Skip to content
2000
Volume 18, Issue 5
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Biomaterials have emerged as promising tools in the field of neuroprotection, offering innovative approaches for the treatment of neurological disorders and injuries. This review provides an overview of the role of biomaterials in neuroprotection, focusing on their advancements in drug delivery systems, neural tissue engineering, bioactive coatings, and implants. We explore the mechanisms of action of biomaterials and their potential to enhance neuroprotection. Additionally, we discuss the preclinical evaluation of biomaterials, the use of animal models, and their translation to clinical applications. The future perspective highlights emerging trends, including nanotechnology, smart biomaterials, and the integration of biomaterials with cell-based therapies. These advancements, along with considerations of ethics, sustainability, and cost-effectiveness, hold great promise for advancing neuroprotective interventions and improving outcomes for patients with neurological conditions.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454280974231220071848
2024-01-25
2025-10-18
Loading full text...

Full text loading...

References

  1. MukherjeeS. MadamsettyV.S. BhattacharyaD. Roy ChowdhuryS. PaulM.K. MukherjeeA. Recent advancements of nanomedicine in neurodegenerative disorders theranostics.Adv. Funct. Mater.20203035200305410.1002/adfm.202003054
    [Google Scholar]
  2. OriveG. AnituaE. PedrazJ.L. EmerichD.F. Biomaterials for promoting brain protection, repair and regeneration.Nat. Rev. Neurosci.200910968269210.1038/nrn268519654582
    [Google Scholar]
  3. PalocziJ. VargaZ.V. HaskoG. PacherP. Neuroprotection in oxidative stress-related neurodegenerative diseases: Role of endocannabinoid system modulation.Antioxid. Redox Signal.20182917510810.1089/ars.2017.714428497982
    [Google Scholar]
  4. KimH. CookeM.J. ShoichetM.S. Creating permissive microenvironments for stem cell transplantation into the central nervous system.Trends Biotechnol.2012301556310.1016/j.tibtech.2011.07.00221831464
    [Google Scholar]
  5. LiJ. MooneyD.J. Designing hydrogels for controlled drug delivery.Nat. Rev. Mater.20161121607110.1038/natrevmats.2016.7129657852
    [Google Scholar]
  6. EchaveM.C. Saenz del BurgoL. PedrazJ.L. OriveG. Gelatin as biomaterial for tissue engineering.Curr. Pharm. Des.201723243567358428494717
    [Google Scholar]
  7. GoriM. VadalàG. GiannitelliS.M. DenaroV. Di PinoG. Biomedical and tissue engineering strategies to control foreign body reaction to invasive neural electrodes.Front. Bioeng. Biotechnol.2021965903310.3389/fbioe.2021.65903334113605
    [Google Scholar]
  8. LacourS.P. CourtineG. GuckJ. Materials and technologies for soft implantable neuroprostheses.Nat. Rev. Mater.20161101606310.1038/natrevmats.2016.63
    [Google Scholar]
  9. ManjiH.K. QuirozJ.A. SpornJ. PayneJ.L. DenicoffK. A GrayN. ZarateC.A.Jr CharneyD.S. Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression.Biol. Psychiatry200353870774210.1016/S0006‑3223(03)00117‑312706957
    [Google Scholar]
  10. TakeshitaY. RansohoffR.M. Inflammatory cell trafficking across the blood–brain barrier: Chemokine regulation and in vitro models.Immunol. Rev.2012248122823910.1111/j.1600‑065X.2012.01127.x22725965
    [Google Scholar]
  11. TeixeiraM.I. LopesC.M. AmaralM.H. CostaP.C. Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases.Eur. J. Pharm. Biopharm.202014919221710.1016/j.ejpb.2020.01.00531982574
