Skip to content
2000
Volume 23, Issue 7
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Depression and Alzheimer’s disease (AD) are two prevalent and debilitating conditions that significantly impact millions of people worldwide. Depressive disorders are characterized by persistent feelings of sadness, loss of interest, and impaired cognitive function. AD is a progressive neurodegenerative disorder that is accompanied by cognitive decline, memory loss, and behavioral changes. To date, the pathogenesis of AD and depression has not yet been fully explained. Recent studies have provided insights into the intricate relationship between these two disorders by emphasizing the role of glucose metabolic abnormalities as a potential link. This review explores the bidirectional association between depression and AD, focusing on common pathophysiological mechanisms involving glucose metabolism, such as hypothalamic-pituitary-adrenal (HPA) axis dysregulation, insulin resistance, glucose transporters, and oxidative stress. Understanding the crosstalk between glucose metabolic abnormalities, depression, and AD will open new avenues for therapeutic interventions. Finally, improving glucose metabolism through lifestyle modifications, pharmaceutical interventions or novel therapeutic approaches could provide a promising therapeutic strategy for managing both conditions simultaneously.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X343281240912190309
2024-09-24
2025-05-18
Loading full text...

Full text loading...

References

  1. RizziL. RossetI. Roriz-CruzM. Global epidemiology of dementia: Alzheimer’s and vascular types.BioMed Res. Int.201420141810.1155/2014/90891525089278
    [Google Scholar]
  2. JuckerM. WalkerL.C. Alzheimer’s disease: From immunotherapy to immunoprevention.Cell2023186204260427010.1016/j.cell.2023.08.02137729908
    [Google Scholar]
  3. VerkhratskyA. SteardoL. ParpuraV. MontanaV. Translational potential of astrocytes in brain disorders.Prog. Neurobiol.201614418820510.1016/j.pneurobio.2015.09.00326386136
    [Google Scholar]
  4. LiX. FengX. SunX. HouN. HanF. LiuY. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2019.Front. Aging Neurosci.20221493748610.3389/fnagi.2022.93748636299608
    [Google Scholar]
  5. TiwariS. AtluriV. KaushikA. YndartA. NairM. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics.Int. J. Nanomedicine2019145541555410.2147/IJN.S20049031410002
    [Google Scholar]
  6. RatanY. RajputA. MaleysmS. PareekA. JainV. PareekA. KaurR. SinghG. An insight into cellular and molecular mechanisms underlying the pathogenesis of neurodegeneration in Alzheimer’s disease.Biomedicines2023115139810.3390/biomedicines1105139837239068
    [Google Scholar]
  7. ButterfieldD.A. HalliwellB. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease.Nat. Rev. Neurosci.201920314816010.1038/s41583‑019‑0132‑630737462
    [Google Scholar]
  8. ChaD. CarvalhoA. RosenblatJ. AliM. McIntyreR. Major depressive disorder and type II diabetes mellitus: Mechanisms underlying risk for Alzheimer’s disease.CNS Neurol. Disord. Drug Targets201513101740174910.2174/187152731366614113020453525470393
    [Google Scholar]
  9. Baglietto-VargasD. ShiJ. YaegerD.M. AgerR. LaFerlaF.M. Diabetes and Alzheimer’s disease crosstalk.Neurosci. Biobehav. Rev.20166427228710.1016/j.neubiorev.2016.03.00526969101
    [Google Scholar]
  10. De FeliceF.G. FerreiraS.T. Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease.Diabetes20146372262227210.2337/db13‑195424931033
    [Google Scholar]
  11. PugazhenthiS. QinL. ReddyP.H. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease.Biochim. Biophys. Acta Mol. Basis Dis.2017186351037104510.1016/j.bbadis.2016.04.01727156888
    [Google Scholar]
  12. Rosales-CorralS. TanD.X. ManchesterL. ReiterR.J. Diabetes and Alzheimer disease, two overlapping pathologies with the same background: Oxidative stress.Oxid. Med. Cell. Longev.2015201511410.1155/2015/98584525815110
    [Google Scholar]
  13. TroubatR. BaroneP. LemanS. DesmidtT. CressantA. AtanasovaB. BrizardB. El HageW. SurgetA. BelzungC. CamusV. Neuroinflammation and depression: A review.Eur. J. Neurosci.202153115117110.1111/ejn.1472032150310
    [Google Scholar]
  14. TyeK.M. MirzabekovJ.J. WardenM.R. FerencziE.A. TsaiH.C. FinkelsteinJ. KimS.Y. AdhikariA. ThompsonK.R. AndalmanA.S. GunaydinL.A. WittenI.B. DeisserothK. Dopamine neurons modulate neural encoding and expression of depression-related behaviour.Nature2013493743353754110.1038/nature1174023235822
    [Google Scholar]
  15. HeJ. OuyangF. LiL. QiuD. LiY. XiaoS. Incidence trends of major depressive disorder in China: An age-period-cohort modeling study.J. Affect. Disord.2021288101610.1016/j.jad.2021.03.07533839553
    [Google Scholar]
  16. MoultonC.D. PickupJ.C. IsmailK. The link between depression and diabetes: The search for shared mechanisms.Lancet Diabetes Endocrinol.20153646147110.1016/S2213‑8587(15)00134‑525995124
    [Google Scholar]
