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Abstract: Prostate cancer is the most common cancer and second leading cause of cancer deaths among 
men in the United States. Most men have localized disease diagnosed following an elevated serum prostate 
specific antigen test for cancer screening purposes. Standard treatment options consist of surgery or definitive 
radiation therapy directed by clinical factors that are organized into risk stratification groups. Current clinical 
risk stratification systems are still insufficient to differentiate lethal from indolent disease. Similarly, a subset of 
men in poor risk groups need to be identified for more aggressive treatment and enrollment into clinical trials. 
Furthermore, these clinical tools are very limited in revealing information about the biologic pathways driving 
these different disease phenotypes and do not offer insights for novel treatments which are needed in men with 
poor-risk disease. We believe molecular biomarkers may serve to bridge these inadequacies of traditional 
clinical factors opening the door for personalized treatment approaches that would allow tailoring of treatment 
options to maximize therapeutic outcome. We review the current state of prognostic and predictive tissue-
based molecular biomarkers which can be used to direct localized prostate cancer treatment decisions, 
specifically those implicated with definitive and salvage radiation therapy. 
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INTRODUCTION 
Prostate cancer is the most common cancer 

diagnosed in men in the United States. An estimated 
217,000 new cases of prostate cancer were diagnosed 
in the United States in 2010 of which an approximate 
85-90 percent were clinically localized at diagnosis [1]. 
Despite intense efforts to screen using clinical-
pathologic factors, such as serum prostate specific 
antigen (PSA), and aggressively treat localized disease 
with surgery or radiation therapy, an unacceptable 
number of even early stage prostate cancer patients 
will ultimately succumb to their disease [2]. Prostate 
cancer as a whole still remains the second leading 
cause of cancer related death among men [1, 3]. Thus, 
key issues in the management of localized prostate 
cancer include not only the stratification of patients with 
aggressive disease from those with indolent cancer but 
also the development and improvement of therapies to 
treat localized prostate disease that is ultimately lethal. 
Taken a step further, a personalized approach would 
allow different treatment options to be tailored to 
specific traits of the patient and their prostate cancer to 
maximize clinical outcome. To address these issues, it 
is imperative to identify and validate new prognostic 
and predictive molecular biomarkers which can be 
used to direct localized prostate cancer treatment 
decisions. In this review, we catalog some of the work 
on tissue-based molecular biomarkers for prostate 
cancer, specifically those implicated with definitive and 
salvage radiation therapy treatment. We direct the 
 
 

*Address correspondence to this author at the 1550 Orleans Street, 
CRB2, RM 406, Baltimore, MD 21231, USA; Tel: 410-614-3880; Fax: 
410-502-2821; E-mail: tranp@jhmi.edu 

reader to excellent reviews on prostate cancer 
biomarkers from other biologic specimens such as 
urine and blood [4, 5]. 

CLINICAL FEATURES AND DEFINITIVE 
RADIATION TREATMENT FOR LOCALIZED 
PROSTATE CANCER 
Presentation 

Clinically localized prostate cancer in the modern 
era usually presents initially as symptoms resulting in 
an abnormal finding on digital rectal examination (DRE) 
of the prostate and/or subsequent serum elevation of 
the biomarker PSA secondary to abnormal prostate 
exam or for screening purposes [6]. Serum PSA is 
currently the best molecular biomarker for prostate 
cancer when used for diagnostic and prognostic 
purposes [7]. Either of these clinical findings, abnormal 
DRE and elevated PSA, eventually prompt a prostate 
biopsy and can lead to the histological diagnosis of 
prostate cancer. 

Standard Clinical Staging Systems for Localized 
Prostate Cancer 

Current standard of care paradigms use 
pretreatment patient and prostate cancer clinical 
factors for prognosis and to dictate treatment options 
[8]. Clinical factors that help risk stratify localized 
prostate cancer patients are the clinical cancer stage 
groupings which are determined by the anatomic 
Tumor-Node-Metastasis (TNM) staging system, the 
Gleason score or summed tumor grade and 
pretreatment serum PSA level [9-11]. Using this 



Tissue Biomarkers for Prostate Cancer Radiation Therapy Current Molecular Medicine,  2012, Vol. 12, No. 6     773 

staging system, clinically localized prostate cancer 
patients can be assigned to four risk groupings: low-
risk (Group I), intermediate-risk (Group IIA), high-risk 
(Group IIB) and locally advanced (Group III) [8, 9], 
each connoting progressively increasing chances of 
recurrence following definitive local therapy [12, 13]. In 
addition, patient clinical factors such as age and co-
morbid conditions are integrated with the risk groupings 
to determine the optimal therapy [8]. With the recent 
realization that within the low-risk group there is a sub-
group of extraordinarily favorable patients as defined 
by the so-called “Epstein criteria” [14], the National 
Comprehensive Cancer Network (NCCN) have created 
a another localized prostate cancer risk group, termed 
very low-risk. Very low-risk patients are advised by the 
NCCN to undergo active surveillance and not pursue 
definitive local therapy if their life expectancy, 
disregarding their prostate cancer diagnosis, is less 
than twenty years [8]. 

Radiation Therapy for Localized Prostate Cancer 
Definitive treatment options for localized prostate 

cancer in general involve the use of surgery or 
radiation therapy [2, 8]. As mentioned above, active 
surveillance can also be a viable option for many 
localized prostate cancer patients in the very low-risk 
group [8, 14] and even for select patients of low [8, 15, 
16] and intermediate-risk [8, 17]. Given the focus of this 
review is on radiation therapy biomarkers, we will only 
detail the use of radiation therapy further. Definitive 
radiation therapy typically involves the delivery of 
tumoricidal doses of high energy ionizing radiation to 
the whole prostate gland and sometimes to include the 
periprostatic tissues. Radiation is produced external to 
the body usually by a linear accelerator and directed 
via a number of different, but similar techniques, to 
pass through the patient with the highest dose 
deposited to the entire prostate [2, 8, 18]. Focal therapy 
of prostate cancer or treatments directed at less than 
the entire prostate is generally not advocated in the 
upfront setting unless as part of a clinical trial [16]. 
Another common form of radiation therapy used is the 
physical implantation of radioactive sources or 
brachytherapy, into the prostate which then decay and 
emit high energy radiation to the prostate gland [18]. 
The underlying mechanism for prostate cancer cell 
death from radiation therapy is radiation induced DNA 
damage. Radiation therapy damages prostate cancer 
DNA by rare direct ionization events or by the much 
more common indirect DNA damage from free radicals 
that occur as a by-product of the hydrolysis of water 
[19, 20]. 