    [Google Scholar]
  12. GreeneC. CampbellM. Tight junction modulation of the blood brain barrier: CNS delivery of small molecules.Tissue Barriers201641e113801710.1080/21688370.2015.113801727141420
    [Google Scholar]
  13. BarbuE. MolnàrÉ. TsibouklisJ. GóreckiD.C. The potential for nanoparticle-based drug delivery to the brain: Overcoming the blood–brain barrier.Expert Opin. Drug Deliv.20096655356510.1517/1742524090293914319435406
    [Google Scholar]
  14. Salahpour AnarjanF. Active targeting drug delivery nanocarriers: Ligands.Nano-Struct. Nano-Objects20191910037010.1016/j.nanoso.2019.100370
    [Google Scholar]
  15. DingS. KhanA.I. CaiX. SongY. LyuZ. DuD. DuttaP. LinY. Overcoming blood-brain barrier transport: Advances in nanoparticle-based drug delivery strategies.Mater. Today20203711212510.1016/j.mattod.2020.02.00133093794
    [Google Scholar]
  16. LaracuenteM.L. YuM.H. McHughK.J. Zero-order drug delivery: State of the art and future prospects.J. Control. Release202032783485610.1016/j.jconrel.2020.09.02032931897
    [Google Scholar]
  17. ChenZ. LvZ. SunY. ChiZ. QingG. Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications.J. Mater. Chem. B Mater. Biol. Med.20208152951297310.1039/C9TB02271F32159205
    [Google Scholar]
  18. DanhierF. AnsorenaE. SilvaJ.M. CocoR. Le BretonA. PréatV. PLGA-based nanoparticles: An overview of biomedical applications.J. Control. Release2012161250552210.1016/j.jconrel.2012.01.04322353619
    [Google Scholar]
  19. MohiteP.B. AdhavS.S. A hydrogels: Methods of preparation and applications.Int. J. Adv. Pharm.2017637985
    [Google Scholar]
  20. PrankeP. dos SantosM.G. PrestesJ.P. Nanopolymers: Powerful tools in neuroprotection and neuroregeneration.Curr. Nanosci.202218666867410.2174/1573413718666211217123809
    [Google Scholar]
  21. NanceE. PunS.H. SaigalR. SellersD.L. Drug delivery to the central nervous system.Nat. Rev. Mater.20217431433110.1038/s41578‑021‑00394‑w
    [Google Scholar]
  22. LiuZ. WanX. WangZ.L. LiL. Electroactive biomaterials and systems for cell fate determination and tissue regeneration: Design and applications.Adv. Mater.20213332200742910.1002/adma.20200742934117803
    [Google Scholar]
  23. ShanD. MaC. YangJ. Enabling biodegradable functional biomaterials for the management of neurological disorders.Adv. Drug Deliv. Rev.201914821923810.1016/j.addr.2019.06.00431228483
    [Google Scholar]
  24. BoniR. AliA. ShavandiA. ClarksonA.N. Current and novel polymeric biomaterials for neural tissue engineering.J. Biomed. Sci.20182519010.1186/s12929‑018‑0491‑830572957
    [Google Scholar]
  25. KaurG. AdhikariR. CassP. BownM. GunatillakeP. Electrically conductive polymers and composites for biomedical applications.RSC Advances2015547375533756710.1039/C5RA01851J
    [Google Scholar]
  26. LuoY. YangH. ZhouY.F. HuB. Dual and multi-targeted nanoparticles for site-specific brain drug delivery.J. Control. Release202031719521510.1016/j.jconrel.2019.11.03731794799
    [Google Scholar]
  27. ManoukianO.S. BakerJ.T. RudraiahS. ArulM.R. VellaA.T. DombA.J. KumbarS.G. Functional polymeric nerve guidance conduits and drug delivery strategies for peripheral nerve repair and regeneration.J. Control. Release2020317789510.1016/j.jconrel.2019.11.02131756394
    [Google Scholar]
  28. González-NietoD. Fernández-SerraR. Pérez-RigueiroJ. PanetsosF. Martinez-MurilloR. GuineaG.V. Biomaterials to neuroprotect the stroke brain: A large opportunity for narrow time windows.Cells202095107410.3390/cells905107432357544