  17. DetkaJ. KurekA. Basta-KaimA. KuberaM. LasońW. BudziszewskaB. Neuroendocrine link between stress, depression and diabetes.Pharmacol. Rep.20136561591160010.1016/S1734‑1140(13)71520‑224553007
    [Google Scholar]
  18. KhawagiW.Y. Al-kuraishyH.M. HusseinN.R. Al-GareebA.I. AtefE. ElhussienyO. AlexiouA. PapadakisM. JabirM.S. AlshehriA.A. SaadH.M. BatihaG.E.S. Depression and type 2 diabetes: A causal relationship and mechanistic pathway.Diabetes Obes. Metab.20242683031304410.1111/dom.1563038802993
    [Google Scholar]
  19. PalazzoE. MarabeseI. BoccellaS. BelardoC. PierrettiG. MaioneS. Affective and cognitive impairments in rodent models of diabetes.Curr. Neuropharmacol.20242281327134310.2174/1570159X2266624012416480438279738
    [Google Scholar]
  20. PenninxB.W.J.H. MilaneschiY. LamersF. VogelzangsN. Understanding the somatic consequences of depression: Biological mechanisms and the role of depression symptom profile.BMC Med.201311112910.1186/1741‑7015‑11‑12923672628
    [Google Scholar]
  21. FarooquiA.A. FarooquiT. PanzaF. FrisardiV. Metabolic syndrome as a risk factor for neurological disorders.Cell. Mol. Life Sci.201269574176210.1007/s00018‑011‑0840‑121997383
    [Google Scholar]
  22. BennettS. ThomasA.J. Depression and dementia: Cause, consequence or coincidence?Maturitas201479218419010.1016/j.maturitas.2014.05.00924931304
    [Google Scholar]
  23. TangB.L. Glucose, glycolysis, and neurodegenerative diseases.J. Cell. Physiol.2020235117653766210.1002/jcp.2968232239718
    [Google Scholar]
  24. CunnaneS.C. TrushinaE. MorlandC. PrigioneA. CasadesusG. AndrewsZ.B. BealM.F. BergersenL.H. BrintonR.D. de la MonteS. EckertA. HarveyJ. JeggoR. JhamandasJ.H. KannO. la CourC.M. MartinW.F. MithieuxG. MoreiraP.I. MurphyM.P. NaveK.A. NurielT. OlietS.H.R. SaudouF. MattsonM.P. SwerdlowR.H. MillanM.J. Brain energy rescue: An emerging therapeutic concept for neurodegenerative disorders of ageing.Nat. Rev. Drug Discov.202019960963310.1038/s41573‑020‑0072‑x32709961
    [Google Scholar]
  25. AhmadM.H. FatimaM. MondalA.C. Role of hypothalamic-pituitary-adrenal axis, hypothalamic-pituitary-gonadal axis and insulin signaling in the pathophysiology of Alzheimer’s disease.Neuropsychobiology201977419720510.1159/00049552130605907
    [Google Scholar]
  26. KnezevicE. NenicK. MilanovicV. KnezevicN.N. The role of cortisol in chronic stress, neurodegenerative diseases, and psychological disorders.Cells20231223272610.3390/cells1223272638067154
    [Google Scholar]
  27. Milligan ArmstrongA. PorterT. QuekH. WhiteA. HaynesJ. JackamanC. VillemagneV. MunyardK. LawsS.M. VerdileG. GrothD. Chronic stress and A lzheimer’s disease: The interplay between the hypothalamic–pituitary–adrenal axis, genetics and microglia.Biol. Rev. Camb. Philos. Soc.20219652209222810.1111/brv.1275034159699
    [Google Scholar]
  28. GraeberM.B. KöselS. EgenspergerR. BanatiR.B. MüllerU. BiseK. HoffP. MöllerH.J. FujisawaK. MehraeinP. Rediscovery of the case described by Alois Alzheimer in 1911: Historical, histological and molecular genetic analysis.Neurogenetics199711738010.1007/s10048005001110735278
    [Google Scholar]
  29. GongC.X. Grundke-IqbalI. IqbalK. Targeting tau protein in Alzheimer’s disease.Drugs Aging201027535136510.2165/11536110‑000000000‑0000020450234
    [Google Scholar]
  30. Spires-JonesT.L. AttemsJ. ThalD.R. Interactions of pathological proteins in neurodegenerative diseases.Acta Neuropathol.2017134218720510.1007/s00401‑017‑1709‑728401333
    [Google Scholar]
  31. ZhangH. WeiW. ZhaoM. MaL. JiangX. PeiH. CaoY. LiH. Interaction between Aβ and Tau in the pathogenesis of Alzheimer’s disease.Int. J. Biol. Sci.20211792181219210.7150/ijbs.5707834239348
    [Google Scholar]
  32. BagyinszkyE. YounY.C. AnS. KimS. The genetics of Alzheimer’s disease.Clin. Interv. Aging2014953555110.2147/CIA.S5157124729694
    [Google Scholar]
  33. BhattS. PuliL. PatilC.R. Role of reactive oxygen species in the progression of Alzheimer’s disease.Drug Discov. Today202126379480310.1016/j.drudis.2020.12.00433306995
    [Google Scholar]
  34. ChenZ. ZhongC. Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: Implications for diagnostic and therapeutic strategies.Prog. Neurobiol.2013108214310.1016/j.pneurobio.2013.06.00423850509
    [Google Scholar]
  35. DewanjeeS. ChakrabortyP. BhattacharyaH. ChackoL. SinghB. ChaudharyA. JavvajiK. PradhanS.R. VallamkonduJ. DeyA. KalraR.S. JhaN.K. JhaS.K. ReddyP.H. KandimallaR. Altered glucose metabolism in Alzheimer’s disease: Role of mitochondrial dysfunction and oxidative stress.Free Radic. Biol. Med.2022193Pt 113415710.1016/j.freeradbiomed.2022.09.03236206930
    [Google Scholar]
  36. KinneyJ.W. BemillerS.M. MurtishawA.S. LeisgangA.M. SalazarA.M. LambB.T. Inflammation as a central mechanism in Alzheimer’s disease.Alzheimers Dement. (N. Y.)20184157559010.1016/j.trci.2018.06.01430406177
    [Google Scholar]
  37. YangZ. ZouY. WangL. Neurotransmitters in prevention and treatment of Alzheimer’s disease.Int. J. Mol. Sci.2023244384110.3390/ijms2404384136835251
    [Google Scholar]
  38. KendlerK.S. The phenomenology of major depression and the representativeness and nature of DSM criteria.Am. J. Psychiatry2016173877178010.1176/appi.ajp.2016.1512150927138588
