Skip to content
2000
image of The Role of Nanotechnology in Forensic Ballistics: A Critical Review

Abstract

Forensic ballistics is an essential field in criminal investigations that focuses on the analysis of firearms, bullets, and gunshot residue (GSR) for linking criminals to the scene of crime. There are several chemical and instrumental techniques for the analysis of such evidence. However, these techniques have certain drawbacks, like having enough quantity of samples to initiate identification, slow processing of samples, and low accurate results. Using nanotechnology in forensic ballistics elevates this field by making the techniques more advanced for analysis and offering increased accuracy and sensitivity. Over the years, certain advancements have been made like rapid gunshot residue (GSR) detection using single particle inductively coupled plasma mass spectrometry (spICP-MS). Implementing a technique in forensic ballistics widely used in nanotechnology research that uses polydimethylsiloxane polymer for replica modelling of cartridge cases allows visualization of submicrometric or nanometre size features. In this regard, an amperometric sensor was made to detect nitrite. This sensor can be used for rapid, on-site GSR screening and has the potential to integrate into portable forensic tools. Gold nanoparticles were utilized in another study to develop a sensor that leveraged gold nanoparticles to start a cascade reaction, which formed a fluorogenic response upon interaction with nitrite ions. This method can be used in analysing complex forensic samples where nitrite concentrations may be low. The present review deals with the nanotechnological advancements implemented in the field of forensic ballistics from 2012 onwards. Nanotechnology has the potential to revolutionize forensic ballistics by providing it with efficient methods for analysing ballistic evidence. As technology progresses, it will play a key role in solving crimes in the future.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454358335250320084914
2025-04-04
2025-09-27
Loading full text...

Full text loading...

References

  1. Nandi K. Sen D.J. Mahanti B. Ballistics: The modern day forensic weapon. World J Pharm Res. 2021 11 2 2534 2548
    [Google Scholar]
  2. Karger B. Forensic ballistics. Forensic Pathology Reviews 2008 139 172
    [Google Scholar]
  3. Muehlberger C.W. Col. Calvin hooker goddard 1891-1955. J. Crim. Law Criminol. 1955 46 1 103
    [Google Scholar]
  4. Hemanth K. History of forensic science. Technology in Forensic Science: Sampling, Analysis, Data and Regulations WILEY-VCH GmbH. 2020 1 16
    [Google Scholar]
  5. Heard B.J. Handbook of firearms and ballistics: Examining and interpreting forensic evidence. John Wiley & Sons 2011
    [Google Scholar]
  6. Warrier Varsha Shedge Rutwik Advances in firearm serial number restoration. J. Indian Acad. Forensic Med. 2020 42 1 75 76 10.5958/0974‑0848.2020.00020.2
    [Google Scholar]
  7. White R.M. Keller R.R. Restoration of firearm serial numbers with electron backscatter diffraction (EBSD). Forensic Sci. Int. 2015 249 266 270 10.1016/j.forsciint.2015.02.003 25747326
    [Google Scholar]
  8. Newland A. Banks E. Halámek J. Who shot the bullet? Projectile composition characterization as an evolutionary method for enhancement of ballistics evidence analysis. ACS Omega 2024 9 3 acsomega.3c06316 10.1021/acsomega.3c06316 38284046
    [Google Scholar]
  9. Dong-guang L. Dong-Watson W. Ballistics firearms identification based on images of a cartridge case and projectile. Part of the SPIE Conference on Enforcement and Security Technologies Boston, Massachusetts, November 1998, pp. 249-263. 2024
    [Google Scholar]
  10. Yalçin SA. Investigation of the variability in the tool marks produced by modified blank firing pistols on fired 7.65 mm projectiles. Science & Justice 2023 Jul 63 4 542 550
    [Google Scholar]