High dose radiation therapy for localized prostate 
cancer can be very effective resulting in freedom from 
relapse of disease (or cure as determined by PSA) as 
high as 93% at 10 years in the most favorable or low-
risk cases [21]. However, clinical experience with the 
use of radiation therapy alone in higher risk localized 
prostate cancer (intermediate [22, 23], high-risk [22, 
24-27] and locally advanced groups [25-29]) results in 

relatively poor outcomes. This has lead to the standard 
approach of combination treatment with radiation 
therapy and hormone deprivation therapy (ADT) for 
variable duration, resulting in moderate improvements 
in clinical outcomes [30]. ADT is the surgical or 
pharmacologic depletion of testosterone to very low or 
castrate levels in prostate cancer patients [30]. The 
mechanism of action by which ADT increases radiation 
therapy effectiveness is complicated and not fully 
appreciated yet, but is thought to involve increased 
radiation-induced apoptosis, decreased prostate cell 
proliferation and perhaps suppression of systemic 
micrometastases [31-34]. Taken altogether, the 
standard radiation treatment recommendations for the 
localized prostate cancer risk groups that require 
definitive local therapy are as follows: (1) low-risk 
patients should receive definitive high dose radiation 
therapy alone; (2) intermediate-risk patients can 
receive high dose definitive radiation therapy alone, but 
more commonly a combination of definitive radiation 
therapy and short-term duration ADT are 
recommended; and (3) high-risk and locally advanced 
patients should receive a combination of definitive 
radiation therapy and long-term duration ADT [8]. It 
should be noted that intermediate-risk and high-risk 
patients are often treated with high-dose radiation 
therapy in combination with ADT because of the ability 
to safely deliver high dose radiation even though high 
level data in support of this approach is lacking. The 
target volumes treated with high-risk patients, 
sometimes referred to as prostate alone versus the 
inclusion of larger treatment volumes that include 
draining lymph nodes also known as pelvic fields, is 
controversial and will not be discussed further, but the 
reader is directed towards references on this subject 
[35-37]. 

CLINICAL PREDICTIVE MODELS OR NOMO-
GRAMS FOR PROSTATE CANCER RADIATION 
THERAPY 

To improve upon these more simplistic risk 
stratification tools in an effort to better guide treatment 
decisions, multiple groups have produced more 
elaborate predictive prostate cancer treatment models 
also sometimes referred to as prostate cancer 
nomograms [38-40]. These models incorporate the 
pretreatment patient and tumor clinical factors detailed 
above, but also can predict the effects of treatment 
related factors such as radiation therapy dose and the 
use of combined radiation therapy and ADT on clinical 
outcomes. Although, these prostate cancer nomograms 
can be very useful in the clinical setting, as is the case 
for any model, there are still questions regarding their 
general validity for all localized prostate cancer 
patients. An excellent review detailing the clinical 
experience, utility and shortcomings of these clinical 
predictive models for prostate cancer radiation therapy 
by Roach and colleagues is referenced [41]. 
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TISSUE BIOMARKERS FOR PROSTATE CAN-
CER RADIATION THERAPY 

While the clinical staging systems and predictive 
tools described above have helped tremendously to 
guide current standards in management of localized 
prostate cancer, they still do not uniformly distinguish 
indolent from lethal disease and are limited in revealing 
information about the genetic and biologic pathways 
driving these different disease phenotypes. In addition, 
they do not offer clear targets for the development of 
therapies to treat localized prostate cancer which are 
needed in patients with poor-risk disease. We believe 
molecular biomarkers may serve to bridge these 
inadequacies of traditional clinical factors. 

A biomarker is as a factor, clinical or molecular, that 
can be correlated with a physiologic pathway, 
pathologic natural history or treatment response to a 
particular therapy [42]. Biomarkers can thus be very 
important tools to distinguish presymptomatic patients 
from unaffected healthy individuals such as with serum 
PSA screening, to monitor disease progression, to 
recognize those who are susceptible to adverse effects 
and to determine the efficacy of specific therapies. 
Biomarkers come in every imaginable flavor: clinical 
exam findings; physiologic parameters; results from 
imaging studies; and the focus of this review, 
molecules from biologic material such as body fluids or 
tissue specimens, are all biomarkers. The commonality 
between these diverse types of biomarkers is at the 
minimum they serve as surrogate measures for a 
pathophysiologic endpoint [43] and in the case of 
molecular biomarkers can also be a critical causative 
effector target for the desired process under scrutiny. 
Examples of the later, where predictive molecular 
biomarkers are also critical nodal targets of a tumor 
maintenance pathway are c-KIT mutations in 
gastrointestinal stromal tumors (GIST) [44, 45] and 
Epidermal Growth Factor Receptor (EGFR) mutations 
in non-small cell lung cancer (NSCLC) [46-49] that 
predict response to and are both targets of tyrosine 
kinase inhibitors (TKIs). For the remainder of the 
review we will restrict our use of tissue-based 
molecular biomarkers to surrogates of important 
prostate cancer clinical outcomes following radiation 
therapy. 