    [Google Scholar]
  39. CiprianiA. BarbuiC. GeddesJ.R. Suicide, depression, and antidepressants.Bmj2005330748837337410.1136/bmj.330.7488.373
    [Google Scholar]
  40. DeanJ. KeshavanM. The neurobiology of depression: An integrated view.Asian J. Psychiatr.20172710111110.1016/j.ajp.2017.01.02528558878
    [Google Scholar]
  41. FengR. HeM.C. LiQ. LiangX.Q. TangD.Z. ZhangJ.L. LiuS.F. LinF.H. ZhangY. Phenol glycosides extract of Fructus Ligustri Lucidi attenuated depressive‐like behaviors by suppressing neuroinflammation in hypothalamus of mice.Phytother. Res.202034123273328610.1002/ptr.677732603019
    [Google Scholar]
  42. OgłodekE. SzotaA. JustM. MośD. AraszkiewiczA. The role of the neuroendocrine and immune systems in the pathogenesis of depression.Pharmacol. Rep.201466577678110.1016/j.pharep.2014.04.00925149980
    [Google Scholar]
  43. OuakininS.R.S. BarreiraD.P. GoisC.J. Depression and obesity: Integrating the role of stress, neuroendocrine dysfunction and inflammatory pathways.Front. Endocrinol. (Lausanne)2018943110.3389/fendo.2018.0043130108549
    [Google Scholar]
  44. WierońskaJ.M. PilcA. Depression and schizophrenia viewed from the perspective of amino acidergic neurotransmission: Antipodes of psychiatric disorders.Pharmacol. Ther.20191937582
    [Google Scholar]
  45. RajmohanR. ReddyP.H. Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons.J. Alzheimers Dis.201757497599910.3233/JAD‑16061227567878
    [Google Scholar]
  46. MuralidarS. AmbiS.V. SekaranS. ThirumalaiD. PalaniappanB. Role of tau protein in Alzheimer’s disease: The prime pathological player.Int. J. Biol. Macromol.20201631599161710.1016/j.ijbiomac.2020.07.32732784025
    [Google Scholar]
  47. ChongF.P. NgK.Y. KohR.Y. ChyeS.M. Tau proteins and tauopathies in Alzheimer’s disease.Cell. Mol. Neurobiol.201838596598010.1007/s10571‑017‑0574‑129299792
    [Google Scholar]
  48. ScholzT. MandelkowE. Transport and diffusion of Tau protein in neurons.Cell. Mol. Life Sci.201471163139315010.1007/s00018‑014‑1610‑724687422
    [Google Scholar]
  49. BoccaliniC. RibaldiF. HristovskaI. ArnoneA. PerettiD.E. MuL. SchefflerM. PeraniD. FrisoniG.B. GaribottoV. The impact of tau deposition and hypometabolism on cognitive impairment and longitudinal cognitive decline.Alzheimers Dement.202420122123310.1002/alz.1335537555516
    [Google Scholar]
  50. IqbalK. GongC.X. LiuF. Hyperphosphorylation-induced tau oligomers.Front. Neurol.2013411210.3389/fneur.2013.0011223966973
    [Google Scholar]
  51. KolarovaM. García-SierraF. BartosA. RicnyJ. RipovaD. Structure and pathology of tau protein in Alzheimer disease.Int. J. Alzheimers Dis.2012201211310.1155/2012/73152622690349
    [Google Scholar]
  52. ReddyP.H. Abnormal tau, mitochondrial dysfunction, impaired axonal transport of mitochondria, and synaptic deprivation in Alzheimer’s disease.Brain Res.2011141513614810.1016/j.brainres.2011.07.05221872849
    [Google Scholar]
  53. GallardoG. HoltzmanD.M. Amyloid-β and Tau at the crossroads of Alzheimer’s disease.Adv. Exp. Med. Biol.2019118418720310.1007/978‑981‑32‑9358‑8_1632096039
    [Google Scholar]
  54. BrunelloC.A. MerezhkoM. UronenR.L. HuttunenH.J. Mechanisms of secretion and spreading of pathological tau protein.Cell. Mol. Life Sci.20207791721174410.1007/s00018‑019‑03349‑131667556
    [Google Scholar]
  55. LewisJ. DicksonD.W. Propagation of tau pathology: Hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies.Acta Neuropathol.20161311274810.1007/s00401‑015‑1507‑z26576562
    [Google Scholar]
  56. GibbonsG.S. LeeV.M.Y. TrojanowskiJ.Q. Mechanisms of cell-to-cell transmission of pathological Tau: A review.JAMA Neurol.201976110110810.1001/jamaneurol.2018.250530193298
    [Google Scholar]
  57. MacQueenG. FrodlT. The hippocampus in major depression: Evidence for the convergence of the bench and bedside in psychiatric research?Mol. Psychiatry201116325226410.1038/mp.2010.8020661246
    [Google Scholar]
  58. HaririA.R. HolmesA. Genetics of emotional regulation: The role of the serotonin transporter in neural function.Trends Cogn. Sci.200610418219110.1016/j.tics.2006.02.01116530463
    [Google Scholar]
  59. ZalarB. BlatnikA. MaverA. Klemenc-KetišZ. PeterlinB. Family history as an important factor for stratifying participants in genetic studies of major depression.Balkan J. Med. Genet.201821151210.2478/bjmg‑2018‑001030425904
    [Google Scholar]
  60. JasinskaA.J. LowryC.A. BurmeisterM. Serotonin transporter gene, stress and raphe–raphe interactions: A molecular mechanism of depression.Trends Neurosci.201235739540210.1016/j.tins.2012.01.00122301434
    [Google Scholar]
  61. KanovaM. KohoutP. Serotonin-its synthesis and roles in the healthy and the critically Ill.Int. J. Mol. Sci.2021229483710.3390/ijms2209483734063611
    [Google Scholar]
  62. NuttD. ForshallS. BellC. RichA. SandfordJ. NashJ. ArgyropoulosS. Mechanisms of action of selective serotonin reuptake inhibitors in the treatment of psychiatric disorders.Eur. Neuropsychopharmacol.19999Suppl. 3S81S8610.1016/S0924‑977X(99)00030‑910523062