  11. Rice Kiegan A robust approach to automatically locating grooves in 3D bullet land scans. J. Forensic Sci. 2020 May 65 3 775 783 10.1111/1556‑4029.14263
    [Google Scholar]
  12. Kapil K. Parvesh S. Forensic applications of comparison microscope. Forensic Microscopy CRC Press 2022 10.4324/9781003120995‑8
    [Google Scholar]
  13. Jia S. Analysis of gun barrel rifling twist. AIP Conf. Proc. 2017 1839 020096 10.1063/1.4982461
    [Google Scholar]
  14. Mohd ZZ. The effect of type of firearm and shooting distance on pattern distribution, particle dispersion and amount of gunshot residue. Egypt. J. Forensic Sci. 2021 11 1 10 10.1186/s41935‑021‑00225‑7
    [Google Scholar]
  15. Miguel S. Chemical analysis of gunpowder and gunshot residues. Molecules 2023 28 14 5550 10.3390/molecules28145550
    [Google Scholar]
  16. Heramb RM McCord BR The manufacture of smokeless powders and their forensic analysis: A brief review. Forensic Sci. Commun. 2002 4 2
    [Google Scholar]
  17. Demi̇rci̇oğlu D. Yildirim M.Ş. Erkan E. Çapaci M. Tümer A.R. Akçan R. Beyond the shot: Exploring secondary transfer of gunshot residue on common surfaces and the impact of hand cleaning methods. Forensic Sci. Int. 2024 361 112135 10.1016/j.forsciint.2024.112135 38972145
    [Google Scholar]
  18. Denton J.S. Segovia A. Filkins J.A. Practical pathology of gunshot wounds. Arch. Pathol. Lab. Med. 2006 130 9 1283 1289 10.5858/2006‑130‑1283‑PPOGW 16948512
    [Google Scholar]
  19. Tokdemir M. Kafadar H. Turkoglu A. Bork T. Forensic value of gunpowder tattooing in identification of multiple entrance wounds from one bullet. Leg. Med. (Tokyo) 2007 9 3 147 150 10.1016/j.legalmed.2006.11.005 17196870
    [Google Scholar]
  20. Shubhi A. Comparison of difference in blackening obtained from a country made pistol of 7.65mm at different ranges. Int. J. Res. Appl. Sci. Eng. Technol. 2019 7 10 36 42 10.22214/ijraset.2019.10007
    [Google Scholar]
  21. Edward HJ. Forensic firearms examination. University of Strathclyde 2001
    [Google Scholar]
  22. Ohshima T. Forensic wound examination. Forensic Sci. Int. 2000 113 1-3 153 164 10.1016/S0379‑0738(00)00269‑3
    [Google Scholar]
  23. Stefanopoulos P.K. Pinialidis D.E. Hadjigeorgiou G.F. Filippakis K. Gyftokostas D. Wound ballistics of gunshot injuries. Hell. Cheirourgike 2015 87 5 351 356 10.1007/s13126‑015‑0240‑3
    [Google Scholar]
  24. Lew E. Dolinak D. Matshes E. Firearm injuries. Forensic pathology: Principles and practice. Burlington Elsevier Academic Press 2005 163 200
    [Google Scholar]
  25. Shrivastava P. Jain V.K. Nagpal S. Gunshot residue detection technologies—a review. Egypt. J. Forensic Sci. 2021 11 1 21
    [Google Scholar]
  26. Dalby O. Butler D. Birkett J.W. Analysis of gunshot residue and associated materials--a review. J. Forensic Sci. 2010 55 4 924 943 10.1111/j.1556‑4029.2010.01370.x 20384934
    [Google Scholar]
  27. Werner D. Gassner A.L. Marti J. Christen S. Wyss P. Weyermann C. Comparison of three collection methods for the sodium rhodizonate detection of gunshot residues on hands. Sci. Justice 2020 60 1 63 71 10.1016/j.scijus.2019.09.004 31924290
    [Google Scholar]
  28. De Luca B.P. Use of sodium rhodizonate in firearm use cases: Can it be useful in identifying the shooter? Euromediterranean Biomed J. 2023
    [Google Scholar]
  29. Glattstein B. Vinokurov A. Levin N. Zeichner A. Improved method for shooting distance estimation. Part 1. Bullet holes in clothing items. J. Forensic Sci. 2000 45 4 801 806 10.1520/JFS14773J 10914573
    [Google Scholar]
  30. Öğünç G.İ. Şen N. Yüksel B. Oğur E. İşcan H. Impacts of supersonic and subsonic ammunition on gunshot residue distribution. Güvenlik Bilimleri Dergisi 2024 13 1 27 62 10.28956/gbd.1384857
    [Google Scholar]
  31. Minzière V. R. The relevance of gunshot residues in forensic science. WIREs Forensic Sci. 2023 5 1 e1472 10.1002/wfs2.1472
    [Google Scholar]
