Skip to content
2000
image of Nanosuspension: A Propitious Drug Delivery Approach to Enhance 
Solubility and Bioavailability of Poorly Soluble Drugs-Review

Abstract

Nanosuspensions are an effective way to improve the delivery of drugs that do not dissolve well in water, especially those classified in the Biopharmaceutics Classification System (BCS) Classes II and IV. These drugs often have poor bioavailability. Traditional methods, like salt formation, solid dispersion, and reducing particle size, can help, but they also have drawbacks such as high cost, drug instability, and difficulties in large-scale production. Nanosuspensions are minuscule particles of pure drug, dispersed in a liquid with the help of stabilizers like surfactants or polymers. These systems are easy to prepare and can be scaled up for industrial use. They also work for both hydrophilic and lipophilic drugs. Common methods to make nanosuspensions include high-pressure homogenization, wet milling, and emulsification-solvent evaporation. Newer methods, such as bottom-up (precipitation) and top-down (grinding) technologies, are also being explored. By reducing the particle size, nanosuspensions increase the drug's surface area, which leads to faster and improved dissolution. This helps the drug work more effectively in the body. Nanosuspensions can be administered in different ways, like oral routes, injections, or applied to the skin, eyes, and lungs. They can also be designed to release the drug slowly over time or target specific parts of the body, which reduces side effects and how often a drug needs to be taken. This review focuses on how nanosuspensions are made, how they are tested and characterized, and how they are being used to improve the effectiveness of poorly soluble drugs. Their ability to improve solubility, stability, and bioavailability makes them a valuable option in modern drug delivery.

Loading

Article metrics loading...

/content/journals/cmsb/10.2174/0126661454396018250916101813
2025-09-22
2025-12-25
Loading full text...

Full text loading...

References

  1. Lim Chin W.W. Parmentier J. Widzinski M. Tan E.H. Gokhale R. A brief literature and patent review of nanosuspensions to a final drug product. J. Pharm. Sci. 2014 103 10 2980 2999 10.1002/jps.24098 25099918
    [Google Scholar]
  2. Date A.A. Patravale V.B. Current strategies for engineering drug nanoparticles. Curr. Opin. Colloid Interface Sci. 2004 9 3-4 222 235 10.1016/j.cocis.2004.06.009
    [Google Scholar]
  3. Kesisoglou F. Panmai S. Wu Y. Nanosizing - Oral formulation development and biopharmaceutical evaluation. Adv. Drug Deliv. Rev. 2007 59 7 631 644 10.1016/j.addr.2007.05.003 17601629
    [Google Scholar]
  4. Huang S. Wu H. Jiang Z. Huang H. Water-based nanosuspensions: Formulation, tribological property, lubrication mechanism, and applications. J. Manuf. Process. 2021 71 71 625 644 10.1016/j.jmapro.2021.10.002
    [Google Scholar]
  5. Patel D. Zode S.S. Bansal A.K. Formulation aspects of intravenous nanosuspensions. Int. J. Pharm. 2020 586 119555 10.1016/j.ijpharm.2020.119555 32562654
    [Google Scholar]
  6. Galinovskiy A.L. Htet K.M. Provatorov A.S. Ultra-Jet as a tool for dispersing nanosuspensions. Polym. Sci. Ser. D Glues Sealing Mater. 2020 13 2 209 213 10.1134/S1995421220020070
    [Google Scholar]
  7. Santos A.M. Meneguin A.B. Fonseca-Santos B. The role of stabilizers and mechanical processes on physico-chemical and anti-inflammatory properties of methotrexate nanosuspensions. J. Drug Deliv. Sci. Technol. 2020 57 101638 10.1016/j.jddst.2020.101638
    [Google Scholar]
  8. Ganta S. Paxton J.W. Baguley B.C. Garg S. Formulation and pharmacokinetic evaluation of an asulacrine nanocrystalline suspension for intravenous delivery. Int. J. Pharm. 2009 367 1-2 179 186 10.1016/j.ijpharm.2008.09.022 18848873