    [Google Scholar]
  29. SalinasA.J. Vallet-RegíM. Bioactive ceramics: From bone grafts to tissue engineering.RSC Advances2013328111161113110.1039/c3ra00166k
    [Google Scholar]
  30. SpeerR.E. KaruppagounderS.S. BassoM. SleimanS.F. KumarA. BrandD. SmirnovaN. GazaryanI. KhimS.J. RatanR.R. Hypoxia-inducible factor prolyl hydroxylases as targets for neuroprotection by “antioxidant” metal chelators: From ferroptosis to stroke.Free Radic. Biol. Med.201362263610.1016/j.freeradbiomed.2013.01.02623376032
    [Google Scholar]
  31. González-NietoD. Fernandez-SerraR. GallegoR. LozanoP. Hydrogels for neuroprotection and functional rewiring: A new era for brain engineering.Neural Regen. Res.202015578378910.4103/1673‑5374.26889131719237
    [Google Scholar]
  32. SiddiqiK.S. HusenA. SohrabS.S. YassinM.O. Recent status of nanomaterial fabrication and their potential applications in neurological disease management.Nanoscale Res. Lett.201813123110.1186/s11671‑018‑2638‑730097809
    [Google Scholar]
  33. ChenJ. JinJ. LiK. ShiL. WenX. FangF. Progresses and prospects of neuroprotective agents-loaded nanoparticles and biomimetic material in ischemic stroke.Front. Cell. Neurosci.20221686832310.3389/fncel.2022.86832335480961
    [Google Scholar]
  34. PakulskaM.M. BalliosB.G. ShoichetM.S. Injectable hydrogels for central nervous system therapy.Biomed. Mater.20127202410110.1088/1748‑6041/7/2/02410122456684
    [Google Scholar]
  35. MohtaramN.K. MontgomeryA. WillerthS.M. Biomaterial-based drug delivery systems for the controlled release of neurotrophic factors.Biomed. Mater.20138202200110.1088/1748‑6041/8/2/02200123385544
    [Google Scholar]
  36. KimY.S. MajidM. MelchiorriA.J. MikosA.G. Applications of decellularized extracellular matrix in bone and cartilage tissue engineering.Bioeng. Transl. Med.201941839510.1002/btm2.1011030680321
    [Google Scholar]
  37. SushnithaM. EvangelopoulosM. TasciottiE. TaraballiF. Cell membrane-based biomimetic nanoparticles and the immune system: immunomodulatory interactions to therapeutic applications.Front. Bioeng. Biotechnol.2020862710.3389/fbioe.2020.0062732626700
    [Google Scholar]
  38. YaoY. ZhangH. WangZ. DingJ. WangS. HuangB. KeS. GaoC. Reactive oxygen species (ROS)-responsive biomaterials mediate tissue microenvironments and tissue regeneration.J. Mater. Chem. B Mater. Biol. Med.20197335019503710.1039/C9TB00847K31432870
    [Google Scholar]
  39. RatheeshG. VenugopalJ.R. ChinappanA. EzhilarasuH. SadiqA. RamakrishnaS. 3D fabrication of polymeric scaffolds for regenerative therapy.ACS Biomater. Sci. Eng.2017371175119410.1021/acsbiomaterials.6b0037033440508
    [Google Scholar]
  40. ChengJ. JunY. QinJ. LeeS.H. Electrospinning versus microfluidic spinning of functional fibers for biomedical applications.Biomaterials201711412114310.1016/j.biomaterials.2016.10.04027880892
    [Google Scholar]
  41. GuzziE.A. TibbittM.W. Additive manufacturing of precision biomaterials.Adv. Mater.20203213190199410.1002/adma.20190199431423679
    [Google Scholar]
  42. XieJ. MacEwanM.R. SchwartzA.G. XiaY. Electrospun nanofibers for neural tissue engineering.Nanoscale201021354410.1039/B9NR00243J20648362
    [Google Scholar]
  43. NagarajanN. Dupret-BoriesA. KarabulutE. ZorlutunaP. VranaN.E. Enabling personalized implant and controllable biosystem development through 3D printing.Biotechnol. Adv.201836252153310.1016/j.biotechadv.2018.02.00429428560