Prognostic versus Predictive Biomarkers 
Distinguishing biomarkers as prognostic versus 

predictive is not simply semantics, but denotes specific 
properties of each biomarker type for treatment 
response and clinical outcomes (Fig. 1) [50]. A 
prognostic biomarker is correlated with an endpoint 
irrespective of therapy. In practice, prognostic 
biomarkers help guide treatment decisions made by 
clinicians. Using clinical risk based staging systems as 
an example, in general, low risk prostate cancer 
patients are treated with one modality, i.e. radiation 
therapy alone, while higher risk patients are directed 
towards combined modality treatments, i.e. radiation 
therapy and ADT [8]. However, purely prognostic 

biomarkers do not correlate with clinical outcomes to a 
specific treatment. In contrast, a predictive biomarker is 
correlated with an improvement or lack of improvement 
in clinical outcomes to a specific treatment. This 
prediction of outcome to a specific treatment is 
dependent on the status of the predictive biomarker. As 
cited above, predictive biomarkers have also been 
shown to be targets for therapy [44-49]. The 
determination of the prognostic versus predictive 
properties of a biomarker can be complex and is 
beyond the scope of this review (for an excellent 
reference on this topic [50]), however, one point is 
worth explicitly stating. The determination of the 
prognostic and predictive properties of a biomarker is 
best evaluated in a randomized clinical trial with a 
control group, because of the confounding effects 
present in most single-arm treatment trials (see Fig. 1; 
this type of analysis is not possible without a placebo or 
control group). The need for a comparator or control 
group to determine predictive properties of a biomarker 
will restrict our review to the high-level prostate cancer 
radiation therapy trials performed by the Radiation 
Therapy Oncology Group (RTOG). 

Radiation Therapy Oncology Group (RTOG) 
Prostate Cancer Biomarker Studies 

The RTOG is a long standing cooperative research 
groups which has conducted numerous prospective 
trials in the field of radiation oncology, including those 
pertaining to prostate cancer. Two seminal phase III 
randomized trials, RTOG 86-10 [25] and 92-02 [27], 
were conducted in high-risk localized and locally 
advanced prostate cancer patients to address the role 
of combination treatment of radiation therapy and ADT 
and duration of ADT (short-term versus long-term), 
respectively. These two trials have also been the 
source of biologic material, in the form of prostate 
specimens, which has allowed RTOG investigators to 
explore the prognostic and in some cases predictive 
power of a number of tissue-based molecular 
biomarkers (Table 1). In order to understand the 
implications that these biomarkers may have on 
prognosis and predictive ability following radiation 
therapy with or without the addition of ADT, we will 
review the specifics of each trial below. Given the use 
of ADT in the vast majority of patients on these two 
trials, it should be noted that these tissue biomarkers 
are probably best described as surrogates of prostate 
cancer treatment with radiation and androgen 
deprivation therapy. 

RTOG 86-10 was a randomized trial conducted in 
the pre-PSA era of radiation therapy (RT) alone versus 
radiation therapy and ADT for patients (n=471 
randomized) with bulky tumors (>25 cm2 by DRE) and 
T stage T2b–4. One of the original hypotheses for this 
trial was to determine whether ADT before and during 
radiation therapy may reduce tumor bulk and enhance 
tumor cell kill and thus improve tumor control and 
survival [51]. Thus, patients in the ADT arm were 
pharmacologically castrated using goserelin (luteinizing 
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Fig. (1). Prognostic versus predictive biomarkers. An idealized example of the interrogation of the prognostic versus 
predictive properties of a biomarker (BM) are shown. (A) An experimental treatment (Exp Treatment) is tested in a randomized 
controlled fashion against a placebo or control arm and shown to confer a survival advantage. A biomarker (BM) has been 
shown to correlate with improved benefit with the Exp Treatment in prior uncontrolled studies without a control arm. By 
segregating the groups based on their treatment arms and BM status (BM+/Placebo; BM+/Exp Treatment; BM-/Placebo; and 
BM-/Exp Treatment) it is possible to distinguish whether the BM is purely prognostic versus predictive. (B) The BM is purely 
prognostic and therefore independent of the treatment effect. The relative magnitude of the benefit from the Exp Treatment is 
similar for each BM group. (C) The BM is purely predictive for the Exp Treatment and all the benefit from the Exp Treatment is 
exhibited only for patients in the BM+ group. 

hormone-releasing hormone agonist) and flutamide 
(anti-androgen) for 2 months before and 2 months 
during radiation therapy. The most updated results of 
this trial [25], in keeping with an earlier report [51], 
demonstrated statistically significant improvements in 
10-year disease-specific mortality or death from 
prostate cancer (23% vs. 36%; p = .01), distant 
metastasis (35% vs. 47%; p = .006), disease-free 
survival (11% vs. 3%; p < .0001), and PSA failure (65% 
vs. 80%; p < .0001), all favoring the combination arm. 

RTOG 92-02 is the largest randomized trial of 
prostate cancer that tested the optimal duration of ADT 
when combined with radiation therapy for prostate 
cancer patients (n=1554 randomized) with T2c–4 
primary tumors and PSA <150 ng/ml. The control arm 
was based on RTOG 86-10, ADT using goserelin and 
flutamide for 2 months before and 2 months (or short-
term ADT = STAD) during radiation therapy (RT + 

STAD). The experimental arm added 24 months of 
additional goserelin alone also known as long-term 
ADT (LTAD). The mature results (median 11 years of 
follow-up) [27] from this trial demonstrate the 
superiority of RT + LTAD over RT + STAD for patients 
with high-risk/locally advanced prostate cancer for 10-
year disease-specific survival (83.9% vs. 88.7%; p = 
.0042), local progression (22.2% vs. 12.3%; p < .0001), 
distant metastasis (22.8% vs. 14.8%; p < .0001), 
disease-free survival (13.2% vs. 22.5%; p < .0001) and 
PSA failure (68.1% vs. 51.9%; p ≤ .0001). Neither 
RTOG trial demonstrated an overall survival benefit. 
Multiple reasons have been postulated to explain this 
lack of overall survival benefit for RTOG 92-02 
including the advanced age of the patients and the 
large enrollment of lower Gleason score (GS <7) 
patients. Regardless, hypothesis generating subset 
analysis has demonstrated an overall survival benefit 
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for patients with GS 8-10 (31.9% vs. 45.1%; p = .0061). 
These RTOG trials helped form the rationale for the 
use of combination radiation therapy and LTAD for 
high-risk and locally advanced prostate cancer 
patients. In addition, they have been an incredible 
resource to study candidate prognostic and predictive 
biomarkers for prostate cancer radiation therapy and 
androgen deprivation therapy. 