  32. Lekstrom J.A. Koons R.D. Copper and nickel detection on gunshot targets by dithiooxamide test. J. Forensic Sci. 1986 31 4 1283 1291 10.1520/JFS11907J
    [Google Scholar]
  33. Dimaio V.J.M. Firearm residues. Managing Death Investigation 453
    [Google Scholar]
  34. Bhawara H.S. Mishra R. Presumptive color tests in forensic sciences: All-in-one color test in forensics. Shashwat Publication 2023
    [Google Scholar]
  35. Borgwardt T.C. Wells D.P. What does non-destructive analysis mean? Cogent Chem. 2017 3 1 1405767 10.1080/23312009.2017.1405767
    [Google Scholar]
  36. García R. Báez A.P. Atomic absorption spectrometry (AAS). Atomic Absorpt Spectrosc. 2012 1 1 13
    [Google Scholar]
  37. Zadora G. Brożek-Mucha Z. SEM–EDX—a useful tool for forensic examinations. Mater. Chem. Phys. 2003 81 2-3 345 348 10.1016/S0254‑0584(03)00018‑X
    [Google Scholar]
  38. Li X. Yü A. Xia X. Zhu Y. Song H. A study on the measurement of GSR with bloodstains by ICP-MS. Forensic Sci. Res. 2024 9 4 owad033 10.1093/fsr/owad033 39664770
    [Google Scholar]
  39. Stevens B. Bell S. Adams K. Initial evaluation of inlet thermal desorption GC–MS analysis for organic gunshot residue collected from the hands of known shooters. Forensic Chem. 2016 2 55 62 10.1016/j.forc.2016.10.001
    [Google Scholar]
  40. Karasek F.W. Clement R.E. Basic gas chromatography-mass spectrometry: Principles and techniques. Elsevier 2012
    [Google Scholar]
  41. Zuy Y. Sweck S.O. Dockery C.R. Potts G.E. HPLC detection of organic gunshot residues collected with silicone wristbands. Anal. Methods 2020 12 1 85 90 10.1039/C9AY02305D
    [Google Scholar]
  42. Tomoki N. Makoto K. Influences of particle size and content of RDX on burning characteristics of RDX-based propellant. Aerospace Sci. Technol. 2014 32 1 26 34 10.1016/j.ast.2013.12.004
    [Google Scholar]
  43. López-López M. Delgado J.J. García-Ruiz C. Ammunition identification by means of the organic analysis of gunshot residues using Raman spectroscopy. Anal. Chem. 2012 84 8 3581 3585 10.1021/ac203237w 22424274
    [Google Scholar]
  44. Vander Pyl C. Feeney W. Arroyo L. Trejos T. Capabilities and limitations of GC–MS and LC-MS/MS for trace detection of organic gunshot residues from skin specimens. Forensic Chem. 2023 33 100471 10.1016/j.forc.2023.100471
    [Google Scholar]
  45. Northrop D.M. Gunshot residue analysis by micellar electrokinetic capillary electrophoresis: Assessment for application to casework. Part II. J. Forensic Sci. 2001 46 3 560 572
    [Google Scholar]
  46. Khandasammy S.R. Halámková L. Baudelet M. Lednev I.K. Identification and highly selective differentiation of organic gunshot residues utilizing their elemental and molecular signatures. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023 291 122316 10.1016/j.saa.2023.122316 36634494
    [Google Scholar]
  47. Saverio Romolo F. Margot P. Identification of gunshot residue: A critical review. Forensic Sci. Int. 2001 119 2 195 211 10.1016/S0379‑0738(00)00428‑X 11376984
    [Google Scholar]
  48. Brożek-Mucha Z. On the prevalence of gunshot residue in selected populations – An empirical study performed with SEM-EDX analysis. Forensic Sci. Int. 2014 237 46 52 10.1016/j.forsciint.2014.01.020 24595061
    [Google Scholar]
  49. Vanini G. Destefani C.A. Merlo B.B. Carneiro M.T.W.D. Filgueiras P.R. Poppi R.J. Romão W. Forensic ballistics by inductively coupled plasma-optical emission spectroscopy: Quantification of gunshot residues and prediction of the number of shots using different firearms. Microchem. J. 2015 118 19 25 10.1016/j.microc.2014.07.016
    [Google Scholar]
  50. Aliste M. Chávez L.G. Analysis of gunshot residues as trace in nasal mucus by GFAAS. Forensic Sci. Int. 2016 261 14 18 10.1016/j.forsciint.2016.01.034 26874050
    [Google Scholar]
