Skip to content
2000
Volume 18, Issue 4
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Introduction

Localized corrosion in welds has always been a very common and difficult problem in many industrial fields. Preferential corrosion usually occurs in the weld zones with irregular shapes of metal welds due to the welding process.

Methods

To address the challenge of monitoring corrosion behavior at the weld zone in real-time, a novel Ag/AgCl flexible array, arranged in a 4×8 electrode configuration, has been developed. This array is employed for monitoring of the corrosion process in Q235 steel welded joints (including single butt welds, double butt welds, and fillet welds) immersed in a 0.01 mol/L NaCl solution with a pH of 9. The measurement is conducted using a custom-made array electrode signal test system.

Results

The results demonstrate that the prepared electrode exhibits a highly responsive behavior to chlorine ions from 0.001 to 0.1 mol/L concentration and maintains excellent stability during 4000 s. The weld zone shows higher corrosion activity and trends to generate pitting corrosion for all three welded joints in the first 15 min. With the increase of time, micro pitting corrosion dissolves and expands to macro point corrosion in the next 30 min.

Conclusion

The flexible reference array electrode proves to be a powerful tool for the monitoring of carbon steel corrosion, offering a comprehensive depiction of the steel's corrosion status over time. Such insights are crucial for making accurate corrosion predictions and conducting service life evaluations of steel structures.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454286193240104114521
2024-01-26
2025-09-27
Loading full text...

Full text loading...