p53 – Prognostic and Predictive 
The p53 protein encoded by the TP53 gene is the 

most commonly mutated gene in human cancer. The 
p53 tumor suppressor protein has multifaceted roles as 
a stress-responsive transcription factor to a variety of 
intracellular and extracellular insults, notably including 
those that are produced by radiation therapy [52]. 
Preclinical studies in prostate cancer cells suggest that 
p53 loss of function results in radiation resistance [53, 
54]. As a biomarker, p53 accumulation or TP53 
mutation has been associated with poor prognosis in 
multiple different cancer types. Other groups have also 
looked at the role of p53 as a biomarker for prostate 
cancer patients treated with radiation therapy, often as 
part of a heterogeneously treated group, producing as 
expected varied results [55-61]. Many of these groups 
did not have the benefit of tissue collection from a 
prospective randomized clinical trial such as with the 
RTOG with a control group of patients, thus as 
explained above negating the ability to look at 
predictive power. 

Give these circumstances, p53 was an ideal 
biomarker candidate for the RTOG to test for 
prognostic and predictive power using the 
biospecimens from RTOG 86-10 [62] and 92-02 [63]. 

From RTOG 86-10, abnormal accumulation of p53, 
defined as ≥20% positive nuclear staining using 
immunohistochemistry (IHC), was present in 23/129 
(18%) patient tumor samples available from the original 
471 enrolled on the trial (or only 27%). The p53 
biomarker was independently prognostic for increased 
distant metastasis (RR = 2.15, p = 0.04), poor 
progression-free (RR = 2.45, p = 0.003) and overall 
survival (RR = 2.34, p = 0.02) for the entire group (RT 
and RT + STAD arms). There was also a curious 
finding that the p53 biomarker seemed to predict 
increased metastasis in the RT+STAD suggesting that 
patients with abnormal p53 biomarker status do not 
react favorably to RT + STAD. This is likely an artifact 
from confounding due to the small numbers of cases 
with abnormal p53 biomarker status (12 with RT and 11 
with RT + STAD) from a subset (only 27% of the 
original trial enrollment) that was not representative of 
the original trial cohort. Nonetheless, this was arguably 
the first study to demonstrate a clear prognostic role for 
the p53 as a molecular biomarker for prostate cancer 
patients treated with radiation therapy. 

For RTOG 92-02 [63], tissue was available from 379 
STAD + RT cases and 398 LTAD + RT cases for a total 
of 777 cases. Abnormal p53 was present in 168/777 
(22%) patient samples and was an independent 
prognostic factor correlated with increased distant 
metastasis (HR = 1.72, p = 0.013) and cause-specific 
mortality (HR = 1.89, p = 0.014). When checking for the 
predictive power of p53 expression between RT + 
STAD and RT + LTAD treatment groups, the RTOG 
demonstrated that for patients treated with RT + STAD, 
p53 was a predictive biomarker associated with 
increased cause-specific mortality (HR = 3.81, p = 
0.009). This suggest that p53 is a both a prognostic 

Table 1. Selected Prostate Cancer Radiation Therapy Biomarker Studies 
 

BIOMARKER PROGNOSTIC PREDICTIVE REFERENCE 

p53 DNA DM, PFS1, CSM2 & OS1 CSM2 [62-64] 

DNA Ploidy OS1 OS1 [86] 

COX-2 BF2, DM2 BF2 [96] 

Protein Kinase A BF, LF & DM BF2, LF2, CSM2 & DM2 [102, 103] 

BCL-2/BAX PFS2 & BF BF [113, 114, 159] 

p16 LF1, DM & CSM1  [118, 119] 

Ki-67 BF2, DM, CSM & OS2  [64, 129, 130] 

VEGF/HIF-1 alpha BF3  [160] 

MDM2 DM2  [64, 138] 

DEFINITIVE RADIATION 
THERAPY 

Survivin CSM1 & OS1  [153] 

p21 BF  [173] 

Ki-67 BF  [187] 

E-cadherin BF  [186] 
SALVAGE RADIATION 

THERAPY 

B7-H3 BF  [197] 

1 – Found only in RTOG 86-10; 2 – Found only in RTOG 92-02; and 3 – Found only in MRC RT01. BF – biochemical or PSA failure; LF – local failure; DM – distant 
metastases; PFS – progression free survival; CSM – cause specific mortality; OS – overall survival. 
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and predictive biomarker for high-risk/locally advanced 
prostate patients receiving radiation therapy and those 
with abnormal p53 status should be treated with RT + 
LTAD. Some caveats regarding these p53 biomarker 
studies and IHC data driven biomarker studies in 
general need to be introduced before proceeding 
further. The methods by which samples are scored: (1) 
manual methods versus quantitative image analysis; 
and (2) choice of cut-points, can dramatically influence 
the prognostic and predictive associations determined. 
Using the p53 biomarker as an example, a second 
analysis using RTOG 92-02 specimens and using 
quantitative image analysis systems with different cut-
points was performed for the p53 biomarker [64]. The 
results of this second analysis resulted in weaker 
prognostic association with overall survival (RR ~ 1.3 p 
=0.02) and was no longer prognostic for distant 
metastasis or prostate cancer death. Hence great detail 
should be paid to the methods and even greater 
caution should be emphasized in the interpretation of 
biomarker data. Ultimately, these data are hypothesis 
generating at best and need themselves to be 
prospectively answered in a clinical trial. After 
acknowledging these caveats, these RTOG data in two 
different but complimentary patient data sets, 
reanalyzed twice in the case of RTOG 92-02, suggest 
that p53 appears to be a prognostic molecular 
biomarker. Furthermore, abnormal p53 biomarker 
status appears to predict patients that may benefit from 
RT + LTAD. 