  51. Turillazzi E. Di Peri G.P. Nieddu A. Bello S. Monaci F. Neri M. Pomara C. Rabozzi R. Riezzo I. Fineschi V. Analytical and quantitative concentration of gunshot residues (Pb, Sb, Ba) to estimate entrance hole and shooting-distance using confocal laser microscopy and inductively coupled plasma atomic emission spectrometer analysis: An experimental study. Forensic Sci. Int. 2013 231 1-3 142 149 10.1016/j.forsciint.2013.04.006 23890629
    [Google Scholar]
  52. Goudsmits E. Sharples G.P. Birkett J.W. Recent trends in organic gunshot residue analysis. Trends Analyt. Chem. 2015 74 46 57 10.1016/j.trac.2015.05.010
    [Google Scholar]
  53. Aksoy Ç. Bora T. Şenocak N. Aydın F. A new method to reduce false positives due to antimony in detection of gunshot residues. Forensic Sci. Int. 2015 250 87 90 10.1016/j.forsciint.2015.03.006 25828380
    [Google Scholar]
  54. Alokab R. Syed A. Novel reactions for simple and sensitive spectrophotometric determination of nitrite. Talanta 2007 72 4 1239 1247 10.1016/j.talanta.2007.01.027 19071751
    [Google Scholar]
  55. Khan M.R. Wabaidur S.M. Alothman Z.A. Busquets R. Naushad M. Method for the fast determination of bromate, nitrate and nitrite by ultra performance liquid chromatography–mass spectrometry and their monitoring in Saudi Arabian drinking water with chemometric data treatment. Talanta 2016 152 513 520 10.1016/j.talanta.2016.02.036 26992549
    [Google Scholar]
  56. Zhan Y. Zeng Y. Li L. Luo F. Qiu B. Lin Z. Guo L. Ratiometric fluorescent hydrogel test kit for on-spot visual detection of nitrite. ACS Sens. 2019 4 5 1252 1260 10.1021/acssensors.9b00125 30900872
    [Google Scholar]
  57. Kikura-Hanajiri R. Martin R.S. Lunte S.M. Indirect measurement of nitric oxide production by monitoring nitrate and nitrite using microchip electrophoresis with electrochemical detection. Anal. Chem. 2002 74 24 6370 6377 10.1021/ac0204000 12510761
    [Google Scholar]
  58. Sheng Q. Liu D. Zheng J. A nonenzymatic electrochemical nitrite sensor based on Pt nanoparticles loaded Ni(OH) 2 /multi-walled carbon nanotubes nanocomposites. J. Electroanal. Chem. 2017 796 9 16 10.1016/j.jelechem.2017.04.050
    [Google Scholar]
  59. Zhang Y. Nie J. Wei H. Xu H. Wang Q. Cong Y. Tao J. Zhang Y. Chu L. Zhou Y. Wu X. Electrochemical detection of nitrite ions using Ag/Cu/MWNT nanoclusters electrodeposited on a glassy carbon electrode. Sens. Actuators B Chem. 2018 258 1107 1116 10.1016/j.snb.2017.12.001
    [Google Scholar]
  60. Pankratova N. Ghahraman Afshar M. Yuan D. Crespo G.A. Bakker E. Local acidification of membrane surfaces for potentiometric sensing of anions in environmental samples. ACS Sens. 2016 1 1 48 54 10.1021/acssensors.5b00015 29164863
    [Google Scholar]
  61. Promsuwan K. Thavarungkul P. Kanatharana P. Limbut W. Flow injection amperometric nitrite sensor based on silver microcubics-poly (acrylic acid)/poly (vinyl alcohol) modified screen printed carbon electrode. Electrochim. Acta 2017 232 357 369 10.1016/j.electacta.2017.02.138
    [Google Scholar]
  62. Zhao Z. Xia Z. Liu C. Huang H. Ye W. Green synthesis of Pd/Fe3O4 composite based on polyDOPA functionalized reduced graphene oxide for electrochemical detection of nitrite in cured food. Electrochim. Acta 2017 256 146 154 10.1016/j.electacta.2017.09.185
    [Google Scholar]
  63. Wu T. Li T. Liu Z. Guo Y. Dong C. Electrochemical sensor for sensitive detection of triclosan based on graphene/palladium nanoparticles hybrids. Talanta 2017 164 556 562 10.1016/j.talanta.2016.12.027 28107972
    [Google Scholar]
  64. Pham X.H. Li C.A. Han K.N. Huynh-Nguyen B-C. Le T-H. Ko E. Kim J.H. Seong G.H. Electrochemical detection of nitrite using urchin-like palladium nanostructures on carbon nanotube thin film electrodes. Sens. Actuators B Chem. 2014 193 815 822 10.1016/j.snb.2013.12.034
    [Google Scholar]
  65. Lu L. Highly sensitive detection of nitrite at a novel electrochemical sensor based on mutually stabilized Pt nanoclusters doped CoO nanohybrid. Sens. Actuators B Chem. 2019 281 182 190 10.1016/j.snb.2018.10.074
    [Google Scholar]