    [Google Scholar]
  9. Frank K.J. Boeck G. Development of a nanosuspension for iv administration: From miniscale screening to a freeze dried formulation. Eur. J. Pharm. Sci. 2016 87 87 112 117 10.1016/j.ejps.2016.03.003 26970283
    [Google Scholar]
  10. Boersen N. Lee T. Hui H.W. Development of Preclinical Formulations for Toxicology Studies. In:A Comprehensive Guide to Toxicology in Preclinical Drug Development. Cambridge, Massachusetts Academic Press 2013 69 86
    [Google Scholar]
  11. Jacobs C. Kayser O. Müller R.H. Nanosuspensions as a new approach for the formulation for the poorly soluble drug tarazepide. Int. J. Pharm. 2000 196 2 161 164 10.1016/S0378‑5173(99)00412‑3 10699709
    [Google Scholar]
  12. Aguilar-Hernández G. López-Romero B.A. Nicolás-García M. Nolasco-González Y. García-Galindo H.S. Montalvo-González E. Nanosuspensions as carriers of active ingredients: Chemical composition, development methods, and their biological activities. Food Res. Int. 2023 174 Pt 1 113583 10.1016/j.foodres.2023.113583 37986449
    [Google Scholar]
  13. Rabinow B.E. Nanosuspensions in drug delivery. Nat. Rev. Drug Discov. 2004 3 9 785 796 10.1038/nrd1494 15340388
    [Google Scholar]
  14. Kipp J. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int. J. Pharm. 2004 284 1-2 109 122 10.1016/j.ijpharm.2004.07.019 15454302
    [Google Scholar]
  15. Parveen S.R. Wadhwa S. Babu M.R. Formulation of chrysin loaded nanostructured lipid carriers using Box Behnken design, its characterization and antibacterial evaluation alone and in presence of probiotics co-loaded in gel. J. Drug Deliv. Sci. Technol. 2023 84 104411 10.1016/j.jddst.2023.104411
    [Google Scholar]
  16. Vikash B Shashi, Pandey , NK, et al Formulation and evaluation of ocular self-nanoemulsifying drug delivery system of brimonidine tartrate. J. Drug Deliv. Sci. Technol. 2023 81 81 104226 10.1016/j.jddst.2023.104226
    [Google Scholar]
  17. Sigauke T. Johnson O.T. Ndeshimona V.L. Mashingaidze M.M. Advancements in nanotechnology for the enhanced flotation of fine mineral particles: A review. Discov Appl Sci 2025 7 4 317 10.1007/s42452‑025‑06835‑3
    [Google Scholar]
  18. Aldeeb M. Wilar G. Suhandi C. Elamin K. Wathoni N. Nanosuspension-based drug delivery systems for topical applications. Int. J. Nanomedicine 2024 19 825 844 10.2147/IJN.S447429 38293608
    [Google Scholar]
  19. Zidan A.S. Sammour O.A. Hammad M.A. Megrab N.A. Habib M.J. Khan M.A. Quality by design: Understanding the formulation variables of a cyclosporine A self Nanosuspensions -nanoemulsified drug delivery systems by Box–Behnken design and desirability function. Int. J. Pharm. 2007 332 1-2 55 63 10.1016/j.ijpharm.2006.09.060 17169518
    [Google Scholar]
  20. Müller R.H. Jacobs C. Kayser O. Nanosuspensions as particulate drug formulations in therapy. Adv. Drug Deliv. Rev. 2001 47 1 3 19 10.1016/S0169‑409X(00)00118‑6 11251242
    [Google Scholar]
  21. Verma S. Lan Y. Gokhale R. Burgess D.J. Quality by design approach to understand the process of nanosuspension preparation. Int. J. Pharm. 2009 377 1-2 185 198 10.1016/j.ijpharm.2009.05.006 19446617
    [Google Scholar]
  22. Singare D.S. Marella S. Gowthamrajan K. Kulkarni G.T. Vooturi R. Rao P.S. Optimization of formulation and process variable of nanosuspension: An industrial perspective. Int. J. Pharm. 2010 402 1-2 213 220 10.1016/j.ijpharm.2010.09.041 20933066
    [Google Scholar]
  23. Xia D. Quan P. Piao H. Preparation of stable nitrendipine nanosuspensions using the precipitation–ultrasonication method for enhancement of dissolution and oral bioavailability. Eur. J. Pharm. Sci. 2010 40 4 325 334 10.1016/j.ejps.2010.04.006 20417274