    [Google Scholar]
  63. AndrewsP.W. BharwaniA. LeeK.R. FoxM. ThomsonJ.A.Jr Is serotonin an upper or a downer? The evolution of the serotonergic system and its role in depression and the antidepressant response.Neurosci. Biobehav. Rev.20155116418810.1016/j.neubiorev.2015.01.01825625874
    [Google Scholar]
  64. GottliebN. LiT.Y. YoungA.H. StokesP.R.A. The 5-HT7 receptor system as a treatment target for mood and anxiety disorders: A systematic review.J. Psychopharmacol.202337121167118110.1177/0269881123121122837994803
    [Google Scholar]
  65. KimM.H. LeemY.H. Chronic exercise improves repeated restraint stress-induced anxiety and depression through 5HT1A receptor and cAMP signaling in hippocampus.J. Exerc. Nutrition Biochem.20141819710410.5717/jenb.2014.18.1.9725566444
    [Google Scholar]
  66. StepanichevM. DygaloN.N. GrigoryanG. ShishkinaG.T. GulyaevaN. Rodent models of depression: Neurotrophic and neuroinflammatory biomarkers.BioMed Res. Int.2014201412010.1155/2014/93275724999483
    [Google Scholar]
  67. HashimotoK. ShimizuE. IyoM. Critical role of brain-derived neurotrophic factor in mood disorders.Brain Res. Brain Res. Rev.200445210411410.1016/j.brainresrev.2004.02.00315145621
    [Google Scholar]
  68. MaharI. BambicoF.R. MechawarN. NobregaJ.N. Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects.Neurosci. Biobehav. Rev.20143817319210.1016/j.neubiorev.2013.11.00924300695
    [Google Scholar]
  69. FukumotoK. FogaçaM.V. LiuR.J. DumanC.H. LiX.Y. ChakiS. DumanR.S. Medial PFC AMPA receptor and BDNF signaling are required for the rapid and sustained antidepressant-like effects of 5-HT1A receptor stimulation.Neuropsychopharmacology202045101725173410.1038/s41386‑020‑0705‑032396921
    [Google Scholar]
  70. NummenmaaL. TuominenL. Opioid system and human emotions.Br. J. Pharmacol.2018175142737274910.1111/bph.1381228394427
    [Google Scholar]
  71. CraskeM.G. MeuretA.E. RitzT. TreanorM. DourH.J. Treatment for anhedonia: A neuroscience driven approach.Depress. Anxiety2016331092793810.1002/da.2249027699943
    [Google Scholar]
  72. BrambillaP. PerezJ. BaraleF. SchettiniG. SoaresJ.C. GABAergic dysfunction in mood disorders.Mol Psychiatry20038872173710.1038/sj.mp.4001362
    [Google Scholar]
  73. KrystalJ.H. SanacoraG. BlumbergH. AnandA. CharneyD.S. MarekG. EppersonC.N. GoddardA. MasonG.F. Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments.Mol. Psychiatry20027S1Suppl. 1S71S8010.1038/sj.mp.400102111986998
    [Google Scholar]
  74. Faria-PereiraA. MoraisV.A. Synapses: The brain’s energy-demanding sites.Int. J. Mol. Sci.2022237362710.3390/ijms2307362735408993
    [Google Scholar]
  75. KullmannS. HeniM. HallschmidM. FritscheA. PreisslH. HäringH.U. Brain insulin resistance at the crossroads of metabolic and cognitive disorders in humans.Physiol. Rev.20169641169120910.1152/physrev.00032.201527489306
    [Google Scholar]
  76. ButterfieldD.A. Di DomenicoF. BaroneE. Elevated risk of type 2 diabetes for development of Alzheimer disease: A key role for oxidative stress in brain.Biochim. Biophys. Acta Mol. Basis Dis.2014184291693170610.1016/j.bbadis.2014.06.01024949886
    [Google Scholar]
  77. ArvanitakisZ. WilsonR.S. BieniasJ.L. EvansD.A. BennettD.A. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function.Arch. Neurol.200461566166610.1001/archneur.61.5.66115148141
    [Google Scholar]
  78. KronerZ. The relationship between Alzheimer’s disease and diabetes: Type 3 diabetes?Altern. Med. Rev.200914437337920030463
    [Google Scholar]
  79. AbolhassaniN. LeonJ. ShengZ. OkaS. HamasakiH. IwakiT. NakabeppuY. Molecular pathophysiology of impaired glucose metabolism, mitochondrial dysfunction, and oxidative DNA damage in Alzheimer's disease brain.Mech. Ageing Dev.2017161pt A9510410.1016/j.mad.2016.05.005
    [Google Scholar]
  80. WinklerE.A. NishidaY. SagareA.P. RegeS.V. BellR.D. PerlmutterD. SengilloJ.D. HillmanS. KongP. NelsonA.R. SullivanJ.S. ZhaoZ. MeiselmanH.J. WenbyR.B. SotoJ. AbelE.D. MakshanoffJ. ZunigaE. De VivoD.C. ZlokovicB.V. GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration.Nat. Neurosci.201518452153010.1038/nn.396625730668
    [Google Scholar]
  81. StinconeA. PrigioneA. CramerT. WamelinkM.M.C. CampbellK. CheungE. Olin-SandovalV. GrüningN.M. KrügerA. Tauqeer AlamM. KellerM.A. BreitenbachM. BrindleK.M. RabinowitzJ.D. RalserM. The return of metabolism: Biochemistry and physiology of the pentose phosphate pathway.Biol. Rev. Camb. Philos. Soc.201590392796310.1111/brv.1214025243985
    [Google Scholar]
  82. TiwariM. Glucose 6 phosphatase dehydrogenase (G6PD) and neurodegenerative disorders: Mapping diagnostic and therapeutic opportunities.Genes Dis.20174419620310.1016/j.gendis.2017.09.00130258923
    [Google Scholar]
  83. GalizziG. Di CarloM. Insulin and its key role for mitochondrial function/dysfunction and quality control: A shared link between dysmetabolism and neurodegeneration.Biology (Basel)202211694310.3390/biology1106094335741464
    [Google Scholar]
