi-NiaraghF. YounesiV. YousefiM. Peripheral Th17/Treg imbalance in elderly patients with ischemic stroke.Neurol. Sci.201839464765410.1007/s10072‑018‑3250‑4 29353353
    [Google Scholar]
  194. ShiZ. YuP. LinW.J. ChenS. HuX. ChenS. ChengJ. LiuQ. YangY. LiS. ZhangZ. XieJ. JiangJ. HeB. LiY. LiH. XuY. ZengJ. HuangJ. MeiJ. CaiJ. ChenJ. WuL.J. KoH. TangY. Microglia drive transient insult-induced brain injury by chemotactic recruitment of CD8+ T lymphocytes.Neuron20231115696710.e910.1016/j.neuron.2022.12.009 36603584
    [Google Scholar]
  195. ItoM. KomaiK. Mise-OmataS. Iizuka-KogaM. NoguchiY. KondoT. SakaiR. MatsuoK. NakayamaT. YoshieO. NakatsukasaH. ChikumaS. ShichitaT. YoshimuraA. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery.Nature2019565773824625010.1038/s41586‑018‑0824‑5 30602786
    [Google Scholar]
  196. ShuL. XuC. YanZ.Y. YanY. JiangS.Z. WangY.R. Post-stroke microglia induce sirtuin2 expression to suppress the anti-inflammatory function of infiltrating regulatory T cells.Inflammation20194261968197910.1007/s10753‑019‑01057‑3 31297748
    [Google Scholar]
  197. ArunachalamP. LudewigP. MelichP. ArumugamT.V. GerloffC. PrinzI. MagnusT. GelderblomM. CCR6 (CC chemokine receptor 6) is essential for the migration of detrimental natural interleukin-17–producing γδ T cells in stroke.Stroke20174871957196510.1161/STROKEAHA.117.016753 28611085
    [Google Scholar]
  198. MoY. XuW. FuK. ChenH. WenJ. HuangQ. GuoF. MoL. YanJ. The dual function of microglial polarization and its treatment targets in ischemic stroke.Front. Neurol.20221392170510.3389/fneur.2022.921705 36212660
    [Google Scholar]
  199. YangS. WangH. YangY. WangR. WangY. WuC. DuG. Baicalein administered in the subacute phase ameliorates ischemia-reperfusion-induced brain injury by reducing neuroinflammation and neuronal damage.Biomed. Pharmacother.201911710910210.1016/j.biopha.2019.109102 31228802
    [Google Scholar]
  200. WangQ. LvC. SunY. HanX. WangS. MaoZ. XinY. ZhangB. The role of alpha-lipoic acid in the pathomechanism of acute ischemic stroke.Cell. Physiol. Biochem.2018481425310.1159/000491661 29996116
    [Google Scholar]
  201. ShiH. ZhengK. SuZ. SuH. ZhongM. HeX. ZhouC. ChenH. XiongQ. ZhangY. Sinomenine enhances microglia M2 polarization and attenuates inflammatory injury in intracerebral hemorrhage.J. Neuroimmunol.2016299283410.1016/j.jneuroim.2016.08.010 27725118
    [Google Scholar]
  202. ChenW. GuoC. HuangS. JiaZ. WangJ. ZhongJ. GeH. YuanJ. ChenT. LiuX. HuR. YinY. FengH. MitoQ attenuates brain damage by polarizing microglia towards the M2 phenotype through inhibition of the NLRP3 inflammasome after ICH.Pharmacol. Res.202016110512210.1016/j.phrs.2020.105122 32791262
    [Google Scholar]
  203. WangW. RedeckerC. YuZ.Y. XieM.J. TianD.S. ZhangL. BuB.T. WitteO.W. Rat focal cerebral ischemia induced astrocyte proliferation and delayed neuronal death are attenuated by cyclin-dependent kinase inhibition.J. Clin. Neurosci.200815327828510.1016/j.jocn.2007.02.004 18207409
    [Google Scholar]
  204. SunC. LinL. YinL. HaoX. TianJ. ZhangX. RenY. LiC. YangY. Acutely inhibiting AQP4 With TGN-020 improves functional outcome by attenuating edema and peri-infarct astrogliosis after cerebral ischemia.Front. Immunol.20221387002910.3389/fimmu.2022.870029 35592320
    [Google Scholar]
  205. YangY. YiJ. PanM. HuB. DuanH. Edaravone alleviated propofol‐induced neural injury in developing rats by BDNF/TrkB pathway.J. Cell. Mol. Med.202125114974498710.1111/jcmm.16422 33932098
    [Google Scholar]
  206. NiX.C. WangH.F. CaiY.Y. YangD. AlolgaR.N. LiuB. LiJ. HuangF.Q. Ginsenoside Rb1 inhibits astrocyte activation and promotes transfer of astrocytic mitochondria to neurons against ischemic stroke.Redox Biol.20225410236310.1016/j.redox.2022.102363 35696763
    [Google Scholar]
  207. SongX. GongZ. LiuK. KouJ. LiuB. LiuK. Baicalin combats glutamate excitotoxicity via protecting glutamine synthetase from ROS-induced 20S proteasomal degradation.Redox Biol.20203410155910.1016/j.redox.2020.101559 32473460
    [Google Scholar]