    [Google Scholar]
  44. NaqviS. PanghalA. FloraS.J.S. Nanotechnology: A promising approach for delivery of neuroprotective drugs.Front. Neurosci.20201449410.3389/fnins.2020.0049432581676
    [Google Scholar]
  45. SaracinoG.A.A. CigogniniD. SilvaD. CapriniA. GelainF. Nanomaterials design and tests for neural tissue engineering.Chem. Soc. Rev.201342122526210.1039/C2CS35065C22990473
    [Google Scholar]
  46. WadeR.J. BurdickJ.A. Engineering ECM signals into biomaterials.Mater. Today2012151045445910.1016/S1369‑7021(12)70197‑9
    [Google Scholar]
  47. BasakS. The age of multistimuli-responsive nanogels: The finest evolved nano delivery system in biomedical sciences.Biotechnol. Bioprocess Eng.; BBE202025565566910.1007/s12257‑020‑0152‑0
    [Google Scholar]
  48. ZhaoZ. UkidveA. KimJ. MitragotriS. Targeting strategies for tissue-specific drug delivery.Cell2020181115116710.1016/j.cell.2020.02.00132243788
    [Google Scholar]
  49. geor malarC. SeenuvasanM. KumarK.S. KumarA. ParthibanR. Review on surface modification of nanocarriers to overcome diffusion limitations: An enzyme immobilization aspect.Biochem. Eng. J.202015810757410.1016/j.bej.2020.107574
    [Google Scholar]
  50. UhrichK.E. CannizzaroS.M. LangerR.S. ShakesheffK.M. Polymeric systems for controlled drug release.Chem. Rev.199999113181319810.1021/cr940351u11749514
    [Google Scholar]
  51. UllahS. ChenX. Fabrication, applications and challenges of natural biomaterials in tissue engineering.Appl. Mater. Today20202010065610.1016/j.apmt.2020.100656
    [Google Scholar]
  52. GillespieL.N. Regulation of axonal growth and guidance by the neurotrophin family of neurotrophic factors.Clin. Exp. Pharmacol. Physiol.2003301072473310.1046/j.1440‑1681.2003.03909.x14516410
    [Google Scholar]
  53. AminiS. SalehiH. SetayeshmehrM. GhorbaniM. Natural and synthetic polymeric scaffolds used in peripheral nerve tissue engineering: Advantages and disadvantages.Polym. Adv. Technol.20213262267228910.1002/pat.5263
    [Google Scholar]
  54. MitchellA.C. BriquezP.S. HubbellJ.A. CochranJ.R. Engineering growth factors for regenerative medicine applications.Acta Biomater.20163011210.1016/j.actbio.2015.11.00726555377
    [Google Scholar]
  55. KimS.U. LeeH.J. KimY.B. Neural stem cell‐based treatment for neurodegenerative diseases.Neuropathology201333549150410.1111/neup.1202023384285
    [Google Scholar]
  56. CaiadoF. DiasS. Endothelial progenitor cells and integrins: Adhesive needs.Fibrog. Tissue Repair201251410.1186/1755‑1536‑5‑422410175
    [Google Scholar]
  57. VaesJ.E.G. BrandtM.J.V. WandersN. BendersM.J.N.L. de TheijeC.G.M. GressensP. NijboerC.H. The impact of trophic and immunomodulatory factors on oligodendrocyte maturation: Potential treatments for encephalopathy of prematurity.Glia20216961311134010.1002/glia.2393933595855
    [Google Scholar]
  58. ZischA.H. LutolfM.P. HubbellJ.A. Biopolymeric delivery matrices for angiogenic growth factors.Cardiovasc. Pathol.200312629531010.1016/S1054‑8807(03)00089‑914630296
    [Google Scholar]
  59. RhamanM.M. IslamM.R. AkashS. MimM. Noor alamM. NepovimovaE. ValisM. KucaK. SharmaR. Exploring the role of nanomedicines for the therapeutic approach of central nervous system dysfunction: At a glance.Front. Cell Dev. Biol.20221098947110.3389/fcell.2022.98947136120565
    [Google Scholar]
  60. GuX. DingF. WilliamsD.F. Neural tissue engineering options for peripheral nerve regeneration.Biomaterials201435246143615610.1016/j.biomaterials.2014.04.06424818883