  84. JhaS.K. JhaN.K. KumarD. AmbastaR.K. KumarP. Linking mitochondrial dysfunction, metabolic syndrome and stress signaling in Neurodegeneration.Biochim. Biophys. Acta Mol. Basis Dis.2017186351132114610.1016/j.bbadis.2016.06.01527345267
    [Google Scholar]
  85. KapogiannisD. MattsonM.P. Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease.Lancet Neurol.201110218719810.1016/S1474‑4422(10)70277‑521147038
    [Google Scholar]
  86. GonzálezA. CalfíoC. ChurrucaM. MaccioniR.B. Glucose metabolism and AD: Evidence for a potential diabetes type 3.Alzheimers Res. Ther.20221415610.1186/s13195‑022‑00996‑835443732
    [Google Scholar]
  87. BoscoD. FavaA. PlastinoM. MontalciniT. PujiaA. Possible implications of insulin resistance and glucose metabolism in Alzheimer’s disease pathogenesis.J. Cell. Mol. Med.20111591807182110.1111/j.1582‑4934.2011.01318.x21435176
    [Google Scholar]
  88. SaltielA.R. KahnC.R. Insulin signalling and the regulation of glucose and lipid metabolism.Nature2001414686579980610.1038/414799a11742412
    [Google Scholar]
  89. LetoD. SaltielA.R. Regulation of glucose transport by insulin: Traffic control of GLUT4.Nat. Rev. Mol. Cell Biol.201213638339610.1038/nrm335122617471
    [Google Scholar]
  90. BanksW.A. RheaE.M. The blood-brain barrier, oxidative stress, and insulin resistance.Antioxidants20211011169510.3390/antiox1011169534829566
    [Google Scholar]
  91. BlázquezE. Hurtado-CarneiroV. LeBaut-AyusoY. VelázquezE. García-GarcíaL. Gómez-OliverF. Ruiz-AlbusacJ.M. ÁvilaJ. PozoM.Á. Significance of brain glucose hypometabolism, altered insulin signal transduction, and insulin resistance in several neurological diseases.Front. Endocrinol. (Lausanne)20221387330110.3389/fendo.2022.87330135615716
    [Google Scholar]
  92. ArnoldS.E. ArvanitakisZ. Macauley-RambachS.L. KoenigA.M. WangH.Y. AhimaR.S. CraftS. GandyS. BuettnerC. StoeckelL.E. HoltzmanD.M. NathanD.M. Brain insulin resistance in type 2 diabetes and Alzheimer disease: Concepts and conundrums.Nat. Rev. Neurol.201814316818110.1038/nrneurol.2017.18529377010
    [Google Scholar]
  93. de la MonteS.M. Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease.Curr. Alzheimer Res.201291356610.2174/15672051279901503722329651
    [Google Scholar]
  94. BlázquezE. VelázquezE. Hurtado-CarneiroV. Ruiz-AlbusacJ.M. Insulin in the brain: Its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer’s disease.Front. Endocrinol. (Lausanne)2014516110.3389/fendo.2014.0016125346723
    [Google Scholar]
  95. SpielmanL.J. LittleJ.P. KlegerisA. Inflammation and insulin/IGF-1 resistance as the possible link between obesity and neurodegeneration.J. Neuroimmunol.20142731-282110.1016/j.jneuroim.2014.06.00424969117
    [Google Scholar]
  96. Sims-RobinsonC. KimB. RoskoA. FeldmanE.L. How does diabetes accelerate Alzheimer disease pathology?Nat. Rev. Neurol.201061055155910.1038/nrneurol.2010.13020842183
    [Google Scholar]
  97. LaurettiE. DincerO. PraticòD. Glycogen synthase kinase-3 signaling in Alzheimer’s disease.Biochim. Biophys. Acta Mol. Cell Res.20201867511866410.1016/j.bbamcr.2020.11866432006534
    [Google Scholar]
  98. de la MonteS.M. Contributions of brain insulin resistance and deficiency in amyloid-related neurodegeneration in Alzheimer’s disease.Drugs2012721496610.2165/11597760‑000000000‑0000022191795
    [Google Scholar]
  99. YonamineC.Y. MichalaniM.L.E. MoreiraR.J. MachadoU.F. Glucose transport and utilization in the hippocampus: From neurophysiology to diabetes-related development of dementia.Int. J. Mol. Sci.202324221648010.3390/ijms24221648038003671
    [Google Scholar]
  100. RazaniE. Pourbagheri-SigaroodiA. Safaroghli-AzarA. ZoghiA. Shanaki-BavarsadM. BashashD. The PI3K/Akt signaling axis in Alzheimer’s disease: A valuable target to stimulate or suppress?Cell Stress Chaperones202126687188710.1007/s12192‑021‑01231‑334386944
    [Google Scholar]
  101. SantiagoJ.A. KarthikeyanM. LackeyM. VillavicencioD. PotashkinJ.A. Diabetes: A tipping point in neurodegenerative diseases.Trends Mol. Med.202329121029104410.1016/j.molmed.2023.09.00537827904
    [Google Scholar]
  102. YangS. Pascual-GuiralS. PonceR. Giménez-LlortL. BaltronsM.A. ArancioO. PalacioJ.R. ClosV.M. YusteV.J. BayascasJ.R. Reducing the levels of Akt activation by PDK1 knock-in mutation protects neuronal cultures against synthetic amyloid-beta peptides.Front. Aging Neurosci.2018943510.3389/fnagi.2017.0043529358916
    [Google Scholar]
  103. SancakY. ThoreenC.C. PetersonT.R. LindquistR.A. KangS.A. SpoonerE. CarrS.A. SabatiniD.M. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase.Mol. Cell200725690391510.1016/j.molcel.2007.03.00317386266
    [Google Scholar]
  104. ChenY.R. LiY.H. HsiehT.C. WangC.M. ChengK.C. WangL. LinT.Y. CheungC.H.A. WuC.L. ChiangH. Aging‐induced Akt activation involves in aging‐related pathologies and Aβ‐induced toxicity.Aging Cell2019184e1298910.1111/acel.1298931183966
    [Google Scholar]
  105. MuecklerM. ThorensB. The SLC2 (GLUT) family of membrane transporters.Mol. Aspects Med.2013342-312113810.1016/j.mam.2012.07.00123506862
    [Google Scholar]