    [Google Scholar]
  24. Guan W. Ma Y. Ding S. The technology for improving stability of nanosuspensions in drug delivery. J. Nanopart. Res. 2022 24 14 10.1007/s11051‑022‑05403‑9
    [Google Scholar]
  25. Arrua E.C. Hartwig O. Loretz B. Improving the oral delivery of benznidazole nanoparticles by optimizing the formulation parameters through a design of experiment and optimization strategy. Colloids Surf. B Biointerfaces 2022 217 112678 10.1016/j.colsurfb.2022.112678 35816885
    [Google Scholar]
  26. Karakucuk A. Celebi N. Teksin Z.S. Preparation of ritonavir nanosuspensions by microfluidization using polymeric stabilizers: I. A design of experiment approach. Eur. J. Pharm. Sci. 2016 95 95 111 121 10.1016/j.ejps.2016.05.010 27181836
    [Google Scholar]
  27. Patel A. Patel K. Patel V. Rajput M.S. Patel R. Rajput A.S. Nanocrystals: An emerging paradigm for cancer therapeutics. Futur J Pharm Sci 2024 10 4 10.1186/s43094‑024‑00579‑4
    [Google Scholar]
  28. Tian Y. Wang S. Yu Y. Review of nanosuspension formulation and process analysis in wet media milling using microhydrodynamic model and emerging characterization methods. Int. J. Pharm. 2022 623 121862 10.1016/j.ijpharm.2022.121862 35671851
    [Google Scholar]
  29. Patel R.D. Patel A.S. Patel H.J. Sarvepalli S. Patel K. Development of rapidly soluble mebendazole nanosuspension for colorectal cancer. J. Drug Deliv. Sci. Technol. 2024 91 105276 10.1016/j.jddst.2023.105276
    [Google Scholar]
  30. Gao L. Liu G. Wang X. Liu F. Xu Y. Ma J. Preparation of a chemically stable quercetin formulation using nanosuspension technology. Int. J. Pharm. 2011 404 1-2 231 237 10.1016/j.ijpharm.2010.11.009 21093559
    [Google Scholar]
  31. Sampathi S. Haribhau C.J. Kuchana V. Junnuthula V. Dyawanapelly S. Nanosuspension encapsulated chitosan-pectin microbeads as a novel delivery platform for enhancing oral bioavailability. Carbohydr. Polym. 2023 319 121177 10.1016/j.carbpol.2023.121177 37567693
    [Google Scholar]
  32. Zhang X. Guan J. Ni R. Li L.C. Mao S. Preparation and solidification of redispersible nanosuspensions. J. Pharm. Sci. 2014 103 7 2166 2176 10.1002/jps.24015 24840928
    [Google Scholar]
  33. Yue P.F. Li G. Dan J.X. Study on formability of solid nanosuspensions during solidification: II novel roles of freezing stress and cryoprotectant property. Int. J. Pharm. 2014 475 1-2 35 48 10.1016/j.ijpharm.2014.08.041 25158243
    [Google Scholar]
  34. de Waard H. Hinrichs W.L.J. Frijlink H.W. A novel bottom–up process to produce drug nanocrystals: Controlled crystallization during freeze-drying. J. Control. Release 2008 128 2 179 183 10.1016/j.jconrel.2008.03.002 18423767
    [Google Scholar]
  35. Kibria G. Hatakeyama H. Sato Y. Harashima H. Anti-tumor effect via passive anti-angiogenesis of PEGylated liposomes encapsulating doxorubicin in drug resistant tumors. Int. J. Pharm. 2016 509 1-2 178 187 10.1016/j.ijpharm.2016.05.047 27234700
    [Google Scholar]
  36. Kalvakuntla S. Deshpande M. Attari Z. Kunnatur B.K. Preparation and characterization of nanosuspension of aprepitant by H96 process. Adv. Pharm. Bull. 2016 6 1 83 90 10.15171/apb.2016.013 27123422
    [Google Scholar]
  37. Gao L. Zhang D. Chen M. Zheng T. Wang S. Preparation and characterization of an oridonin nanosuspension for solubility and dissolution velocity enhancement. Drug Dev. Ind. Pharm. 2007 33 12 1332 1339 10.1080/03639040701741810 18097807
    [Google Scholar]
  38. Wang Y. Zheng Y. Zhang L. Wang Q. Zhang D. Stability of nanosuspensions in drug delivery. J. Control. Release 2013 172 3 1126 1141 10.1016/j.jconrel.2013.08.006 23954372
    [Google Scholar]