DNA Ploidy - Prognostic and Predictive 
DNA ploidy or chromosome complement is a crude 

measure of genomic instability, a hallmark of 
tumorigenesis [65], and in most cases has been 
correlated as a biomarker portending worse prognosis 
for prostate cancer [66-79]. An even more limited 
number of studies have produced mixed results after 
examining DNA ploidy as a biomarker for prostate 
cancer patients treated with radiation therapy [80-85]. 

The RTOG using 149 specimens from trial 86-10 
examined DNA ploidy and found 55/149 (37%) patients 
to be non-diploid [86]. This non-diploid biomarker 
status was independently prognostic for worse 5-year 
overall survival (70% versus 42%, p = 0.031), but not 
any other clinical endpoints. The reduced overall 
survival in the absence of an increase in other 
endpoints was explained by what appeared to be 
increased resistance to salvage ADT by patients with 
non-diploid tumors who had been treated with 
RT+STAD. The DNA ploidy biomarker showed a 
predictive interaction with the patients on the RT + 
STAD arm of RTOG 86-10 demonstrating a worse 
overall survival (p = 0.02) and worse survival following 
salvage ADT with non-diploid biomarker status (p = 
0.01), which was not present in the control RT alone 
arm (p = 0.56 and p = 0.37, respectively). These results 
were have not been duplicated in published form using 
the RTOG 92-02 dataset. 

COX-2 – Prognostic and Predictive 
Inflammation as a driving event in prostate 

tumorigenesis and tumor progression is acknowledged 
[87]. Mediators and modifiers of inflammation such as 
cyclooxygenase-2 (COX-2) have been studied with 
great interest. Potential roles of COX-2 in tumor related 
processes such as tumorigenesis, angiogenesis [88-
90] and radiation treatment resistance makes this an 
attractive biomarker candidate and potential 
therapeutic target [91-95]. 

From a cohort of 1554 patients from RTOG 92-02, 
586 patient samples (270 STAD + RT cases and 316 
LTAD + RT) were analyzed by COX-2 IHC [96]. By 
multivariate analysis COX-2 staining was an 
independent prognostic factor of distant metastases (p 
< 0·02) as a continuous factor or by using a cut-point. 
COX-2 was also prognostic for PSA failure [using two 
separate definitions (ASTRO: HR = 1·073, p=0·008; 
Phoenix: HR = 1·073, p=0·014) when COX-2 staining 
was considered as a continuous variable. Interestingly, 
COX-2 overexpression was associated with worse PSA 
failure (by ASTRO definition) for those on the control 
arm of RT + STAD but not those on the RT + LTAD (p 
= 0.002), suggesting that COX-2 may serve as a 
predictive biomarker for length of ADT therapy in high-
risk and locally advanced prostate cancer patients. 

Protein Kinase A – Prognostic and Predictive 
The protein kinase A (PKA) is a holoenzyme of two 

regulatory and two catalytic subunits dependent on 
cyclic AMP [97] that is overexpressed in a variety of 
cancer types and associated with poor prognosis [98-
100]. Knockdown of the gene encoding PKA enhanced 
the response of androgen-sensitive prostate cancer 
cells to ADT with or without RT and androgen-
insensitive cells to RT [101]. 

PKA overexpression was determined for 80/456 
(17.5%) samples from RTOG 86-10 [102]: 36 men from 
RT alone control arm and 44 from the RT + STAD arm. 
The PKA IHC was analyzed using both manual and 
image analysis methods. PKA expression was found to 
be very weakly prognostic for PSA failure (using image 
analysis as a continuous variable, HR = 1.01, p = 0.03), 
but stronger for local recurrence (using image analysis 
with a cut-point of >2 using a scale of 0-3, HR = 3.66, p 
= 0.002), and distant metastases (manual analysis with 
a cut-point of >2 using a scale of 0-3, HR = 2.27, p = 
0.018). No interaction between PKA biomarker 
expression and the treatment arms of RTOG 86-10 
was found. 

Examining the RTOG 92-02 biorepository for PKA 
overexpression resulted in IHC analysis on 161 
patients from the STAD + RT control arm and 152 
patient samples from the LTAD + RT arm (313 total 
cases) [103]. In contrast to RTOG 86-10, the IHC was 
analyzed using both manual and image analysis 
methods. PKA overexpression by IHC was 
independently prognostic for PSA failure (p ≤ 0.01), 
local recurrence (p < 0.05), and distant metastases (p < 
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0.01) confirming the results from RTOG 86-10. In 
contrast to RTOG 96-10, when the investigators 
examined for potential interactions between PKA 
biomarker expression and the treatment arms of RTOG 
92-02 they found significant prediction of the outcome 
for patients treated on the RT + LTAD arm. Low PKA 
expression was predictive of decreased PSA failure 
(HR = 0.54, p = 0.0003), local recurrence (HR = 0.31, p 
= 0.007), distant metastases (HR = 0.23, p = 0.003) 
and prostate specific death (HR = 0.25, p = 0.005). 
These results suggest that the benefits from RT + 
LTAD are the most pronounced in groups of patients 
with low PKA expression and consequently, novel 
strategies may be needed for patients whose tumors 
have high PKA levels. 

BCL-2/BAX – Prognostic and Predictive 
The BCL-2 family are dimeric proteins that are 

defined by containing Bcl-2 homology (BH) domains 
and act as anti- or pro-apoptotic regulators [104, 105]. 
BAX is a pro-apoptotic cytosolic family member that 
following initiation of apoptotic signaling inserts itself 
into the outer mitochondrial membrane contributing to 
the release of cytochrome c and other pro-apoptotic 
factors. In contrast, BCL-2 is the prototypical anti-
apoptotic protein that exerts its effects by titrating out 
pro-apoptotic proteins such as BAX. The relative 
amounts of BCL-2 and/or BAX has been shown to 
correlate with tumor aggressiveness and radiation 
resistance in prostate cancer [58, 106-112]. 

