Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Background

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, necessitating the exploration of novel therapeutic targets. Although accumulating studies have identified Ferredoxin 1 (FDX1), a key regulator of cuproptosis, as a candidate tumor suppressor and potential therapeutic target, its role and mechanism remain elusive in HCC.

Methods

The FDX1 expression was investigated in human HCC tissues and cell lines. Potential microRNAs targeting FDX1 were predicted by bioinformatic analysis and validated using qPCR screening, a dual luciferase reporter assay, MiR-3130-5p and miR-1910-3p mimics and inhibitors, overexpression plasmids, and xenograft nude mouse model. The correlation between miR-3130-5p/FDX1 axis and HCC patient prognosis was analyzed by using Kaplan-Meier survival analysis.

Results

We demonstrated that the expression of FDX1 was downregulated in human HCC tissues and cell lines compared to non-cancerous counterparts, and the downregulation of FDX1 was associated with poor overall survival in HCC patients. Subsequent bioinformatic analysis and experimental validations showed that FDX1 expression was reduced by microRNA (miR)-3130-5p mimic while induced by miR-3130-5p inhibitor. Further, miR-3130-5p was upregulated in HCC tissues and cells, correlating with a poor prognosis of HCC patients. Besides, lentivirus-mediated overexpression of miR-3130-5p significantly enhanced HCC growth in xenograft nude mouse models. Mechanistically, it was demonstrated that miR-3130-5p inhibited FDX1 expression binding to its 3' untranslated region (3' UTR), while overexpression of FDX1 counteracted the promoting effect of miR-3130-5p on HCC cell proliferation.

Conclusion

These findings suggest the miR-3130-5p/FDX1 axis as a prognostic biomarker as well as a potential therapeutic target in HCC.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429358008250305070518
2024-01-01
2025-09-27
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E18761429358008.html?itemId=/content/journals/cmp/10.2174/0118761429358008250305070518&mimeType=html&fmt=ahah