  39. Montalvo-González E. Tellez-Isaias G. López-Romero B.A. Polyethylene glycol/soy lecithin-nanosuspensions as carriers of acetogenins: Optimization, characterization, antibacterial and hemolytic activity. J. Drug Deliv. Sci. Technol. 2024 91 105228 10.1016/j.jddst.2023.105228
    [Google Scholar]
  40. Niwa T. Danjo K. Design of self-dispersible dry nanosuspension through wet milling and spray freeze-drying for poorly water-soluble drugs. Eur. J. Pharm. Sci. 2013 50 3-4 272 281 10.1016/j.ejps.2013.07.011 23907001
    [Google Scholar]
  41. Leung D.H. Lamberto D.J. Liu L. A new and improved method for the preparation of drug nanosuspension formulations using acoustic mixing technology. Int. J. Pharm. 2014 473 1-2 10 19 10.1016/j.ijpharm.2014.05.003 24984068
    [Google Scholar]
  42. Malgundkar H.K. Pomaje M.D. Nemade L.S. Breaking barriers with nanosuspension: A comprehensive review. Biosci. Biotechnol. Res. Asia 2024 21 1 57 68 10.13005/bbra/3202
    [Google Scholar]
  43. Butler J.M. Dressman J.B. The developability classification system: Application of biopharmaceutics concepts to formulation development. J. Pharm. Sci. 2010 99 12 4940 4954 10.1002/jps.22217 20821390
    [Google Scholar]
  44. Müller R.H. Peters K. Nanosuspensions for the formulation of poorly soluble drugs. Int. J. Pharm. 1998 160 2 229 237 10.1016/S0378‑5173(97)00311‑6
    [Google Scholar]
  45. Gao L. Zhang D. Chen M. Studies on pharmacokinetics and tissue distribution of oridonin nanosuspensions. Int. J. Pharm. 2008 355 1-2 321 327 10.1016/j.ijpharm.2007.12.016 18242896
    [Google Scholar]
  46. Keck C. Müller R. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur. J. Pharm. Biopharm. 2006 62 1 3 16 10.1016/j.ejpb.2005.05.009 16129588
    [Google Scholar]
  47. Gajera B.Y. Shah D.A. Dave R.H. Development of an amorphous nanosuspension by sonoprecipitation-formulation and process optimization using design of experiment methodology. Int. J. Pharm. 2019 559 559 348 359 10.1016/j.ijpharm.2019.01.054 30721724
    [Google Scholar]
  48. Singh S. Vaidya Y. Gulati M. Bhattacharya S. Garg V. Pandey N. Nanosuspension: Principles, perspectives and practices. Curr. Drug Deliv. 2016 13 8 1222 1246 10.2174/1567201813666160101120452 26721266
    [Google Scholar]
  49. Ganesh B. Ankita R. Preeti K. Nanosuspension: A novel drug delivery system. Int J Pharm Life Sci 2013 2 4 179 196 10.3329/ijpls.v2i4.17117
    [Google Scholar]
  50. Gupta H. Kumar G. Recent advances in ophthalmic drug delivery system. Pharmaceutics 2010 2 3 153 169
    [Google Scholar]
  51. Yadav V.R. Preparation, characterization, and in vitro/in vivo evaluation of curcumin nanosuspension for cancer therapy. J. Pharm. Sci. 2010 99 10 4261 4268 20737633
    [Google Scholar]
  52. Agrawal Y.K. Patel V.R. Nanosuspension: An approach to enhance solubility of drugs. J. Adv. Pharm. Technol. Res. 2011 2 2 81 87 10.4103/2231‑4040.82950 22171298
    [Google Scholar]
  53. Wang Y. Li X. Wang L. Xu Y. Cheng X. Wei P. Formulation and pharmacokinetic evaluation of a paclitaxel nanosuspension for intravenous delivery. Int. J. Nanomedicine 2011 6 1 1497 1507 21796250
    [Google Scholar]
  54. Tuomela A. Liu P. Puranen J. Brinzolamide nanocrystal formulations for ophthalmic delivery: Reduction of elevated intraocular pressure in vivo. Int. J. Pharm. 2014 467 1-2 34 41 10.1016/j.ijpharm.2014.03.048 24680962
    [Google Scholar]
  55. Schopf L. Enlow E. Popov A. Bourassa J. Chen H. Ocular pharmacokinetics of a novel loteprednol etabonate 0.4% ophthalmic formulation. Ophthalmol. Ther. 2014 3 1-2 63 72 10.1007/s40123‑014‑0021‑z 25134493
    [Google Scholar]
  56. Kim J.H. Jang S.W. Han S.D. Hwang H.D. Choi H.G. Development of a novel ophthalmic ciclosporin A-loaded nanosuspension using top-down media milling methods. Pharmazie 2011 66 7 491 495 21812323
