Skip to content
2000
Volume 3, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Neuronal dendrites are generated during development by a series of processes involving extension and retraction of dendritic branches in a first step, and subsequently stabilisation of existing dendrites through building of synaptic connections. These processes are tightly controlled at any of these time points and control of dendritic development follows individual differentiation stages. This review describes aspects of the maturation process in cerebellar Purkinje cells and spinal motoneurons. Although motoneurons are glutamatergic whereas Purkinje cells are GABAergic and thereby functionally very different, dendritic maturation processes appear to share common mechanisms and processes in both neuronal cell types. Genetically-regulated cell-intrinsic processes control dendritic outgrowth at an early stage, being thereafter supported by local growth factors. In contrast, increasing synaptic input promotes dendritic maturation by limiting overgrowth at a later stage, with Ca2+-dependent signalling involving PKC or CaMKII as the common mode of action. This series of events apparently is common for other neuronal cell types suggesting a generalised concept for intercellular control of neuronal connectivity.

Loading

Article metrics loading...

/content/journals/cmp/10.2174/1874467211003010001
2010-01-01
2025-09-03
Loading full text...

Full text loading...

/content/journals/cmp/10.2174/1874467211003010001
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test