Skip to content
2000
Volume 3, Issue 2
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Lipid peroxidation leads to the formation of a number of aldehydes by-products, including acrolein. The most abundant aldehydes are 4-hydroxy-nonenal (4-HNE) and malondialdehyde (MDA) while acrolein is the most reactive. In Alzheimer's brain, acrolein was found to be elevated in hippocampus and temporal cortex where oxidative stress is high. In late onset Alzheimer's disease (AD), a 2-fold increase in levels of acrolein/guanosine adducts in nDNA was isolated from the hippocampus of AD as compared to age-matched control. These adducts are biologically relevant in that they may promote DNA-DNA and DNA-protein cross-linking while 4-HNE/guanosine adducts in nDNA were not elevated in AD. In AD, the activity of the glutathione-S-transferase, the main enzyme responsible for the detoxification of acrolein is significantly decreased in hippocampus. On neuronal primary culture from hippocampus, acrolein caused cell death and its toxicity is higher than 4-hydroxynonenal. Acrolein could modulate tau phosphorylation through different pathways. Acrolein has been shown to inhibit the mitochondrial activity. Due to its high reactivity, acrolein is not only a marker of lipid peroxidation but also an initiator of oxidative stress by adducting cellular nucleophilic groups found on proteins, lipids, and nucleic acid. As a strong electrophile molecule, acrolein can react about 110-150 times faster with the thiol group of cysteine than with 4-hydroxynonenal and decrease the level of the antioxidant glutathione. Taken together, these reactions suggest that acrolein could play a role in the pathophysiology of AD. In this review, we will summarize some mechanisms implicated in the toxicity of this by-product of lipid peroxidation in brain and their implication in AD.

Loading

Article metrics loading...

/content/journals/cmp/10.2174/1874467211003020066
2010-06-01
2025-09-04
Loading full text...

Full text loading...

/content/journals/cmp/10.2174/1874467211003020066
Loading

  • Article Type:
    Research Article
Keyword(s): Alzheimer's disease; glutathione; polyamines; redox potential; S-glutathionylation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test