Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Background

Diabetes mellitus type-1 is an immunological disease associated with low insulin release and hyperglycemia due to beta cell loss. No clear studies show the relationship between the coagulation cascade activation and diabetes mellitus type-1 development.

Objective

The present work aimed to clarify the function of the active coagulation system in the progression of diabetes mellitus type-1 (T1DM). Furthermore, the possible protective action of direct thrombin inhibitors (dabigatran) against T1DM caused by streptozotocin (STZ)-induced T1DM in mice model was examined.

Materials and Methods

Forty Balb/c male albino mice were distributed into four different groups, with 10 mice in each group: normal, dabigatran (DAB)-treated, STZ-treated, and STZ+DAB. Blood glucose, blood platelets, serum insulin, nuclear consistency, and pancreas histopathological changes were evaluated. Moreover, the expressions of PI3K, p-Akt, insulin, and fibrinogen were investigated in the pancreatic tissues via immunofluorescent technique.

Results

The findings displayed enhanced islet expression of fibrinogen, p-Akt, and PI3K proteins along with thrombocytopenia in STZ-injected mice when equated to control. Furthermore, treatment with STZ reduced pancreatic insulin expression. DAB and STZ-cotreatment significantly diminished pancreatic tissue expression of fibrinogen, PI3K, and p-AKT, as well as increased platelet counts and pancreatic insulin expression.

Conclusion

The evidence supported the activation of coagulation cascade in T1DM through the PI3K/AKT pathway. Using direct antithrombin therapy may open new avenues for T1DM prevention in high-risk diabetes individuals.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429374852250305153445
2024-01-01
2025-09-28
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E18761429374852.html?itemId=/content/journals/cmp/10.2174/0118761429374852250305153445&mimeType=html&fmt=ahah