References

  1. JiaS TianY LiJ Field study on the characteristics of scales in damaged multi-material water supply pipelines: Insights into heavy metal and biological stability.J Hazard Mater2022424Pt A12732410.1016/j.jhazmat.2021.127324 34879551
    [Google Scholar]
  2. ZhangH. HaoF. ZhangY. LiX. GuoH. Corrosion behavior and mechanism of the high‐strength low‐alloy steel joined by multilayer and multipass welding method.Mater. Corros.202273111826183210.1002/maco.202213154
    [Google Scholar]
  3. AtapekŞ.H. TümerM. ÇelikkolE. KısasözA. KerimakM.Z. Microstructural, mechanical and corrosion behavior of UNS S31803/Hastelloy C-276 dissimilar metal welds.CIRO J. Manuf. Sci. Technol.20234012914110.1016/j.cirpj.2022.11.008
    [Google Scholar]
  4. OzeC. ColeJ. ScottA. Corrosion of metal roof materials related to volcanic ash interactions.Nat. Hazards201471178580210.1007/s11069‑013‑0943‑0
    [Google Scholar]
  5. LiY.C. ZhuW.J. SunL.L. LiL.Y. Correlation between welding structure and corrosion behavior of high strength low alloy (HSLA) ship steel in Cl--containing solutions.Int. J. Electrochem. Sci.2023181010029510.1016/j.ijoes.2023.100295
    [Google Scholar]
  6. FengJ. ChenZ. WuC. QinC. WeiX. Corrosion mechanism and damage characteristic of Q235B steel under the effect of stray current in NS4 simulated soil solution.Process Saf. Environ. Prot.2022164384910.1016/j.psep.2022.06.004
    [Google Scholar]
  7. ChenX. YuanQ. MadiganB. XueW. Long-term corrosion behavior of martensitic steel welds in static molten Pb–17Li alloy at 550°C.Corros. Sci.20159617818510.1016/j.corsci.2015.04.001
    [Google Scholar]
  8. NakadaN. NishiyamaM. KogaN. TsuchiyamaT. TakakiS. Hierarchical strain distribution analysis formed in DP steel using a combination of metallographic image and digital image correlation method.Tetsu To Hagane2014100101238124510.2355/tetsutohagane.100.1238
    [Google Scholar]
  9. LiL. LiC.Q. MahmoodianM. Effect of applied stress on corrosion and mechanical properties of mild steel.J. Mater. Civ. Eng.20193120401837510.1061/(ASCE)MT.1943‑5533.0002594
    [Google Scholar]
  10. Sánchez-CruzT.N.J. Curiel-LópezF.F. López-MorelosV.H. González-SánchezJ.A. RuizA. CarrilloE. Optimization of macro and microstructural characteristics of 316L/2205 dissimilar welds obtained by the GMAW-pulsed process.Mater. Today Commun.20233410540110.1016/j.mtcomm.2023.105401
    [Google Scholar]
  11. BassisM. RonT. LeonA. The influence of intralayer porosity and phase transition on corrosion fatigue of additively manufactured 316L stainless steel obtained by direct energy deposition process.Materials20221516548110.3390/ma15165481 36013615
    [Google Scholar]
  12. ChengW. LuoS. ChenY. Use of EIS, polarization and electrochemical noise measurements to monitor the copper corrosion in chloride media at different temperatures.Int. J. Electrochem. Sci.20191454254426310.20964/2019.05.46
    [Google Scholar]
  13. EsmailzadehS. AliofkhazraeiM. SarlakH. Interpretation of cyclic potentiodynamic polarization test results for study of corrosion behavior of metals: A review.Prot. Met. Phys. Chem. Surf.201854597698910.1134/S207020511805026X
    [Google Scholar]
  14. FuX.X. DongJ.H. HanE.H. KeW. Electrochemical impedance spectroscopy monitoring on mild steel q235 in simulated industrial atmospheric corrosion enviornment.Chin Shu Hsueh Pao20145015763
    [Google Scholar]
  15. SunF. PengX. BaiX. EIS analysis of the electrochemical characteristics of the metal–water interface under the effect of temperature.RSC Advances20221227169791699010.1039/D2RA01634F 35755583
    [Google Scholar]
  16. Arellano-PérezJ.H. Ramos NegrónO.J. Escobar-JiménezR.F. Gómez-AguilarJ.F. Uruchurtu-ChavarínJ. Development of a portable device for measuring the corrosion rates of metals based on electrochemical noise signals.Measurement2018122738110.1016/j.measurement.2018.03.008
    [Google Scholar]
  17. ShiJ.B. WangJ.H. WangK. XiaD.H. Electrochemical noise study on the corrosion behavior of 304NG stainless steel in high temperature water.Electrochemistry (Tokyo)201482864765310.5796/electrochemistry.82.647
    [Google Scholar]