  208. CaoJ. DongL. LuoJ. ZengF. HongZ. LiuY. ZhaoY. XiaZ. ZuoD. XuL. TaoT. Supplemental N‐3 polyunsaturated fatty acids limit A1‐specific astrocyte polarization via attenuating mitochondrial dysfunction in ischemic stroke in mice.Oxid. Med. Cell. Longev.202120211552470510.1155/2021/5524705 34211624
    [Google Scholar]
  209. JinW.N. ShiS.X.Y. LiZ. LiM. WoodK. GonzalesR.J. LiuQ. Depletion of microglia exacerbates postischemic inflammation and brain injury.J. Cereb. Blood Flow Metab.20173762224223610.1177/0271678X17694185 28273719
    [Google Scholar]
  210. Marino LeeS. HudobenkoJ. McCulloughL.D. ChauhanA. Microglia depletion increase brain injury after acute ischemic stroke in aged mice.Exp. Neurol.202133611353010.1016/j.expneurol.2020.113530 33221396
    [Google Scholar]
  211. LiT. ZhaoJ. GaoH. Depletion of Arg1-positive microglia/macrophages exacerbates cerebral ischemic damage by facilitating the inflammatory response.Int. J. Mol. Sci.202223211305510.3390/ijms232113055 36361836
    [Google Scholar]
  212. ZeyenT. NoristaniR. HabibS. HeinischO. SlowikA. HuberM. SchulzJ.B. ReichA. HabibP. Microglial-specific depletion of TAK1 is neuroprotective in the acute phase after ischemic stroke.J. Mol. Med.202098683384710.1007/s00109‑020‑01916‑9 32382778
    [Google Scholar]
  213. LiM. LiZ. RenH. JinW.N. WoodK. LiuQ. ShethK.N. ShiF.D. Colony stimulating factor 1 receptor inhibition eliminates microglia and attenuates brain injury after intracerebral hemorrhage.J. Cereb. Blood Flow Metab.20173772383239510.1177/0271678X16666551 27596835
    [Google Scholar]
  214. WangQ. DingH. ChenS. LiuX. DengY. JiangW. LiY. HuangL. HanY. WenM. WangM. ZengH. Hypertonic saline mediates the NLRP3/IL‐1β signaling axis in microglia to alleviate ischemic blood‐brain barrier permeability by downregulating astrocyte‐derived VEGF in rats.CNS Neurosci. Ther.202026101045105710.1111/cns.13427 32529750
    [Google Scholar]
  215. ZhengJ. LuJ. MeiS. WuH. SunZ. FangY. XuS. WangX. ShiL. XuW. ChenS. YuJ. LiangF. ZhangJ. Ceria nanoparticles ameliorate white matter injury after intracerebral hemorrhage: Microglia-astrocyte involvement in remyelination.J. Neuroinflammation20211814310.1186/s12974‑021‑02101‑6 33588866
    [Google Scholar]
  216. TakeiR. NakashimaM. GotohM. EndoM. HashimotoK. MiyamotoY. Murakami-MurofushiK. 2-carba-cyclic phosphatidic acid modulates astrocyte-to-microglia communication and influences microglial polarization towards an anti-inflammatory phenotype.Neurosci. Lett.202379713706310.1016/j.neulet.2023.137063 36634888
    [Google Scholar]
  217. KanoS. ChoiE.Y. DohiE. AgarwalS. ChangD.J. WilsonA.M. LoB.D. RoseI.V.L. GonzalezS. ImaiT. SawaA. Glutathione S-transferases promote proinflammatory astrocyte-microglia communication during brain inflammation.Sci. Signal.201912569eaar212410.1126/scisignal.aar2124 30783009
    [Google Scholar]
  218. SavianoA. HendersonN.C. BaumertT.F. Single-cell genomics and spatial transcriptomics: Discovery of novel cell states and cellular interactions in liver physiology and disease biology.J. Hepatol.20207351219123010.1016/j.jhep.2020.06.004 32534107
    [Google Scholar]
  219. SmajićS. Prada-MedinaC.A. LandoulsiZ. GhelfiJ. DelcambreS. DietrichC. JarazoJ. HenckJ. BalachandranS. PachchekS. MorrisC.M. AntonyP. TimmermannB. SauerS. PereiraS.L. SchwambornJ.C. MayP. GrünewaldA. SpielmannM. Single-cell sequencing of human midbrain reveals glial activation and a Parkinson-specific neuronal state.Brain2022145396497810.1093/brain/awab446 34919646
    [Google Scholar]
  220. AkbarM. MacDonaldL. CroweL.A.N. CarlbergK. Kurowska-StolarskaM. StåhlP.L. SnellingS.J.B. McInnesI.B. MillarN.L. Single cell and spatial transcriptomics in human tendon disease indicate dysregulated immune homeostasis.Ann. Rheum. Dis.202180111494149710.1136/annrheumdis‑2021‑220256 34001518
    [Google Scholar]
/content/journals/cn/10.2174/011570159X350639250403072430
Loading
/content/journals/cn/10.2174/011570159X350639250403072430
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test