References

  1. VersteegH.H. HeemskerkJ.W.M. LeviM. ReitsmaP.H. New fundamentals in hemostasis.Physiol. Rev.201393132735810.1152/physrev.00016.2011
    [Google Scholar]
  2. ChapinJ.C. HajjarK.A. Fibrinolysis and the control of blood coagulation.Blood Rev.2015291172410.1016/j.blre.2014.09.00325294122
    [Google Scholar]
  3. LiX. WeberN.C. CohnD.M. HollmannM.W. DeVriesJ.H. HermanidesJ. PreckelB. Effects of hyperglycemia and diabetes mellitus on coagulation and hemostasis.J. Clin. Med.20211011241910.3390/jcm1011241934072487
    [Google Scholar]
  4. PaltaS. SaroaR. PaltaA. Overview of the coagulation system.Indian J. Anaesth.201458551510.4103/0019‑5049.144643
    [Google Scholar]
  5. ShiX. WangJ. LeiY. CongC. TanD. ZhouX. Research progress on the PI3K/AKT signaling pathway in gynecological cancer (Review).Mol. Med. Rep.20191964529453510.3892/mmr.2019.1012130942405
    [Google Scholar]
  6. ZhangJ. LiuF. Tissue-specific insulin signaling in the regulation of metabolism and aging.IUBMB Life201466748549510.1002/iub.1293
    [Google Scholar]
  7. HuangX. LiuG. GuoJ. SuZ. The PI3K/AKT pathway in obesity and type 2 diabetes.Int. J. Biol. Sci.201814111483149610.7150/ijbs.27173
    [Google Scholar]
  8. EngelgauM.M. GeissL.S. SaaddineJ.B. BoyleJ.P. BenjaminS.M. GreggE.W. Tierney E.F. Rios-BurrowsN. The evolving diabetes burden in the United States.Ann Intern Med.20041401194510.7326/0003‑4819‑140‑11‑200406010‑00035
    [Google Scholar]
  9. WitkowskiM. FriebelJ. TabaraieT. GrabitzS. DörnerA. TaghipourL. JakobsK. StratmannB. TschoepeD. LandmesserU. RauchU. Metformin is associated with reduced tissue factor procoagulant activity in patients with poorly controlled diabetes.Cardiovasc. Drugs Ther.202135480981310.1007/s10557‑020‑07040‑732940892
    [Google Scholar]
  10. ZuoP. ZuoZ. WangX. ChenL. ZhengY. MaG. ZhouQ. Factor Xa induces pro-inflammatory cytokine expression in RAW 264.7 macrophages via protease-activated receptor-2 activation.Am. J. Transl. Res.20157112326233426807180
    [Google Scholar]
  11. CarmassiF. MoraleM. PuccettiR. De NegriF. MonzaniF. NavalesiR. MarianiG. Coagulation and fibrinolytic system impairment in insulin dependent diabetes mellitus.Thromb. Res.199267664365410.1016/0049‑3848(92)90068‑L1440530
    [Google Scholar]
  12. SkelleyJ.W. ThomasonA.R. NolenJ.C. CandidateP. Betrixaban (Bevyxxa): A direct-acting oral anticoagulant factor Xa inhibitor. P.T20184328512029386864
    [Google Scholar]
  13. ZuoP. ZuoZ. ZhengY. WangX. ZhouQ. ChenL. MaG. Protease-activated receptor-2 deficiency attenuates atherosclerotic lesion progression and instability in apolipoprotein E-deficient mice.Front. Pharmacol.20178SEP64710.3389/fphar.2017.0064728959204
    [Google Scholar]
  14. FurmanB.L. Streptozotocin-induced diabetic models in mice and rats.Curr. Protoc.202114e7810.1002/cpz1.7833905609
    [Google Scholar]
  15. EweesM.G.E.D. Abdel-BakkyM.S. BayoumiA.M.A. Abo-SaifA.A. AltowayanW.M. AlharbiK.S. MessihaB.A.S. Dabigatran mitigates cisplatin-mediated nephrotoxicity through down regulation of thrombin pathway.J. Adv. Res.20213112713610.1016/j.jare.2020.12.01434194837
    [Google Scholar]
  16. Abdel-BakkyM.S. AldakhiliA.S.A. AliH.M. BabikerA.Y. AlhowailA.H. MohammedS.A.A. Evaluation of cisplatin-induced acute renal failure amelioration using Fondaparinux and Alteplase.Pharmaceuticals202316791010.3390/ph1607091037513824
    [Google Scholar]
  17. Abdel-BakkyM.S. HammadM.A. WalkerL.A. AshfaqM.K. Silencing of tissue factor by antisense deoxyoligonucleotide prevents monocrotaline/LPS renal injury in mice.Arch. Toxicol.201185101245125610.1007/s00204‑011‑0663‑821327618
    [Google Scholar]
  18. MartinouJ.C. Dubois-DauphinM. StapleJ.K. RodriguezI. FrankowskiH. MissottenM. AlbertiniP. TalabotD. CatsicasS. PietraC. Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia.Neuron19941341017103010.1016/0896‑6273(94)90266‑67946326
    [Google Scholar]
  19. DuffyA. LiewA. O’SullivanJ. AvalosG. SamaliA. O’BrienT. Distinct effects of high-glucose conditions on endothelial cells of macrovascular and microvascular origins.Endothelium200613191610.1080/1062332060065999716885062
    [Google Scholar]
  20. Abdel-BakkyM.S. MohammedH.A. AminE. Inhibition of selective factor Xa suppresses type 1 diabetes development in mice via the CXCL16 chemokine.Pharmacia20247111010.3897/pharmacia.71.e137797
    [Google Scholar]
  21. VinholtP.J. NielsenC. SöderströmA.C. BrandesA. NyboM. Dabigatran reduces thrombin-induced platelet aggregation and activation in a dose-dependent manner.J. Thromb. Thrombolysis201744221622210.1007/s11239‑017‑1512‑228580515
    [Google Scholar]
  22. PrzygodzkiT. TalarM. KassassirH. MateuszukL. MusialJ. WatalaC. Enhanced adhesion of blood platelets to intact endothelium of mesenteric vascular bed in mice with streptozotocin-induced diabetes is mediated by an up-regulated endothelial surface deposition of VWF – In vivo study.Platelets201829547648510.1080/09537104.2017.133236528745543
    [Google Scholar]
  23. ŚwiderskaE. StrycharzJ. WróblewskiA. SzemrajJ. DrzewoskiJ. ŚliwińskaA. Role of PI3K/AKT pathway in insulin-mediated glucose uptake.Blood Glucose LevelsIntechOpen202010.5772/intechopen.80402
    [Google Scholar]
  24. FareseR.V. SajanM.P. StandaertM.L. Insulin-sensitive protein kinases (atypical protein kinase C and protein kinase B/Akt): Actions and defects in obesity and type II diabetes.Exp. Biol. Med. (Maywood)2005230959360510.1177/153537020523000901
    [Google Scholar]
  25. WangZ. ZuoJ. ZhangL. ZhangZ. WeiY. Plantamajoside promotes metformin-induced apoptosis, autophagy and proliferation arrest of liver cancer cells via suppressing Akt/GSK3β signaling.Hum. Exp. Toxicol.2022410960327122107886810.1177/09603271221078868
    [Google Scholar]
  26. Godoy-ParejoC. DengC. LiuW. ChenG. Insulin stimulates PI3K/AKT and cell adhesion to promote the survival of individualized human embryonic stem cells.Stem Cells20193781030104110.1002/stem.302631021484
    [Google Scholar]
  27. JiangG.J. HanX. TaoY.L. DengY.P. YuJ.W. CaiJ. RenG-F. SunY-N. Metformin ameliorates insulitis in STZ-induced diabetic mice.PeerJ201754e315510.7717/peerj.3155
    [Google Scholar]
  28. CitroA. ValleA. CantarelliE. MercalliA. PellegriniS. LiberatiD. DaffonchioL. KastsiuchenkaO. RuffiniP.A. BattagliaM. AllegrettiM. PiemontiL. CXCR1/2 inhibition blocks and reverses type 1 diabetes in mice.Diabetes20156441329134010.2337/db14‑044325315007
    [Google Scholar]
  29. NoubouossieD. KeyN.S. AtagaK.I. Coagulation abnormalities of sickle cell disease: Relationship with clinical outcomes and the effect of disease modifying therapies.Blood Rev.201630424525610.1016/j.blre.2015.12.00326776344
    [Google Scholar]
  30. LuyendykJ.P. SchoeneckerJ.G. FlickM.J. The multifaceted role of fibrinogen in tissue injury and inflammation.Blood2019133651152010.1182/blood‑2018‑07‑81821130523120
    [Google Scholar]
  31. KattulaS. ByrnesJ.R. WolbergA.S. Fibrinogen and fibrin in hemostasis and thrombosis.Arterioscler. Thromb. Vasc. Biol.2017373e13e2110.1161/ATVBAHA.117.30856428228446
    [Google Scholar]
  32. WeiL. GuW-L. LiZ-H. ZhangS-Q. AoP. ZhuX-B. ZhaoX. ZhangX.Y. ZhangD-F. HuangX-J. JiangY. Role of fibrinogen in type-2 diabetes mellitus with diabetic neuropathy and its preliminary mechanism.Protein Pept. Lett.202330648649710.2174/092986653066623050914051537165590
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429374852250305153445
Loading
/content/journals/cmp/10.2174/0118761429374852250305153445
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): AKT; Dabigatran; Fibrinogen; Hyperglycemia; PI3K; Type 1 diabetes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test