  66. Jian J.M. Fu L. Ji J. Lin L. Guo X. Ren T-L. Electrochemically reduced graphene oxide/gold nanoparticles composite modified screen-printed carbon electrode for effective electrocatalytic analysis of nitrite in foods. Sens. Actuators B Chem. 2018 262 125 136 10.1016/j.snb.2018.01.164
    [Google Scholar]
  67. Lin A.J. Wen Y. Zhang L-J. Lu B. Li Y. Jiao Y-Z. Yang H-F. Layer-by-layer construction of multi-walled carbon nanotubes, zinc oxide, and gold nanoparticles integrated composite electrode for nitrite detection. Electrochim. Acta 2011 56 3 1030 1036 10.1016/j.electacta.2010.10.058
    [Google Scholar]
  68. Yang J.H. Yang H. Liu S. Mao L. Microwave-assisted synthesis graphite-supported Pd nanoparticles for detection of nitrite. Sens. Actuators B Chem. 2015 220 652 658 10.1016/j.snb.2015.05.118
    [Google Scholar]
  69. Li L. Liu D. Wang K. Mao H. You T. Quantitative detection of nitrite with N-doped graphene quantum dots decorated N-doped carbon nanofibers composite-based electrochemical sensor. Sens. Actuators B Chem. 2017 252 17 23 10.1016/j.snb.2017.05.155
    [Google Scholar]
  70. Zhang J. Ma J. Zhang S. Wang W. Chen Z. A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles decorated carbon spheres. Sens. Actuators B Chem. 2015 211 385 391 10.1016/j.snb.2015.01.100
    [Google Scholar]
  71. Promsuwan K. Kanatharana P. Thavarungkul P. Limbut W. Nitrite amperometric sensor for gunshot residue screening. Electrochim. Acta 2020 331 135309 10.1016/j.electacta.2019.135309
    [Google Scholar]
  72. Erol Ö.Ö. Erdoğan B.Y. Onar A.N. Nitrate and nitrite determination in gunshot residue samples by capillary electrophoresis in acidic run buffer. J. Forensic Sci. 2017 62 2 423 427 10.1111/1556‑4029.13275 27874191
    [Google Scholar]
  73. Francesco V. Nanotechnology for forensic sciences: Analysis of PDMS replica of the case head of spent cartridges by optical microscopy, SEM and AFM for the ballistic identification of individual characteristic features of firearms. Forensic Sci. Int. 2012 222 1-3 288 297 10.1016/j.forsciint.2012.07.005
    [Google Scholar]
  74. Li D. Ballistics projectile image analysis for firearm identification. IEEE Trans. Image Process. 2006 15 10 2857 2865 10.1109/TIP.2006.877530 17022254
    [Google Scholar]
  75. Petraco N. Yander M. Sardone J. A method for the quantitative determination of nitrites in gunshot residue cases. Forensic Sci. Int. 1981 18 1 85 92 10.1016/0379‑0738(81)90143‑2 7216084
    [Google Scholar]
  76. Xiao N. Yu C. Rapid-response and highly sensitive noncross-linking colorimetric nitrite sensor using 4-aminothiophenol modified gold nanorods. Anal. Chem. 2010 82 9 3659 3663 10.1021/ac902924p 20373815
    [Google Scholar]
  77. Ye Y. Guo Y. Yue Y. Zhang Y. Facile colorimetric detection of nitrite based on anti-aggregation of gold nanoparticles. Anal. Methods 2015 7 10 4090 4096 10.1039/C5AY00386E
    [Google Scholar]
  78. Daniel W.L. Han M.S. Lee J.S. Mirkin C.A. Colorimetric nitrite and nitrate detection with gold nanoparticle probes and kinetic end points. J. Am. Chem. Soc. 2009 131 18 6362 6363 10.1021/ja901609k 19368386
    [Google Scholar]
  79. Xiong Y. Li M. Liu H. Xuan Z. Yang J. Liu D. Janus PEGylated gold nanoparticles: A robust colorimetric probe for sensing nitrite ions in complex samples. Nanoscale 2017 9 5 1811 1815 10.1039/C6NR07879F 28102403
    [Google Scholar]
  80. Chaiendoo K. Ngamdee K. Limbut W. Saiyasombat C. Busayaporn W. Ittisanronnachai S. Promarak V. Promsuwan K. Thavarungkul P. Kanatharana P. Ngeontae W. Gold nanoparticle-based cascade reaction-triggered fluorogenicity for highly selective nitrite ion detection in forensic samples. Microchem. J. 2021 168 106470 10.1016/j.microc.2021.106470
    [Google Scholar]
/content/journals/cms/10.2174/0126661454358335250320084914
Loading
/content/journals/cms/10.2174/0126661454358335250320084914
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test