The RTOG examined the relative levels of BCL-2 
and BAX by IHC in both 86-10 [113] and 92-02 [114] 
trials and correlated with prognostic and predictive 
ability for clinical outcomes. The findings from RTOG 
86-10 were negative and we will instead focus on those 
from RTOG 92-02. BCL-2 was positive in 45.6% 
(229/502) of cases and BAX expression altered in 
53.9% (185/343) of cases. BCL-2 was not found to 
correlate to any of the clinical end points. However, 
altered BAX expression was independently prognostic 
for any type of disease failure (RR = 1.43, p = 0.0226). 
Next the investigators analyzed the BCL-2 and BAX 
staining as composite groups given their biologic 
interaction for apoptosis regulation. When examining 
the composite group of positive BCL-2 and/or altered 
BAX, this biomarker group was independently 
prognostic for any failure (RR = 1.45; p = 0.046) and 
PSA failure (ASTRO definition, RR = 1.60; p = 0.036). 
Lastly, this same biomarker group was predictive for 
worse 5-year PSA failure when comparing RT + STAD 
versus RT + LTAD (61% versus 24%, p < 0.0001). 

p16 – Prognostic  
The CDKN2A tumor suppressor gene is commonly 

homozygously deleted in a wide variety of primary 
tumors cancer and cell lines which helped lead to its 
positional cloning [115, 116]. CDKN2A encodes for p16 
which is a cyclin-dependent kinase inhibitor (CDKI) and 
a critical component of the pRB/p16 tumor suppressor 

axis. This axis forms a critical regulatory system for the 
G1-S-phase transition and is found to be dysregulated 
in a majority of human cancers [117]. 

A subset of tissue blocks (67/471) from RTOG 86-
10 were examined by IHC for decreased p16 and pRB 
levels [118]. Using cut-off values of <25% for p16 and 
<20% for pRB staining cells, RTOG investigators found 
that 18/67 (27%) and 54/67 (81%) samples 
demonstrated decreased p16 and pRB levels, 
respectively. Decreased p16 expression was 
prognostic for higher risk of local progression (p = 
0.0035), distant metastasis (p = 0.026) and prostate 
cancer death (p = 0.01). Decreased pRB levels were 
oddly prognostic for decreased risk of death from 
prostate cancer (p = 0.03). The predictive power of the 
p16 and pRB biomarkers were not tested for interaction 
with the treatment arms of RTOG 86-10 likely because 
of the small subset sample sizes. 

A follow-up study using samples from RTOG 92-02 
was performed examining the p16 biomarker only and 
by utilizing a quantitative image analysis system [119]. 
Tissue was available from 285 STAD + RT and 327 
LTAD + RT for 612 total cases. The p16 biomarker was 
prognostic for distant metastases (p = 0.0332) similar 
to RTOG 86-10. Tests for interaction between p16 
biomarker levels and treatment effect revealed no 
significant interactions. However, this study 
represented a sub-group that may not have 
represented the original cohort of patients of RTOG 92-
02 and investigators used arbitrary cut-points with their 
quantitative analysis perhaps limiting the power to 
detect predictive interactions with p16 and the 
treatment arms. In summary, the data from RTOG 86-
10 and 92-02 suggest that p16 is a prognostic marker 
for distant metastasis and perhaps local progression 
and prostate cancer death. Confirmatory studies are 
warranted before p16 can be used as prognostic 
biomarker for prostate cancer patients and no data is 
available to suggest that p16 is predictive for who 
should receive RT alone, RT + STAD or RT + LTAD. 

Ki-67 – Prognostic  
The Ki-67 antigen is a biomarker used to determine 

proliferative rate for many other types of tumors [120], 
as well as been shown to correlate with clinical 
outcomes of prostate cancer patients treated with 
surgery or radiation therapy [80, 108, 109, 121-128]. 
One previous study had suggested a Ki-67 index of 
>3.5% was prognostic for PSA failure following 
radiation therapy [126]. 

RTOG 86-10 samples were used to validate this 
cut-point for Ki-67 staining [129]. Diagnostic samples 
from 108 patients were available for Ki-67 analysis, 60 
cases from the RT alone arm and 48 patient samples 
from RT + STAD arm with a median follow-up of 9 
years. Using the 3.5% cut-point Ki-67 was 
independently prognostic for 5-year risk of distant 
metastases (13.5% versus 50.8%; p = 0.0005) and 
prostate specific survival (97.3% versus 67.7%; p = 
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0.0039). In a separate analysis from the same study, 
the investigators also found the 7.1% cut-point to be 
prognostic on univariate testing for distant metastases 
and prostate specific survival. No tests for Ki-67 
interaction with the treatment arms of RTOG 86-10 
were performed to allow predictive assessment. 

Ki-67 staining was studied in the RTOG 92-02 data 
set using 537 patient specimens, 257 from the RT + 
STAD arm and 280 from RT + LTAD arm [130]. The 
investigators looked at the Ki-67 staining as both a 
continuous variable and also using their 3.5% and 
7.1% cut-points from above. As a continuous variable 
Ki-67 staining was independently prognostic for PSA 
failure (p = 0.0445), distant metastases (p < 0.0001), 
prostate specific survival (p < 0.0001) and overall 
survival (p = 0.0094). The 7.1% cut-point was also 
independently prognostic for distant metastases (p = 
0.0008) and prostate specific survival (p = 0.017). No 
definitive predictive correlations were made with Ki-67 
staining and the treatment arms of RTOG 92-02. The 
investigators did identify some possible groups of 
prostate cancer patients that may not require LTAD by 
looking at various permutations of the 7.1% Ki-67 cut-
point with other traditional clinical risk factors. In a 
separate study this same IHC staining was duplicated, 
but the RTOG investigators used quantitative image 
analysis and different cut-points [64]. This duplicate 
analysis found Ki-67 to again be independently 
prognostic for distant metastases (p < 0.0001), prostate 
specific survival (p = 0.0007) and overall survival (p = 
0.01). Taken altogether, the Ki-67 biomarker was found 
to be strongly prognostic in two separate validation sets 
for distant metastases and prostate specific survival. 