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. SingalA.G. KanwalF. LlovetJ.M. Global trends in hepatocellular carcinoma epidemiology: implications for screening, prevention and therapy.Nat. Rev. Clin. Oncol.2023201286488410.1038/s41571‑023‑00825‑337884736
    [Google Scholar]
  3. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  4. LiL. ZhangY. ZhouY. HuH. HuY. GeorgiadesC. MaoH.Q. SelaruF.M. Quaternary nanoparticles enable sustained release of bortezomib for hepatocellular carcinoma.Hepatology20227661660167210.1002/hep.3258435596926
    [Google Scholar]
  5. PanM. LuoM. LiuL. EGR1 suppresses HCC growth and aerobic glycolysis by transcriptionally downregulating PFKL.J. Experim. Clini. Canc. Res. CR (East Lansing Mich.)202443135
    [Google Scholar]
  6. XieM. ChengB. YuS. HeY. CaoY. ZhouT. HanK. DaiR. WangR. Cuproptosis-related mir-21-5p/fdx1 axis in clear cell renal cell carcinoma and its potential impact on tumor microenvironment.Cells202212117310.3390/cells1201017336611966
    [Google Scholar]
  7. CarneiroB.A. El-DeiryW.S. Targeting apoptosis in cancer therapy.Nat. Rev. Clin. Oncol.202017739541710.1038/s41571‑020‑0341‑y32203277
    [Google Scholar]
  8. YangY.C. JiangQ. YangK.P. WangL. SethiG. MaZ. Extracellular vesicle-mediated ferroptosis, pyroptosis, and necroptosis: potential clinical applications in cancer therapy.Cell Death Discov.20241012310.1038/s41420‑024‑01799‑638216595
    [Google Scholar]
  9. ChenB. YanY. YangY. CaoG. WangX. WangY. WanF. YinQ. WangZ. LiY. WangL. XuB. YouF. ZhangQ. WangY. A pyroptosis nanotuner for cancer therapy.Nat. Nanotechnol.202217778879810.1038/s41565‑022‑01125‑035606443
    [Google Scholar]
  10. DuT. GaoJ. LiP. WangY. QiQ. LiuX. LiJ. WangC. DuL. Pyroptosis, metabolism, and tumor immune microenvironment.Clin. Transl. Med.2021118e49210.1002/ctm2.49234459122
    [Google Scholar]
  11. JiangX. StockwellB.R. ConradM. Ferroptosis: mechanisms, biology and role in disease.Nat. Rev. Mol. Cell Biol.202122426628210.1038/s41580‑020‑00324‑833495651
    [Google Scholar]
  12. TongX. TangR. XiaoM. XuJ. WangW. ZhangB. LiuJ. YuX. ShiS. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research.J. Hematol. Oncol.202215117410.1186/s13045‑022‑01392‑336482419
    [Google Scholar]
  13. TangD. KroemerG. KangR. Targeting cuproplasia and cuproptosis in cancer.Nat. Rev. Clin. Oncol.202421537038810.1038/s41571‑024‑00876‑038486054
    [Google Scholar]
  14. XuY. LiuS.Y. ZengL. MaH. ZhangY. YangH. LiuY. FangS. ZhaoJ. XuY. JrC.R.A. HeY. DaiZ. PanY. An enzyme-engineered nonporous copper(i) coordination polymer nanoplatform for cuproptosis-based synergistic cancer therapy.Adv. Mater.20233513230077310.1002/adma.20230077336987684
    [Google Scholar]
  15. ZhengJ. GeH. GuoM. ZhangT. HuQ. YaoQ. LongS. SunW. FanJ. DuJ. PengX. Photoinduced cuproptosis with tumor-specific for metastasis-inhibited cancer therapy.Small20242010230440710.1002/smll.20230440737880907
    [Google Scholar]
  16. WangW. LuK. JiangX. Ferroptosis inducers enhanced cuproptosis induced by copper ionophores in primary liver cancer.J. Experim. Clini. Canc. Res. CR (East Lansing Mich.)2023421142
    [Google Scholar]
  17. SunL. ZhangY. YangB. SunS. ZhangP. LuoZ. FengT. CuiZ. ZhuT. LiY. QiuZ. FanG. HuangC. Lactylation of METTL16 promotes cuproptosis via m6A-modification on FDX1 mRNA in gastric cancer.Nat. Commun.2023141652310.1038/s41467‑023‑42025‑837863889
    [Google Scholar]