  106. PatchingS.G. Glucose transporters at the blood-brain barrier: Function, regulation and gateways for drug delivery.Mol. Neurobiol.20175421046107710.1007/s12035‑015‑9672‑626801191
    [Google Scholar]
  107. KyrtataN. EmsleyH.C.A. SparasciO. ParkesL.M. DickieB.R. A systematic review of glucose transport alterations in Alzheimer’s disease.Front. Neurosci.20211562663610.3389/fnins.2021.62663634093108
    [Google Scholar]
  108. PengW. TanC. MoL. JiangJ. ZhouW. DuJ. ZhouX. LiuX. ChenL. Glucose transporter 3 in neuronal glucose metabolism: Health and diseases.Metabolism202112315486910.1016/j.metabol.2021.15486934425073
    [Google Scholar]
  109. SzablewskiL. Glucose transporters in brain: In health and in Alzheimer’s disease.J. Alzheimers Dis.20165541307132010.3233/JAD‑16084127858715
    [Google Scholar]
  110. LangU.E. BorgwardtS. Molecular mechanisms of depression: Perspectives on new treatment strategies.Cell. Physiol. Biochem.201331676177710.1159/00035009423735822
    [Google Scholar]
  111. QiuW. CaiX. ZhengC. QiuS. KeH. HuangY. Update on the relationship between depression and neuroendocrine metabolism.Front. Neurosci.20211572881010.3389/fnins.2021.72881034531719
    [Google Scholar]
  112. AkbaralyT.N. KumariM. HeadJ. RitchieK. AncelinM.L. TabákA.G. BrunnerE. ChaudieuI. MarmotM.G. FerrieJ.E. ShipleyM.J. KivimäkiM. Glycemia, insulin resistance, insulin secretion, and risk of depressive symptoms in middle age.Diabetes Care201336492893410.2337/dc12‑023923230097
    [Google Scholar]
  113. ZouX.H. SunL.H. YangW. LiB.J. CuiR.J. Potential role of insulin on the pathogenesis of depression.Cell Prolif.2020535e1280610.1111/cpr.1280632281722
    [Google Scholar]
  114. LeeS.H. ZabolotnyJ.M. HuangH. LeeH. KimY.B. Insulin in the nervous system and the mind: Functions in metabolism, memory, and mood.Mol. Metab.20165858960110.1016/j.molmet.2016.06.01127656397
    [Google Scholar]
  115. LemcheE. ChabanO.S. LemcheA.V. Neuroendocrinological and epigenetic mechanisms subserving autonomic imbalance and HPA dysfunction in the metabolic syndrome.Front. Neurosci.20161014210.3389/fnins.2016.0014227147943
    [Google Scholar]
  116. LeonardB.E. WegenerG. Inflammation, insulin resistance and neuroprogression in depression.Acta Neuropsychiatr.20203211910.1017/neu.2019.1731186075
    [Google Scholar]
  117. ParianteC.M. LightmanS.L. The HPA axis in major depression: Classical theories and new developments.Trends Neurosci.200831946446810.1016/j.tins.2008.06.00618675469
    [Google Scholar]
  118. GuerryJ.D. HastingsP.D. In search of HPA axis dysregulation in child and adolescent depression.Clin. Child Fam. Psychol. Rev.201114213516010.1007/s10567‑011‑0084‑521290178
    [Google Scholar]
  119. GoldP.W. The organization of the stress system and its dysregulation in depressive illness.Mol. Psychiatry2015201324710.1038/mp.2014.16325486982
    [Google Scholar]
  120. BurkeH.M. DavisM.C. OtteC. MohrD.C. Depression and cortisol responses to psychological stress: A meta-analysis.Psychoneuroendocrinology200530984685610.1016/j.psyneuen.2005.02.01015961250
    [Google Scholar]
  121. MelloA.A.F. MelloM.F. CarpenterL.L. PriceL.H. Update on stress and depression: The role of the hypothalamic-pituitary-adrenal (HPA) axis.Rev. Bras. Psiquiatr.200325423123810.1590/S1516‑4446200300040001015328550
    [Google Scholar]
  122. BrownE. RushA.J. McEwenB.S. Hippocampal remodeling and damage by corticosteroids: Implications for mood disorders.Neuropsychopharmacology199921447448410.1016/S0893‑133X(99)00054‑810481830
    [Google Scholar]
  123. BjörntorpP. Neuroendocrine perturbations as a cause of insulin resistance.Diabetes Metab. Res. Rev.199915642744110.1002/(SICI)1520‑7560(199911/12)15:6<427::AID‑DMRR68>3.0.CO;2‑C10634968
    [Google Scholar]
  124. VyasS. MaatoukL. Contribution of glucocorticoids and glucocorticoid receptors to the regulation of neurodegenerative processes.CNS Neurol. Disord. Drug Targets20131281175119324040816
    [Google Scholar]
  125. CardosoS. CarvalhoC. CorreiaS.C. SeiçaR.M. MoreiraP.I. Alzheimer’s disease: From mitochondrial perturbations to mitochondrial medicine.Brain Pathol.201626563264710.1111/bpa.1240227327899
    [Google Scholar]
  126. AshleighT. SwerdlowR.H. BealM.F. The role of mitochondrial dysfunction in Alzheimer’s disease pathogenesis.Alzheimers Dement.202319133334210.1002/alz.1268335522844
    [Google Scholar]
  127. WangW. ZhaoF. MaX. PerryG. ZhuX. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: Recent advances.Mol. Neurodegener.20201513010.1186/s13024‑020‑00376‑632471464
    [Google Scholar]
  128. CeniniG. LloretA. CascellaR. Oxidative stress in neurodegenerative diseases: From a mitochondrial point of view.Oxid. Med. Cell. Longev.2019201911810.1155/2019/210560731210837
    [Google Scholar]
  129. PerryV.H. Contribution of systemic inflammation to chronic neurodegeneration.Acta Neuropathol.2010120327728610.1007/s00401‑010‑0722‑x20644946
    [Google Scholar]
  130. CircuM.L. AwT.Y. Reactive oxygen species, cellular redox systems, and apoptosis.Free Radic. Biol. Med.201048674976210.1016/j.freeradbiomed.2009.12.02220045723