MDM2 – Prognostic 
The human orthologue of the murine double minute 

(MDM2) oncoprotein is a negative regulator of p53 that 
regulates p53 degradation and represses p53 
transcriptional targets [131, 132]. MDM2 also appears 
to confer androgen independent survival and 
radioresistance to prostate cancer cells via p53-
dependent and independent pathways [133-135]. As 
described above, p53 as a biomarker has been shown 
to have promising prognostic and predictive potential 
for patients treated on RTOG 86-10 and 92-02. Only a 
limited number of studies had examined MDM2 as a 
biomarker in prostate cancer specimens with mostly 
uncontrolled cohorts [136, 137]. 

When RTOG investigators looked at MDM2 by IHC 
as a biomarker in the 86-10 cohort, they were able to 
examine 108 patients (62 from the RT arm and 46 from 
the RT + STAD arm) and found at least 47 specimens 
(44%) that had MDM2 overexpression. The 
investigators analyzed their data using a cut-point of 
>5% nuclear staining by manual analysis and with at 
3% cut-point using a quantitative method, but did not 
find that MDM2 was independently prognostic or 
predictive for any clinical outcome [138]. 

A larger study using RTOG 92-02 specimens (589 
total) of MDM2 IHC and quantitative image analysis 
was performed (64). MDM2 was found to be 
independently prognostic for distant metastases (p = 
0.02) and overall survival (p = 0.003). In addition, the 
group performed a concurrent analysis of the individual 
prognostic power of the proliferative index by Ki-67 IHC 
and p53 overexpression which we described above 
separately. Combining MDM2 overexpression and high 
Ki-67 resulted in increased prognostic significance for 
distant metastasis (p < 0.0001), prostate cancer death 
(p < 0.0001) and overall survival (p = 0.0002). 
However, no predictive correlations could be made 
between MDM2 and Ki-67 and any of the clinical 
outcomes depending on treatment arm. MDM2 
individually and particularly in combination with Ki-67 
appears to be a robust molecular biomarker for 
prostate cancer patients treated with radiation therapy. 

Survivin – Prognostic 
Survivin is a member of the inhibitor of apoptosis 

(IAP) family and inhibits caspase activation preventing 
apoptosis. Survivin is almost exclusively expressed 
during embryogenesis [139], but is found to be 
overexpressed in a wide variety of tumors types 
including prostate cancer, where it is associated with 
prognosis [140, 151]. Survivin also mediates paclitaxel 
and androgen deprivation resistance in prostate cancer 
cells [140, 152]. 

The RTOG examined nuclear survivin as a 
biomarker using the 86-10 cohort from 68 patient 
samples [153]. The samples analyzed were not 
representative for prostate cancer survival and distant 
metastases compared to the original 86-10 larger 
cohort of 456 patients and thus the results below may 
not generalize. With these caveats, nuclear survivin 
was independently prognostic for improved prostate 
cancer survival (HR = 0.36, p = 0.0173) and overall 
survival (HR = 0.46, p = 0.0156). Survivin exists in 
cytoplasmic and nuclear pools [154], with cytoplasmic 
survivin associated with poor outcomes [150]. 
Therefore, another analysis scored for cytoplasmic 
staining on 65 patient samples from trial 86-10. An 
association for increased local recurrence and 
cytoplasmic surviving was established, but was not 
upheld on multivariate analysis. Further analyses of 
survivin as a biomarker are warranted with a larger 
data such as with RTOG 92-02. 

Other Biomarkers Tested on RTOG 86-10 and 92-02 
Trials 

Five additional molecular biomarkers where tested 
using the patient samples from RTOG 86-10 or 92-02. 
The nuclear factor-κB [155], chemokine receptor 
CXCR4 [155], STAT3 [156] and CAG triplet repeat 
number located within the gene for the androgen 
receptor (AR) [157] were examined using materials 
from ROG 86-10. A very small subset of patients from 
RTOG 92-02 were examined for racial polymorphisms 
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of the cytochrome P450 3A4 (CYP3A4) gene 
responsible for androgen metabolism [158]. The 
hypotheses for studying these molecules were all well 
conceived and experiments performed in keeping with 
the high standards of the studies as detailed above. 
However, these studies were either under-powered, 
demonstrated no/weak or paradoxical associations with 
clinical outcomes and so will not be discussed. The 
reader is directed to these original publications for 
further descriptions of these works. 

SELECT NON-RTOG PROSTATE CANCER 
TISSUE BIOMARKER STUDIES 

Two additional non-RTOG tissue biomarker studies 
using patient samples from randomized dose 
escalation studies conducted by the Medical Research 
Council (MRC) from the United Kingdom will also be 
reviewed [159, 160]. The MRC RT01 trial (n=843) and 
the phase II pilot predecessor trial (n=127) were almost 
identical in design. Patients received 3–6 months of 
ADT followed by prostate radiation therapy that was 
randomly assigned to 64 Gy versus 74 Gy. In their 
initial study, the MRC investigators examined hypoxia 
inducible factor-1 alpha (HIF-1 alpha), vascular 
endothelial growth factor (VEGF) and osteopontin. 
These three markers have been implicated in 
intratumoral hypoxia which has been shown to have a 
role in modulating radiation response in multiple tumor 
types [161]. HIF-1 alpha is a transcription factor that is 
stabilized under hypoxic conditions and induces a 
number of genes, such as VEGF resulting in tumor 
progression, angiogenesis, and metabolic changes, 
making it an ideal biomarker and potential therapeutic 
target [162]. The MRC were able to obtain 201 patient 
samples from the randomized studies (n=103 from the 
64 Gy arm and n=98 from the 74 Gy arm) and perform 
IHC from tissue microarrays. The predictive properties 
of these hypoxia tissue biomarkers were not analyzed. 
However, HIF-1 alpha (HR = 1.46, p = 0.02) and VEGF 
(HR = 1.45, p = 0.008) were both found to be 
independently prognostic for PSA failure (nadir + 2 
ng/mL). 