  18. XueQ. KangR. KlionskyD.J. TangD. LiuJ. ChenX. Copper metabolism in cell death and autophagy.Autophagy20231982175219510.1080/15548627.2023.220055437055935
    [Google Scholar]
  19. HussenB.M. RasulM.F. AbdullahS.R. HidayatH.J. FarajG.S.H. AliF.A. SalihiA. BaniahmadA. Ghafouri-FardS. RahmanM. GlassyM.C. BranickiW. TaheriM. Targeting miRNA by CRISPR/Cas in cancer: advantages and challenges.Mil. Med. Res.20231013210.1186/s40779‑023‑00468‑637460924
    [Google Scholar]
  20. DienerC. KellerA. MeeseE. Emerging concepts of miRNA therapeutics: from cells to clinic.Trends Genet.202238661362610.1016/j.tig.2022.02.00635303998
    [Google Scholar]
  21. XuW. HuangY. LeiZ. ZhouJ. miR-939-3p induces sarcoma proliferation and poor prognosis via suppressing BATF2.Front. Oncol.202414134653110.3389/fonc.2024.134653138420020
    [Google Scholar]
  22. HuangY. WangS. ZhouJ. LiuY. DuC. YangK. BiX. LiuM. HanW. WangK. XiongJ. WangS. WangY. NieL. LiuC. ZhangD. GuJ. ZengC. ZhaoJ. IRF1-mediated downregulation of PGC1α contributes to cardiorenal syndrome type 4.Nat. Commun.2020111466410.1038/s41467‑020‑18519‑032938919
    [Google Scholar]
  23. ZhouJ. LeiZ. ChenJ. LiaoS. ChenY. LiuC. HuangS. LiL. ZhangY. WangP. HuangY. LiJ. LiangH. Nuclear export of BATF2 enhances colorectal cancer proliferation through binding to CRM1.Clin. Transl. Med.2023135e126010.1002/ctm2.126037151195
    [Google Scholar]
  24. GyőrffyB. Discovery and ranking of the most robust prognostic biomarkers in serous ovarian cancer.Geroscience20234531889189810.1007/s11357‑023‑00742‑436856946
    [Google Scholar]
  25. BarthaÁ. GyőrffyB. TNMplot.com: a web tool for the comparison of gene expression in normal, tumor and metastatic tissues.Int. J. Mol. Sci.2021225262210.3390/ijms2205262233807717
    [Google Scholar]
  26. MenyhártO. NagyÁ. GyőrffyB. Determining consistent prognostic biomarkers of overall survival and vascular invasion in hepatocellular carcinoma.R. Soc. Open Sci.201851218100610.1098/rsos.18100630662724
    [Google Scholar]
  27. AllyA. BalasundaramM. CarlsenR. ChuahE. ClarkeA. DhallaN. HoltR.A. JonesS.J.M. LeeD. MaY. MarraM.A. MayoM. MooreR.A. MungallA.J. ScheinJ.E. SipahimalaniP. TamA. ThiessenN. CheungD. WongT. BrooksD. RobertsonA.G. BowlbyR. MungallK. SadeghiS. XiL. CovingtonK. ShinbrotE. WheelerD.A. GibbsR.A. DonehowerL.A. WangL. BowenJ. Gastier-FosterJ.M. GerkenM. HelselC. LeraasK.M. LichtenbergT.M. RamirezN.C. WiseL. ZmudaE. GabrielS.B. MeyersonM. CibulskisC. MurrayB.A. ShihJ. BeroukhimR. CherniackA.D. SchumacherS.E. SaksenaG. PedamalluC.S. ChinL. GetzG. NobleM. ZhangH. HeimanD. ChoJ. GehlenborgN. SaksenaG. VoetD. LinP. FrazerS. DefreitasT. MeierS. LawrenceM. KimJ. CreightonC.J. MuznyD. DoddapaneniH.V. HuJ. WangM. MortonD. KorchinaV. HanY. DinhH. LewisL. BellairM. LiuX. SantibanezJ. GlennR. LeeS. HaleW. ParkerJ.S. WilkersonM.D. HayesD.N. ReynoldsS.M. ShmulevichI. ZhangW. LiuY. IypeL. MakhloufH. TorbensonM.S. KakarS. YehM.M. JainD. KleinerD.E. JainD. DhanasekaranR. El-SeragH.B. YimS.Y. WeinsteinJ.N. MishraL. ZhangJ. AkbaniR. LingS. JuZ. SuX. HegdeA.M. MillsG.B. LuY. ChenJ. LeeJ-S. SohnB.H. ShimJ.J. TongP. AburataniH. YamamotoS. TatsunoK. LiW. XiaZ. StranskyN. SeiserE. InnocentiF. GaoJ. KundraR. ZhangH. HeinsZ. OchoaA. SanderC. LadanyiM. ShenR. AroraA. Sanchez-VegaF. SchultzN. KasaianK. RadenbaughA. BissigK-D. MooreD.D. TotokiY. NakamuraH. ShibataT. YauC. GraimK. StuartJ. HausslerD. SlagleB.L. OjesinaA.I. KatsonisP. KoireA. LichtargeO. HsuT-K. FergusonM.L. DemchokJ.A. FelauI. ShethM. TarnuzzerR. WangZ. YangL. ZenklusenJ.C. ZhangJ. HutterC.M. SofiaH.J. VerhaakR.G.W. ZhengS. LangF. ChudamaniS. LiuJ. LollaL. WuY. NareshR. PihlT. SunC. WanY. BenzC. PerouA.H. ThorneL.B. BoiceL. HuangM. RathmellW.K. NoushmehrH. SaggioroF.P. TirapelliD.P.C. JuniorC.G.C. MenteE.D. SilvaO.C.Jr