Skip to content
2000
Volume 18, Issue 6
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Introduction

This research delves into the comprehensive characterization and comparative analysis of platinum (Pt)-doped titanium dioxide (TiO) and TiO nanoparticle thin films by focusing on their potential for sensor applications.

Method

This research encompasses a thorough exploration of the structural, morphological, optical, and sensing properties of these thin films and evaluates their suitability and performance in various sensing scenarios.

Results

It discusses the synthesis methodology, characterization techniques employed, and experimental setups for gas sensing evaluations and presents detailed results and discussions highlighting the key findings regarding the sensor capabilities of Pt-doped TiO and TiO nanoparticle thin films.

Conclusion

Powder X-ray diffraction (XRD) analysis of the prepared samples confirms the formation of a crystalline structure. This method is low-cost, extremely simple, and effective for producing TiO nanomaterials on a large scale.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454336558241029060255
2024-03-24
2025-12-07
Loading full text...

Full text loading...

References

  1. SahuMK YadavR TiwariSP Recent advances in nanotechnology.Int J Nanomater Nanotechnol Nanomed202392152310.17352/2455‑3492.000053
    [Google Scholar]
  2. MeleG. Del SoleR. LüX. Applications of TiO2 in sensor devices.In: Titanium Dioxide (Tio2) and Its Applications.Elsevier202152758110.1016/B978‑0‑12‑819960‑2.00004‑3
    [Google Scholar]
  3. LiZ. LiZ. ZuoC. FangX. Application of nanostructured TiO2 in UV photodetectors: A review.Adv. Mater.20223428210908310.1002/adma.202109083 35061927
    [Google Scholar]
  4. MathewS. JohnB.K. AbrahamT. MathewB. Metal‐doped titanium dioxide for environmental remediation, hydrogen evolution and sensing: A review.ChemistrySelect2021645127421275110.1002/slct.202103577
    [Google Scholar]
  5. Nunes SimonettiE.A. Cardoso de OliveiraT. Enrico do Carmo MachadoÁ. Coutinho SilvaA.A. Silva dos SantosA. de Simone CividanesL. TiO2 as a gas sensor: The novel carbon structures and noble metals as new elements for enhancing sensitivity - A review.Ceram. Int.20214713178441787610.1016/j.ceramint.2021.03.189
    [Google Scholar]
  6. ZhaoJ. WangH. CaiY. ZhaoJ. GaoZ. SongY.Y. The challenges and opportunities for TiO2 nanostructures in gas sensing.ACS Sens.2024941644165510.1021/acssensors.4c00137 38503265
    [Google Scholar]
  7. ChenY. WangY. LiW. Enhancement of photocatalytic performance with the use of noble-metal-decorated TiO2 nanocrystals as highly active catalysts for aerobic oxidation under visible-light irradiation.Appl. Catal. B201721035236710.1016/j.apcatb.2017.03.077
    [Google Scholar]
  8. ZhangT. ZhuJ. WangQ. Flexible antibacterial respiratory monitoring sensor based on controllable Au-modified surface of highly 001 preferred anatase titanium dioxide thin film.ACS Biomater. Sci. Eng.20241031722173310.1021/acsbiomaterials.3c01164 38373308
    [Google Scholar]
  9. YasinM.I. KhanM.I. KanwalS. A novel heterostructure of Cr-doped TiO2 for reducing the recombination rate of dye sensitized solar cells.J Korean Ceram Soc20246156958010.1007/s43207‑024‑00391‑z
    [Google Scholar]
  10. AbdelsalamE.M. MohamedY.M.A. AbdelkhalikS. El NazerH.A. AttiaY.A. Photocatalytic oxidation of nitrogen oxides (NOx) using Ag- and Pt-doped TiO2 nanoparticles under visible light irradiation.Environ. Sci. Pollut. Res. Int.20202728358283583610.1007/s11356‑020‑09649‑5 32601878
    [Google Scholar]