  18. LiJ JiYS XuZS Microstructure evolution of interface between magnesium ammonium phosphate cement and Portland cement under sulphate corrosion environment.Sadhana - Acad Proc Eng2020451
    [Google Scholar]
  19. Sarvghad-MoghaddamM. ParviziR. DavoodiA. Haddad-SabzevarM. ImaniA. Establishing a correlation between interfacial microstructures and corrosion initiation sites in Al/Cu joints by SEM–EDS and AFM–SKPFM.Corros. Sci.20147914815810.1016/j.corsci.2013.10.039
    [Google Scholar]
  20. VuckoF. HelbertV.S. NazarovA. Quantification of hydrogen flux from atmospheric corrosion of steel using the scanning kelvin probe technique.Metals2023138142710.3390/met13081427
    [Google Scholar]
  21. ZhouX. ShiW. XiangS. Improving corrosion resistance of Zn–5Al (wt%) alloy by microalloying with samarium.J. Rare Earths202341101636164410.1016/j.jre.2022.09.002
    [Google Scholar]
  22. WangC. CaiY. YeC. In situ monitoring of the localized corrosion of 304 stainless steel in FeCl3 solution using a joint electrochemical noise and scanning reference electrode technique.Electrochem. Commun.201890111510.1016/j.elecom.2018.03.002
    [Google Scholar]
  23. FengZ.Z. SheX.M. PengJ. QiangY.J. ZhangS. Robust corrosion protection of Ni-thiolate coordination polymer/Mg(OH)2 coating on magnesium alloy AZ31.J. Mater. Res. Technol.20232624072418
    [Google Scholar]
  24. ZhangW. HoulachiG. GhaliE. Study of corrosion behavior of Pb–Ag alloy electrodes in the zinc sulfuric acid solution by scanning reference electrode technique.Hydrometallurgy202019510537110.1016/j.hydromet.2020.105371
    [Google Scholar]
  25. SheikholeslamiS. WilliamsG. McMurrayH.N. Cut-edge corrosion behavior assessment of newly developed environmental-friendly coating systems using the Scanning Vibrating Electrode Technique (SVET).Corros. Sci.202119210981310.1016/j.corsci.2021.109813
    [Google Scholar]
  26. YeZ. GuanL. LiY. Understanding the galvanic corrosion of Cu-Ni alloy/2205 DSS couple using electrochemical noise and microelectrochemical studies.Corros. Sci.202322411151210.1016/j.corsci.2023.111512
    [Google Scholar]
  27. LiJ. QianF. GuoC. WangN. ChenZ. WangL. Photoelectrochemical effect of Cu2O on the corrosion behavior of Cu in sodium sulfate solution.J. Mater. Sci. Technol.2023160465410.1016/j.jmst.2023.03.020
    [Google Scholar]
  28. XiaoG. ZhuB. ZhangY. GaoH. LiK. CAN-net: A multi-hidden layer attention deep learning method for surface roughness prediction during abrasive belt grinding of superalloy with local weights.Int. J. Artif. Intell. Tools2023326235002410.1142/S0218213023500240
    [Google Scholar]
  29. JiangX. QiH. QiangX.H. ZhaoB.S. DongH. A convolutional neural network-based corrosion damage determination method for localized random pitting steel columns.Appl. Sci.20231315
    [Google Scholar]
  30. ZhangZ. PanH. WangX. LinZ. Deep learning empowered structural health monitoring and damage diagnostics for structures with weldment via decoding ultrasonic guided wave.Sensors20222214539010.3390/s22145390 35891068
    [Google Scholar]
  31. Vu-BacN. LahmerT. ZhuangX. Nguyen-ThoiT. RabczukT. A software framework for probabilistic sensitivity analysis for computationally expensive models.Adv. Eng. Softw.2016100193110.1016/j.advengsoft.2016.06.005
    [Google Scholar]
  32. SamaniegoE. AnitescuC. GoswamiS. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications.Comput. Methods Appl. Mech. Eng.202036211279010.1016/j.cma.2019.112790
    [Google Scholar]
  33. ZhangM. GeH.H. WangX.J. MengX.J. ZhaoY.Z. LiaoQ.Q. Research into the corrosion behavior of carbon steel in simulated reverse osmosis product water and seawater using a wire beam electrode.Anti-Corros. Methods Mater.201562317618110.1108/ACMM‑01‑2015‑1496
    [Google Scholar]
  34. RaflaV.N. KhullarP. KellyR.G. ScullyJ.R. Coupled multi-electrode array with a sintered Ag/AgCl counter/reference electrode to investigate AA7050-T7451 and type 316 stainless steel galvanic couple under atmospheric conditions.J. Electrochem. Soc.20181659C562C57210.1149/2.1001809jes
    [Google Scholar]
  35. JinM. JiangL. XuJ. Electrochemical characterization of solid Ag/AgCl reference electrode with different electrolytes for corrosion monitoring of steel in concrete.Electrochemistry201684638338910.5796/electrochemistry.84.383
    [Google Scholar]