TrevisanF.A. KangK.J. AhnK.S. GiamaN.H. MoserC.D. GiordanoT.J. VincoM. WellingT.H. CrainD. CurleyE. GardnerJ. MalleryD. MorrisS. PaulauskisJ. PennyR. SheltonC. SheltonT. KelleyR. ParkJ-W. ChandanV.S. RobertsL.R. BatheO.F. HagedornC.H. AumanJ.T. O’BrienD.R. KocherJ-P.A. JonesC.D. MieczkowskiP.A. PerouC.M. SkellyT. TanD. VeluvoluU. BaluS. BodenheimerT. HoyleA.P. JefferysS.R. MengS. MoseL.E. ShiY. SimonsJ.V. SolowayM.G. RoachJ. HoadleyK.A. BaylinS.B. ShenH. HinoueT. BootwallaM.S. Van Den BergD.J. WeisenbergerD.J. LaiP.H. HolbrookA. BerriosM. LairdP.W. Comprehensive and integrative genomic characterization of hepatocellular carcinoma.Cell2017169713271341.e2310.1016/j.cell.2017.05.04628622513
    [Google Scholar]
  28. HuangY. ZhouJ. WangS. XiongJ. ChenY. LiuY. XiaoT. LiY. HeT. LiY. BiX. YangK. HanW. QiaoY. YuY. ZhaoJ. Indoxyl sulfate induces intestinal barrier injury through IRF1-DRP1 axis-mediated mitophagy impairment.Theranostics202010167384740010.7150/thno.4545532641998
    [Google Scholar]
  29. BrownZ.J. TsilimigrasD.I. RuffS.M. MohseniA. KamelI.R. CloydJ.M. PawlikT.M. Management of hepatocellular carcinoma.JAMA Surg.2023158441042010.1001/jamasurg.2022.798936790767
    [Google Scholar]
  30. SingalA.G. LamperticoP. NahonP. Epidemiology and surveillance for hepatocellular carcinoma: New trends.J. Hepatol.202072225026110.1016/j.jhep.2019.08.02531954490
    [Google Scholar]
  31. AubertL. NandagopalN. SteinhartZ. LavoieG. NourreddineS. BermanJ. Saba-El-LeilM.K. PapadopoliD. LinS. HartT. MacleodG. TopisirovicI. GabouryL. FahrniC.J. SchramekD. MelocheS. AngersS. RouxP.P. Copper bioavailability is a KRAS-specific vulnerability in colorectal cancer.Nat. Commun.2020111370110.1038/s41467‑020‑17549‑y32709883
    [Google Scholar]
  32. ZouS. ChenS. RaoG. ZhangG. MaM. PengB. DuX. HuangW. LinW. TianY. FuX. Extrachromosomal circular MiR-17-92 amplicon promotes HCC.Hepatology2024791799510.1097/HEP.000000000000043537125628
    [Google Scholar]
  33. KomollR.M. HuQ. OlarewajuO. von DöhlenL. YuanQ. XieY. TsayH.C. DaonJ. QinR. MannsM.P. SharmaA.D. GogaA. OttM. BalakrishnanA. MicroRNA-342-3p is a potent tumour suppressor in hepatocellular carcinoma.J. Hepatol.202174112213410.1016/j.jhep.2020.07.03932738449
    [Google Scholar]
  34. ChenF. ZhongZ. TanH.Y. GuoW. ZhangC. ChengC.S. WangN. RenJ. FengY. Suppression of lncRNA MALAT1 by betulinic acid inhibits hepatocellular carcinoma progression by targeting IAPs via miR-22-3p.Clin. Transl. Med.2020106e19010.1002/ctm2.19033135336
    [Google Scholar]
  35. ZhanJ. SunS. ChenY. XuC. ChenQ. LiM. PeiY. LiQ. MiR‐3130‐5p is an intermediate modulator of 2q33 and influences the invasiveness of lung adenocarcinoma by targeting NDUFS1.Cancer Med.202110113700371410.1002/cam4.388533978320
    [Google Scholar]
  36. TangJ. MaW. ZengQ. TanJ. CaoK. LuoL. Identification of miRNA-based signature as a novel potential prognostic biomarker in patients with breast cancer.Dis. Markers2019201911710.1155/2019/381595231976020
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429358008250305070518
Loading
/content/journals/cmp/10.2174/0118761429358008250305070518
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test