    [Google Scholar]
  61. ChenM. Recent advances and perspective of nanotechnology-based implants for orthopedic applications.Front. Bioeng. Biotechnol.20221087825710.3389/fbioe.2022.87825735547165
    [Google Scholar]
  62. UzM. MallapragadaS.K. Conductive polymers and hydrogels for neural tissue engineering.J. Indian Inst. Sci.201999348951010.1007/s41745‑019‑00126‑8
    [Google Scholar]
  63. AngiusD. WangH. SpinnerR.J. Gutierrez-CottoY. YaszemskiM.J. WindebankA.J. A systematic review of animal models used to study nerve regeneration in tissue-engineered scaffolds.Biomaterials201233328034803910.1016/j.biomaterials.2012.07.05622889485
    [Google Scholar]
  64. KwonB.K. OkonE.B. TsaiE. BeattieM.S. BresnahanJ.C. MagnusonD.K. ReierP.J. McTigueD.M. PopovichP.G. BlightA.R. OudegaM. GuestJ.D. WeaverL.C. FehlingsM.G. TetzlaffW. A grading system to evaluate objectively the strength of pre-clinical data of acute neuroprotective therapies for clinical translation in spinal cord injury.J. Neurotrauma20112881525154310.1089/neu.2010.129620507235
    [Google Scholar]
  65. CernakI. SteinD.G. ElderG.A. AhlersS. CurleyK. DePalmaR.G. DudaJ. IkonomovicM. IversonG.L. KobeissyF. KoliatsosV.E. LeggieriM.J.Jr PacificoA.M. SmithD.H. SwansonR. ThompsonF.J. TortellaF.C. Preclinical modelling of militarily relevant traumatic brain injuries: Challenges and recommendations for future directions.Brain Inj.20173191168117610.1080/02699052.2016.127477928981339
    [Google Scholar]
  66. MorettiA. FerrariF. VillaR.F. Neuroprotection for ischaemic stroke: Current status and challenges.Pharmacol. Ther.2015146233410.1016/j.pharmthera.2014.09.00325196155
    [Google Scholar]
  67. PuzzoD. LeeL. PalmeriA. CalabreseG. ArancioO. Behavioral assays with mouse models of Alzheimer’s disease: Practical considerations and guidelines.Biochem. Pharmacol.201488445046710.1016/j.bcp.2014.01.01124462904
    [Google Scholar]
  68. EbertM.L.A. SchmidtV.F. PfaffL. von ThadenA. KimmM.A. WildgruberM. Animal models of neointimal hyperplasia and restenosis: Species-specific differences and implications for translational research.JACC Basic Transl. Sci.202161190091710.1016/j.jacbts.2021.06.00634869956
    [Google Scholar]
  69. LiH.W. ZhangL. QinC. Current state of research on non‐human primate models of Alzheimer’s disease.Animal Model. Exp. Med.20192422723810.1002/ame2.1209231942555
    [Google Scholar]
  70. BassoM.A. FreyS. GuerrieroK.A. JarrayaB. KastnerS. KoyanoK.W. LeopoldD.A. MurphyK. PoirierC. PopeW. SilvaA.C. TanseyG. UhrigL. Using non-invasive neuroimaging to enhance the care, well-being and experimental outcomes of laboratory non-human primates (monkeys).Neuroimage202122811766710.1016/j.neuroimage.2020.11766733359353
    [Google Scholar]
  71. HerrmannA.M. MeckelS. GounisM.J. KringeL. MotschallE. MüllingC. BoltzeJ. Large animals in neurointerventional research: A systematic review on models, techniques and their application in endovascular procedures for stroke, aneurysms and vascular malformations.J. Cereb. Blood Flow Metab.201939337539410.1177/0271678X1982744630732549
    [Google Scholar]
  72. MarklundN. HilleredL. Animal modelling of traumatic brain injury in preclinical drug development: Where do we go from here?Br. J. Pharmacol.201116441207122910.1111/j.1476‑5381.2010.01163.x21175576
    [Google Scholar]