  11. GoharO. Zubair KhanM. BibiI. Nanomaterials for advanced energy applications: Recent advancements and future trends.Mater. Des.202424111293010.1016/j.matdes.2024.112930
    [Google Scholar]
  12. GeS. SangD. ZouL. A review on the progress of optoelectronic devices based on TiO2 thin films and nanomaterials.Nanomaterials (Basel)2023137114110.3390/nano13071141 37049236
    [Google Scholar]
  13. AmraniR. LekouiF. GaroudjaE. ZenatiY. HamriA. FilaliW. Structural and optical properties of highly Ag-doped TiO2 thin films prepared by flash thermal evaporation.Phys. Scr.20249906591410.1088/1402‑4896/ad4014
    [Google Scholar]
  14. ŠalipurH. FronczakM. PrašnikarA. Metal doped TiO2 decorated carbon nanostructured materials as an emerging photocatalysts for solar fuels production.Catal. Today202443611472410.1016/j.cattod.2024.114724
    [Google Scholar]
  15. SharmaN. KumarR. Ethanol sensing performance of sol gel driven spin coated TiO2 thin film.Mater. Today Proc.202310.1016/j.matpr.2023.08.348
    [Google Scholar]
  16. YaoK.J.A. HartitiB. KonanF.K. Sol-gel deposition of TiO2 thin films by spin coating for photovoltaic applications: Effect of acetylacetone stabilizer on structural and optical properties.Mater. Today Proc.202410.1016/j.matpr.2024.02.003
    [Google Scholar]
  17. AliA. ChiangY.W. SantosR.M. X-ray diffraction techniques for mineral characterization: A review for engineers of the fundamentals, applications, and research directions.Minerals (Basel)202212220510.3390/min12020205
    [Google Scholar]
  18. MahboobS. NivethaR. GopinathK. Facile synthesis of gold and platinum doped titanium oxide nanoparticles for antibacterial and photocatalytic activity: A photodynamic approach.Photodiagn. Photodyn. Ther.20213310214810.1016/j.pdpdt.2020.102148 33346056
    [Google Scholar]
  19. HodoroabaV.D. Chapter 4.4 - Energy-dispersive X-ray spectroscopy (EDS)In: Characterization of Nanoparticles.Elsevier 202039441710.1016/B978‑0‑12‑814182‑3.00021‑3
    [Google Scholar]
  20. WangY.H. RahmanK.H. WuC.C. ChenK.C. A review on the pathways of the improved structural characteristics and photocatalytic performance of titanium dioxide (TiO2) thin films fabricated by the magnetron-sputtering technique.Catalysts202010659810.3390/catal10060598
    [Google Scholar]
  21. SoundaryaT.L. HariniR. ManjunathK. Udayabhanu, Nirmala B, Nagaraju G. Pt-doped TiO2 nanotubes as photocatalysts and electrocatalysts for enhanced photocatalytic H2 generation, electrochemical sensing, and supercapacitor applications.Int. J. Hydrogen Energy20234882318553187410.1016/j.ijhydene.2023.04.289
    [Google Scholar]
  22. MujahidM. Al-HartomyO.A. The Effects of Pt-Doped TiO2 Nanoparticles and Thickness of Semiconducting Layers at Photoanode in the Improved Performance of Dye-Sensitized Solar Cells.Materials (Basel)20221522794110.3390/ma15227941 36431427
    [Google Scholar]
  23. GautamJ. YangJ.M. YangB.L. Transition metal co-doped TiO2 nanotubes decorated with Pt nanoparticles on optical fibers as an efficient photocatalyst for the decomposition of hazardous gaseous pollutants.Colloids Surf. A Physicochem. Eng. Asp.202264312878610.1016/j.colsurfa.2022.128786
    [Google Scholar]
  24. RaviR. GolderA.K. A tuneable bioinspired process of Pt-doping in TiO2 for improved photoelectrochemical and photocatalytic functionalities.Colloids Surf. A Physicochem. Eng. Asp.202366313103410.1016/j.colsurfa.2023.131034
    [Google Scholar]
/content/journals/cms/10.2174/0126661454336558241029060255
Loading
/content/journals/cms/10.2174/0126661454336558241029060255
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test