    [Google Scholar]
  57. Qamar Z. Qizilbash F.F. Iqubal M.K. Nano-based drug delivery system: Recent strategies for the treatment of ocular disease and future perspective. Recent Pat. Drug Deliv. Formul. 2020 13 4 246 254 10.2174/1872211314666191224115211 31884933
    [Google Scholar]
  58. Casula L. Lai F. Pini E. Pulmonary delivery of curcumin and beclomethasone dipropionate in a multicomponent nanosuspension for the treatment of bronchial asthma. Pharmaceutics 2021 13 8 1300 10.3390/pharmaceutics13081300 34452261
    [Google Scholar]
  59. Jacobs C. Müller R.H. Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharm. Res. 2002 19 2 189 194 10.1023/A:1014276917363 11883646
    [Google Scholar]
  60. Fu T.T. Cong Z.Q. Zhao Y. Fluticasone propionate nanosuspensions for sustained nebulization delivery: An in vitro and in vivo evaluation. Int. J. Pharm. 2019 572 118839 10.1016/j.ijpharm.2019.118839 31715359
    [Google Scholar]
  61. Romero G.B. Arntjen A. Keck C.M. Müller R.H. Amorphous cyclosporin A nanoparticles for enhanced dermal bioavailability. Int. J. Pharm. 2016 498 1-2 217 224 10.1016/j.ijpharm.2015.12.019 26688038
    [Google Scholar]
  62. Ghosh I. Michniak-Kohn B. Influence of critical parameters of nanosuspension formulation on the permeability of a poorly soluble drug through the skin--a case study. AAPS PharmSciTech 2013 14 3 1108 1117 10.1208/s12249‑013‑9995‑4 23824877
    [Google Scholar]
  63. Pireddu R. Sinico C. Ennas G. Novel nanosized formulations of two diclofenac acid polymorphs to improve topical bioavailability. Eur. J. Pharm. Sci. 2015 77 208 215 10.1016/j.ejps.2015.06.006 26116276
    [Google Scholar]
  64. Oktay A.N. Karakucuk A. Ilbasmis-Tamer S. Celebi N. Dermal flurbiprofen nanosuspensions: Optimization with design of experiment approach and in vitro evaluation. Eur. J. Pharm. Sci. 2018 122 254 263 10.1016/j.ejps.2018.07.009 29981401
    [Google Scholar]
  65. Aghajani M. Shahverdi A.R. Amani A. The use of artificial neural networks for optimizing polydispersity index (PDI) in nanoprecipitation process of acetaminophen in microfluidic devices. AAPS PharmSciTech 2012 13 4 1293 1301 10.1208/s12249‑012‑9859‑3 22996673
    [Google Scholar]
  66. Sutariya V. Groshev A. Sadana P. Bhatia D. Pathak Y. Artificial neural network in drug delivery and pharmaceutical research. Open Bioinform. J. 2013 7 1 49 62 10.2174/1875036201307010049
    [Google Scholar]
  67. Sekban D.M. Yaylacı E.U. Özdemir M.E. Yaylacı M. Tounsi A. Investigating formability behavior of friction stir-welded high-strength shipbuilding steel using experimental, finite element, and artificial neural network methods. J. Mater. Eng. Perform. 2025 34 6 4942 4950 10.1007/s11665‑024‑09501‑8
    [Google Scholar]
  68. Kalepu S. Manthina M. Padavala V. Oral lipid-based drug delivery systems – An overview. Acta Pharm. Sin. B 2013 3 6 361 372 10.1016/j.apsb.2013.10.001
    [Google Scholar]
  69. Ibrahim M.M. Basalious E.B. El-Nabarawi M.A. Makhlouf A.I.A. Sayyed M.E. Ibrahim I.T. Nose to brain delivery of mirtazapine via lipid nanocapsules: Preparation, statistical optimization, radiolabeling, in vivo biodistribution and pharmacokinetic study. Drug Deliv. Transl. Res. 2024 14 9 2539 2557 10.1007/s13346‑024‑01528‑7 38376620
    [Google Scholar]
  70. Cardoso-Daodu I.M. Ilomuanya M.O. Amenaghawon A.N. Azubuike C.P. Artificial neural network for optimizing the formulation of curcumin-loaded liposomes from statistically designed experiments. Prog. Biomater. 2022 11 1 55 65 10.1007/s40204‑022‑00179‑6 35041189
    [Google Scholar]
/content/journals/cmsb/10.2174/0126661454396018250916101813
Loading
/content/journals/cmsb/10.2174/0126661454396018250916101813
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test