    [Google Scholar]
  131. BaiR. GuoJ. YeX.Y. XieY. XieT. Oxidative stress: The core pathogenesis and mechanism of Alzheimer’s disease.Ageing Res. Rev.20227710161910.1016/j.arr.2022.10161935395415
    [Google Scholar]
  132. TamagnoE. GuglielmottoM. VasciaveoV. TabatonM. Oxidative stress and beta amyloid in Alzheimer’s disease. which comes first: The chicken or the egg?Antioxidants2021109147910.3390/antiox1009147934573112
    [Google Scholar]
  133. TarafdarA. PulaG. The role of NADPH oxidases and oxidative stress in neurodegenerative disorders.Int. J. Mol. Sci.20181912382410.3390/ijms1912382430513656
    [Google Scholar]
  134. LucaM. LucaA. CalandraC. The role of oxidative damage in the pathogenesis and progression of Alzheimer’s disease and vascular dementia.Oxid. Med. Cell. Longev.201520151810.1155/2015/50467826301043
    [Google Scholar]
  135. KozlovA.V. JavadovS. SommerN. Cellular ROS and antioxidants: Physiological and pathological role.Antioxidants202413560210.3390/antiox1305060238790707
    [Google Scholar]
  136. CasadoÁ. Encarnación López-FernándezM. Concepción CasadoM. de La TorreR. Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias.Neurochem. Res.200833345045810.1007/s11064‑007‑9453‑317721818
    [Google Scholar]
  137. PocernichC.B. LangeM.L. SultanaR. ButterfieldD.A. Nutritional approaches to modulate oxidative stress in Alzheimer’s disease.Curr. Alzheimer Res.20118545246910.2174/15672051179639190821605052
    [Google Scholar]
  138. BhattS. NagappaA.N. PatilC.R. Role of oxidative stress in depression.Drug Discov. Today20202571270127610.1016/j.drudis.2020.05.00132404275
    [Google Scholar]
  139. PoljsakB. Strategies for reducing or preventing the generation of oxidative stress.Oxid. Med. Cell. Longev.2011201111510.1155/2011/19458622191011
    [Google Scholar]
  140. Elsayed AzabA. A AdwasA. Ibrahim ElsayedA.S. A AdwasA. Ibrahim ElsayedA.S. QuwaydirF.A. Oxidative stress and antioxidant mechanisms in human body.J. Biotochnol. Bioeng.201961434710.15406/jabb.2019.06.00173
    [Google Scholar]
  141. TeleanuR.I. NiculescuA.G. RozaE. VladâcencoO. GrumezescuA.M. TeleanuD.M. Neurotransmitters-key factors in neurological and neurodegenerative disorders of the central nervous system.Int. J. Mol. Sci.20222311595410.3390/ijms2311595435682631
    [Google Scholar]
  142. Jiménez-FernándezS. GurpeguiM. Díaz-AtienzaF. Pérez-CostillasL. GerstenbergM. CorrellC.U. Oxidative stress and antioxidant parameters in patients with major depressive disorder compared to healthy controls before and after antidepressant treatment: Results from a meta-analysis.J. Clin. Psychiatry201576121658166710.4088/JCP.14r0917926579881
    [Google Scholar]
  143. NobisA. ZalewskiD. WaszkiewiczN. Peripheral markers of depression.J. Clin. Med.2020912379310.3390/jcm912379333255237
    [Google Scholar]
  144. WuH. DennaT.H. StorkersenJ.N. GerrietsV.A. Beyond a neurotransmitter: The role of serotonin in inflammation and immunity.Pharmacol. Res.201914010011410.1016/j.phrs.2018.06.01529953943
    [Google Scholar]
  145. MaydychV. The interplay between stress, inflammation, and emotional attention: Relevance for depression.Front. Neurosci.20191338410.3389/fnins.2019.0038431068783
    [Google Scholar]
  146. KimY.K. NaK.S. MyintA.M. LeonardB.E. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression.Prog. Neuropsychopharmacol. Biol. Psychiatry20166427728410.1016/j.pnpbp.2015.06.00826111720
    [Google Scholar]
  147. HanischU.K. Microglia as a source and target of cytokines.Glia200240214015510.1002/glia.1016112379902
    [Google Scholar]
  148. KimY.K. WonE. The influence of stress on neuroinflammation and alterations in brain structure and function in major depressive disorder.Behav. Brain Res.201732961110.1016/j.bbr.2017.04.02028442354
    [Google Scholar]
  149. KhansariN. ShakibaY. MahmoudiM. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer.Recent Pat. Inflamm. Allergy Drug Discov.200931738010.2174/18722130978715837119149749
    [Google Scholar]
  150. ChanK.L. CathomasF. RussoS.J. Central and peripheral inflammation link metabolic syndrome and major depressive disorder.Physiology (Bethesda)201934212313310.1152/physiol.00047.201830724127
    [Google Scholar]
  151. KöhlerC.A. FreitasT.H. MaesM. de AndradeN.Q. LiuC.S. FernandesB.S. StubbsB. SolmiM. VeroneseN. HerrmannN. RaisonC.L. MillerB.J. LanctôtK.L. CarvalhoA.F. Peripheral cytokine and chemokine alterations in depression: A meta‐analysis of 82 studies.Acta Psychiatr. Scand.2017135537338710.1111/acps.1269828122130
    [Google Scholar]
  152. MehdiS. WaniS.U.D. KrishnaK.L. KinattingalN. RoohiT.F. A review on linking stress, depression, and insulin resistance via low-grade chronic inflammation.Biochem. Biophys. Rep.20233610157110.1016/j.bbrep.2023.10157137965066
    [Google Scholar]
  153. GongX. ChangR. ZouJ. TanS. HuangZ. The role and mechanism of tryptophan – kynurenine metabolic pathway in depression.Rev. Neurosci.202334331332410.1515/revneuro‑2022‑004736054612