  36. WangK. VarelaF.B. TanM.Y. Probing dynamic and localised corrosion processes on buried steel under coating disbondments of various geometries.Corros. Sci.201915015116010.1016/j.corsci.2019.01.034
    [Google Scholar]
  37. MahdaviF. ForsythM. TanM.Y.J. Understanding the effects of applied cathodic protection potential and environmental conditions on the rate of cathodic disbondment of coatings by means of local electrochemical measurements on a multi-electrode array.Prog. Org. Coat.2017103839210.1016/j.porgcoat.2016.10.020
    [Google Scholar]
  38. VarelaF. TanM.Y. ForsythM. Electrochemical method for studying localized corrosion beneath disbonded coatings under cathodic protection.J. Electrochem. Soc.201516210C515C52710.1149/2.0301510jes
    [Google Scholar]
  39. JamaliS.S. MillsD.J. Studying inhomogeneity of organic coatings using wire beam multielectrode and physicomechanical testing.Corros. Eng. Sci. Technol.201348748949510.1179/1743278213Y.0000000114
    [Google Scholar]
  40. YangL.J. MaZ.P. ZhengY.F. The study of corrosion behaviors of carbon steel weldments and their inhibition in simulated pore solution using multi-electrode array technique.Appl. Sci.20211118
    [Google Scholar]
  41. HuJ. DengP. LiX. ZhangJ. WangG. The vertical non-uniform corrosion of Reinforced concrete exposed to the marine environments.Constr. Build. Mater.201818318018810.1016/j.conbuildmat.2018.06.015
    [Google Scholar]
  42. SuarezE.M. LepkováK. ForsythM. TanM.Y. KinsellaB. MachucaL.L. In situ investigation of under-deposit microbial corrosion and its inhibition using a multi-electrode array system.Front. Bioeng. Biotechnol.2022980361010.3389/fbioe.2021.803610 35083205
    [Google Scholar]
  43. FanM.M. LiuH.F. DongZ.H. Microbiologically influenced corrosion of X60 carbon steel in CO2 ‐saturated oilfield flooding water.Mater. Corros.201364324224610.1002/maco.201106154
    [Google Scholar]
  44. GuoY. Investigation of crevice corrosion behavior of HRB355 steel in 3.5% NaCl solution using coupled multi-electrode arrays.Int. J. Electrochem. Sci.202116821084710.20964/2021.08.47
    [Google Scholar]
  45. LinC.J. ChenL.J. DuR.G. FengZ.D. TanJ.G. DaiH.P. Microelectrode studies on the pitting corrosion process of stainless steel.Electrochemical19981217
    [Google Scholar]
  46. LinC.J. LiY. LinB. Development of scanning electrochemical microprobe and its application in localized corrosion studies.Electrochemical200915121128
    [Google Scholar]
  47. YeC.Q. HuR.G. HouR.Q. WangX.P. DuR.G. LinC.J. Scanning microelectrode method to study the local corrosion behavior of sensitized 304 stainless steel.Electrochemical201319507511
    [Google Scholar]
  48. LiL.Q. DongS.G. WangW. Macroscopic corrosion cell and microscopic corrosion cell interactions during early corrosion of reinforcing steel in concrete.Sci. China Technol. Sci.20104011041108
    [Google Scholar]
  49. YangW.H. HuR.G. YeC.Q. HangW. LiN. LinC.J. Study of 316 stainless steel weld corrosion behavior by array reference electrode method.Electrochemical201117373379
    [Google Scholar]
  50. GaoL.L. ZhangY.H. CaoL.H. LiC.J. DuM. Fabrication of Ag/AgCl microelectrode beam and its effectiveness in in-situ detection of localized corrosion of welds.Material Protection2012456365
    [Google Scholar]
  51. WangJ. ChengY. LiB. ChenC. Effects of multi-pass friction stir processing on microstructures and mechanical properties of the 1060Al/Q235 composite plate.Metals202010329810.3390/met10030298
    [Google Scholar]
  52. ChavesI.A. MelchersR.E. Pitting corrosion in pipeline steel weld zones.Corros. Sci.201153124026403210.1016/j.corsci.2011.08.005
    [Google Scholar]
  53. PouryazdanA. CostaJ.C. Garcia-GarciaL. Design and characterisation of a non-contact flexible sensor array for electric potential imaging applications.IEEE Sens. J.20212123263282633610.1109/JSEN.2021.3064276
    [Google Scholar]
  54. NodaT. AzumaT. OhtakeY. SakumaI. TomiiN. Ultrasound imaging with a flexible probe based on element array geometry estimation using deep neural network.IEEE Trans. Ultrason. Ferroelectr. Freq. Control202269123232324210.1109/TUFFC.2022.3210701 36170409
    [Google Scholar]