  73. LovettM.L. NielandT.J.F. DingleY.T.L. KaplanD.L. Innovations in 3D tissue models of human brain physiology and diseases.Adv. Funct. Mater.20203044190914610.1002/adfm.20190914634211358
    [Google Scholar]
  74. ArcherD.P. WalkerA.M. McCannS.K. MoserJ.J. AppireddyR.M. Anesthetic neuroprotection in experimental stroke in rodents: A systematic review and meta-analysis.Anesthesiology2017126465366510.1097/ALN.000000000000153428182585
    [Google Scholar]
  75. CapitanioJ.P. EmborgM.E. Contributions of non-human primates to neuroscience research.Lancet200837196181126113510.1016/S0140‑6736(08)60489‑418374844
    [Google Scholar]
  76. BusijaD.W. LaczaZ. RajapakseN. ShimizuK. KisB. BariF. DomokiF. HoriguchiT. Targeting mitochondrial ATP-sensitive potassium channels-a novel approach to neuroprotection.Brain Res. Brain Res. Rev.200446328229410.1016/j.brainresrev.2004.06.01115571770
    [Google Scholar]
  77. StellaS.L.Jr GeathersJ.S. WeberS.R. GrilloM.A. BarberA.J. SundstromJ.M. GrilloS.L. Neurodegeneration, neuroprotection and regeneration in the zebrafish retina.Cells202110363310.3390/cells1003063333809186
    [Google Scholar]
  78. PrasadhS. WongR.C.W. Unraveling the mechanical strength of biomaterials used as a bone scaffold in oral and maxillofacial defects.Oral Sci. Int.2018152485510.1016/S1348‑8643(18)30005‑3
    [Google Scholar]
  79. AndersonJ.M. Biological responses to materials.Annu. Rev. Mater. Res.20013118111010.1146/annurev.matsci.31.1.81
    [Google Scholar]
  80. OmidianH. BabanejadN. CubedduL.X. Nanosystems in cardiovascular medicine: Advancements, applications, and future perspectives.Pharmaceutics2023157193510.3390/pharmaceutics1507193537514121
    [Google Scholar]
  81. PasupuletiM. MolahallyS. SalwajiS. Ethical guidelines, animal profile, various animal models used in periodontal research with alternatives and future perspectives.J. Indian Soc. Periodontol.201620436036810.4103/0972‑124X.18693128298815
    [Google Scholar]
  82. SilbermanG. KahnK.L. Burdens on research imposed by institutional review boards: the state of the evidence and its implications for regulatory reform.Milbank Q.201189459962710.1111/j.1468‑0009.2011.00644.x22188349
    [Google Scholar]
  83. CoteD.J. BredenoordA.L. SmithT.R. AmmiratiM. BrennumJ. MendezI. AmmarA.S. BalakN. BollesG. EseneI.N. MathiesenT. BroekmanM.L. Ethical clinical translation of stem cell interventions for neurologic disease.Neurology201788332232810.1212/WNL.000000000000350627927932
    [Google Scholar]
  84. FreedmanB.R. MooneyD.J. Biomaterials to mimic and heal connective tissues.Adv. Mater.20193119180669510.1002/adma.20180669530908806
    [Google Scholar]
  85. FerreiraG.S. Veening-GriffioenD.H. BoonW.P.C. MoorsE.H.M. van MeerP.J.K. Levelling the translational gap for animal to human efficacy data.Animals2020107119910.3390/ani1007119932679706
    [Google Scholar]
  86. LynchM.J. GobboO.L. Advances in non-animal testing approaches towards accelerated clinical translation of novel nanotheranostic therapeutics for central nervous system disorders.Nanomaterials20211110263210.3390/nano1110263234685073
    [Google Scholar]
  87. ShepherdR.K. VillalobosJ. BurnsO. NayagamD.A.X. The development of neural stimulators: A review of preclinical safety and efficacy studies.J. Neural Eng.201815404100410.1088/1741‑2552/aac43c29756600
    [Google Scholar]
/content/journals/cms/10.2174/0126661454280974231220071848
Loading
/content/journals/cms/10.2174/0126661454280974231220071848
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test