    [Google Scholar]
  154. dos SantosH.M. BertolloA.G. MingotiM.E.D. GrolliR.E. KreuzK.M. IgnácioZ.M. Dementia and depression: Biological connections with amyloid β protein.Basic Clin. Pharmacol. Toxicol.2024134556357310.1111/bcpt.1399638459754
    [Google Scholar]
  155. Cantón-HabasV. Rich-RuizM. Romero-SaldañaM. Carrera-GonzálezM.P. Depression as a risk factor for dementia and Alzheimer’s disease.Biomedicines202081145710.3390/biomedicines811045733126696
    [Google Scholar]
  156. ByersA.L. YaffeK. Depression and risk of developing dementia.Nat. Rev. Neurol.20117632333110.1038/nrneurol.2011.6021537355
    [Google Scholar]
  157. CorreiaA.S. CardosoA. ValeN. Highlighting immune system and stress in major depressive disorder, parkinson’s, and Alzheimer’s diseases, with a connection with serotonin.Int. J. Mol. Sci.20212216852510.3390/ijms2216852534445231
    [Google Scholar]
  158. RodriguesR. PetersenR.B. PerryG. Parallels between major depressive disorder and Alzheimer’s disease: Role of oxidative stress and genetic vulnerability.Cell. Mol. Neurobiol.201434792594910.1007/s10571‑014‑0074‑524927694
    [Google Scholar]
  159. ZhanQ. KongF. ShaoS. ZhangB. HuangS. Pathogenesis of depression in Alzheimer’s disease.Neurochem. Res.202449354855610.1007/s11064‑023‑04061‑038015411
    [Google Scholar]
  160. OuanesS. PoppJ. High cortisol and the risk of dementia and Alzheimer’s disease: A review of the literature.Front. Aging Neurosci.2019114310.3389/fnagi.2019.0004330881301
    [Google Scholar]
  161. BenarrochE.E. Glutamatergic synaptic plasticity and dysfunction in Alzheimer disease.Neurology201891312513210.1212/WNL.000000000000580729898976
    [Google Scholar]
  162. BishtK. SharmaK. TremblayM.È. Chronic stress as a risk factor for Alzheimer’s disease: Roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress.Neurobiol. Stress2018992110.1016/j.ynstr.2018.05.00329992181
    [Google Scholar]
  163. BremnerJ.D. NarayanM. AndersonE.R. StaibL.H. MillerH.L. CharneyD.S. Hippocampal volume reduction in major depression.Am. J. Psychiatry2000157111511810.1176/ajp.157.1.11510618023
    [Google Scholar]
  164. KumarP. NesakumarN. GopalJ. SivasubramanianS. VedanthamS. RayappanJ.B.B. Clinical validation of electrochemical biosensor for the detection of methylglyoxal in subjects with type-2 diabetes mellitus.Bioelectrochemistry202415510860110.1016/j.bioelechem.2023.10860137951008
    [Google Scholar]
  165. SzczepanikJ.C. de AlmeidaG.R.L. CunhaM.P. DafreA.L. Repeated methylglyoxal treatment depletes dopamine in the prefrontal cortex, and causes memory impairment and depressive-like behavior in mice.Neurochem. Res.202045235437010.1007/s11064‑019‑02921‑231786717
    [Google Scholar]
  166. de AlmeidaG.R.L. SzczepanikJ.C. SelhorstI. SchmitzA.E. dos SantosB. CunhaM.P. HeinrichI.A. de PaulaG.C. De BemA.F. LealR.B. DafreA.L. Methylglyoxal-mediated dopamine depletion, working memory deficit, and depression-like behavior are prevented by a dopamine/noradrenaline reuptake inhibitor.Mol. Neurobiol.202158273574910.1007/s12035‑020‑02146‑333011857
    [Google Scholar]
  167. PatilG. KulsangeS. KaziR. ChirmadeT. KaleV. MoteC. AswarM. KoratkarS. AgawaneS. KulkarniM. Behavioral and proteomic studies reveal methylglyoxal activate pathways associated with Alzheimer’s disease.ACS Pharmacol. Transl. Sci.202361657510.1021/acsptsci.2c0014336654748
    [Google Scholar]
  168. ZhangL. LuoL. XueL. RanD. YangF. TangQ. JiangW. RAGE signaling pathway is involved in CUS-induced depression-like behaviors by regulating the expression of NR2A and NR2B in rat hippocampus DG.Exp. Neurol.202336111429910.1016/j.expneurol.2022.11429936521778
    [Google Scholar]
  169. KothandanD. SinghD.S. YerrakulaG. Advanced glycation end products-induced Alzheimer's disease and its novel therapeutic approaches: A comprehensive review.cureus2024165e6137310.7759/cureus.61373
    [Google Scholar]
  170. ZhangW. ZhaoC. WangC. XieX. LiY. ChenB. FengL. JiangP. Methylglyoxal accumulation contributes to accelerated brain aging in spontaneously hypertensive rats.Free Radic. Biol. Med.202421010811910.1016/j.freeradbiomed.2023.11.01237984752
    [Google Scholar]
  171. de MeloL.G.P. NunesS.O.V. AndersonG. VargasH.O. BarbosaD.S. GaleckiP. CarvalhoA.F. MaesM. Shared metabolic and immune-inflammatory, oxidative and nitrosative stress pathways in the metabolic syndrome and mood disorders.Prog. Neuropsychopharmacol. Biol. Psychiatry201778345010.1016/j.pnpbp.2017.04.02728438472
    [Google Scholar]
  172. PengT. YangY. MaJ. XuP. XieX. HuN. YanY. Dementia and metabolic syndrome: A bibliometric analysis.Front. Aging Neurosci.202416140058910.3389/fnagi.2024.140058938934020
    [Google Scholar]
  173. AndersonG. Depression pathophysiology: Astrocyte mitochondrial melatonergic pathway as crucial hub.Int. J. Mol. Sci.202224135010.3390/ijms2401035036613794
    [Google Scholar]
/content/journals/cn/10.2174/011570159X343281240912190309
Loading
/content/journals/cn/10.2174/011570159X343281240912190309
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test