  55. ScottiA. MonteiroL.S. A methodology for parameterization of the AC MIG/MAG process.Soldag. Insp.201217327127710.1590/S0104‑92242012000300011
    [Google Scholar]
  56. ShaoM. FuY. HuR. LinC.J.M.S. A study on pitting corrosion of aluminum alloy 2024-T3 by scanning microreference electrode technique.Mater. Sci. Eng.20033441-2323327
    [Google Scholar]
  57. LinB. HuR. YeC. LiY. LinC. A study on the initiation of pitting corrosion in carbon steel in chloride-containing media using scanning electrochemical probes.Electrochim. Acta201055226542654510.1016/j.electacta.2010.06.024
    [Google Scholar]
  58. YangWH HuRG YeCQ HangW LiN LinCJ Corrosion behavior of 316 stainless steel welds studied by array reference electrode methodIn: electrochemical.2011
    [Google Scholar]
  59. L.J. R. Study on the corrosion processes ofreinforced concrete structure by FTIR-MIR and array electrodes technique.XiamenSchool of Principle, Xiamen University2010
    [Google Scholar]
  60. ParviziR. HughesA.E. TanM.Y.J. New approach to probing localised corrosion processes over wide length and time scales using integrated multi-scale electrode arrays.Corros. Sci.202118110923810.1016/j.corsci.2021.109238
    [Google Scholar]
  61. SunY.L. ObasiG. HamelinC.J. Characterisation and modelling of tempering during multi-pass welding.J. Mater. Process. Technol.201927011813110.1016/j.jmatprotec.2019.02.015
    [Google Scholar]
  62. XuB.S. FangJ.X. DongS.Y. Heat-affected zone microstructure evolution and its effects on mechanical properties for laser cladding fv520b stainless steel.Chin Shu Hsueh Pao20165211910.3724/SP.J.1037.2011.00496
    [Google Scholar]
  63. DuJ.S. HeK. XuY. Galvanic transformation dynamics in heterostructured nanoparticles.Adv. Funct. Mater.20213146210586610.1002/adfm.202105866
    [Google Scholar]
  64. ZhengJ. LiuR. NingL. Selective corrosion of cast nickel–aluminum bronze in seawater.Mater. Corros.202374336437210.1002/maco.202213482
    [Google Scholar]
  65. WangJ.M. SuH.Z. ChenK. DuD.H. ZhangL.F. ShenZ. Effect of delta-ferrite on the stress corrosion cracking behavior of 321 stainless steel.Corros. Sci.201915810.1016/j.corsci.2019.07.005
    [Google Scholar]
  66. LiZ. XueW. ChenY. YuW. XiaoK. Microstructure and grain boundary corrosion mechanism of pearlitic material.J. Mater. Eng. Perform.202231148349410.1007/s11665‑021‑06171‑8
    [Google Scholar]
  67. EklundG.S. On the initiation of crevice corrosion on stainless steel.J. Electrochem. Soc.1976123217017310.1149/1.2132779
    [Google Scholar]
  68. DwivediD. LepkováK. BeckerT. Carbon steel corrosion: A review of key surface properties and characterization methods.RSC Advances2017784580461010.1039/C6RA25094G
    [Google Scholar]
  69. ChunxiaoL. The causes and solutions of the weld corrosion.Total Corrosion20041861012
    [Google Scholar]
  70. LIJ. ZCZ. QXP. Analysis on microstructure and hardness of deposited metals on substrate Q235 steel by shielded metal arc welding process.Electric Welding Machine.200737714
    [Google Scholar]
  71. NewmanR.C. 2001 W.R. Whitney award lecture: Understanding the corrosion of stainless steel.Corrosion200157121030104110.5006/1.3281676
    [Google Scholar]
  72. StrehblowH-H. Mechanisms of Pitting Corrosion.New YorkCorrosion Mechanisms in Theory and Practice200210.1201/9780203909188.ch8
    [Google Scholar]
  73. BöhniH. Localized corrosion - Mechanisms and methods.Mater. Sci. Forum1992111-11240141410.4028/www.scientific.net/MSF.111‑112.401
    [Google Scholar]
  74. YangM. KainumaS. Investigation of steel corrosion near the air–liquid interface in NaCl solution and soil environment.Corros. Eng. Sci. Technol.202156769070210.1080/1478422X.2021.1943818
    [Google Scholar]
  75. MatinS. TahmasebiA. MomeniM. Use of multielectrode arrays and statistical analysis to investigate the pitting probability of copper. Part I: The effect of chloride.J. Electrochem. Soc.2022169606150310.1149/1945‑7111/ac78d3
    [Google Scholar]
/content/journals/cms/10.2174/0126661454286193240104114521
Loading
/content/journals/cms/10.2174/0126661454286193240104114521
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Ag/AgCl; Flexible reference array electrodes; Q235 steel; SCE; SRET; weld corrosion
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test