The MRC investigators also examined some of the 
same tissue biomarkers as the RTOG: Bcl-2, p53 and 
MDM2, and where able to replicate that Bcl-2 was both 
a prognostic (HR = 3.57, p = 0.001) and interestingly, a 
predictive biomarker for radiation therapy with ADT. 
Using the same tissues as above, they specifically 
showed that patients with Bcl-2 positive tumors 
demonstrated improved 7-year biochemical control 
(41% versus 61%, p = 0.0122) with escalated doses of 
radiation therapy (64 Gy versus 74 Gy) and ADT. 
Whereas patients with Bcl-2 negative tumors did not 
demonstrate any improvement with dose escalated 
radiation therapy (p = 0.423), suggesting that Bcl-2 
status could be used to predict patients requiring more 
aggressive treatment in the form of radiation dose 
escalation or longer duration of ADT. 

MOLECULAR BIOMARKERS FOR ADJUVANT 
AND SALVAGE RADIATION THERAPY 

As mentioned above, localized prostate cancer can 
be treated successfully with definitive local therapies 
such as surgery or radiation therapy. Surgery in the 
form of a radical prostatectomy is the gold standard by 
which other local therapies are measured [2]. 
Unfortunately, in the United States approximately 
30,000 men per year will still experience PSA failure 
following their surgery with many of these men 
ultimately developing metastases [163, 164]. Radiation 
therapy to the prostatic fossa or surgical bed is the only 
potentially curable remaining option for these men. 
Radiation therapy to the prostatic fossa shortly after 
surgery in the absence of known disease, i.e. 
undetectable PSA, based on known poor pathologic 
prognostic factors such as extra-prostatic disease and 
positive surgical margins is known as adjuvant 
radiation therapy (ART). Three phase III randomized 
trials have demonstrated improvement in clinical 
outcome for patients undergoing ART who display 
these poor pathologic risk factors [165-167] (and we 
refer readers to an excellent review of these seminal 
studies [168]). However, the number of men needed to 
treat for a survival benefit is still too high (12 men 
treated to save 1 life) [165]. No published studies on 
these phase III randomized trials or any single-
institution cohort experiences are available examining 
molecular biomarkers for ART. The phase III trials 
[165-167] in particular provide an optimal opportunity to 
assess the prognostic and more importantly the 
predictive power of molecular biomarkers for ART. We 
expect these types of molecular biomarker studies to 
provide important tools to personalize ART for patients 
in the future. 

The use of radiation therapy following surgery for 
clinically persistent or recurrent disease, typically a 
detectable PSA, is known as salvage radiation therapy 
(SRT). The success of SRT is highly variable [169, 
170]. Similar to initial diagnosis, additional clinical tests 
including imaging to distinguish the extent of disease 
are sometimes warranted [8, 168, 171]. However, in 
general these additional clinical tests are not helpful at 
determining whether men with persistent prostate 
cancer will benefit from SRT. Clinical and pathologic 
factors have been identified to help refine the group of 
men likely to benefit [169, 172], but these risk 
stratification groups are still crude. Similar to definitive 
prostate cancer treatment, SRT prostate cancer 
nomograms have been created that also incorporate 
treatment related factors such as SRT dose and the 
use of ADT [170]. Again, the use of molecular 
biomarkers for the salvage setting should similarly 
improve treatment decisions and identify potential 
targets for therapy. However, prognostic molecular 
biomarkers for SRT, although further along than for 
ART, are still in their infancy and consist of only a few 
single-institution, retrospectively gathered cohort 
studies. A subtle but important implication of ART-SRT 
biomarkers; they may be surrogates for presence or 
absence of metastatic disease at the time of ART-SRT 
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and/or they may be surrogates for the intrinsic 
response of disease to radiation therapy. Lastly, since 
these are all single-arm biomarker studies, no 
appreciation of predictive power can be made. We will 
review these few studies in detail below. 

p21 
The CDKN1A gene encodes the p21 cyclin-

dependent kinase inhibitor 1 (CDKI1) protein. The p21 
protein is a critical regulator of cell cycle progression 
through G1 and forms a potent G1 checkpoint with the 
p53 tumor suppressor following various cellular 
stressors including radiation. Previous studies on 
prostatectomy specimens have indicated that p21 
overexpression correlated with worse prognosis 
possibly mediated by the ability of p21 to inhibit 
genotoxic cell death from apoptosis. Riguad et al. [173] 
examined p21 as a biomarker for prognosis in 74 
patients with a median age of 65 years (range 48-74) 
who received an average of 60 Gy SRT (range 50–70) 
34.5 months (mean 42, range 4–112) following their 
surgery. Most had a pGleason score < 7 (63/74), 
extraprostatic disease >pT3 (50/74) and positive 
surgical margins (48/74). The median pre-SRT PSA 
was 0.8 ng/ml (range 0.3–36.8). The p21 levels were 
assessed by IHC and scored manually demonstrating 
that 15/74 (20%) of the specimens overexpressed p21. 
The p21 biomarker was not correlated in this group 
with PSA failure following surgery before SRT. 
However, p21 was found to be independently 
prognostic for PSA failure (defined as > 0.3 ng/ml) 
following SRT when controlling for other variables such 
as pre-SRT PSA and pGleason score (p = 0.004). Risk 
stratification using p21 negative status and pre-SRT <1 
ng/ml levels resulted in a subset of patients with a 5-yr 
PSA failure free survival of 83%. This group also 
conducted a concurrent IHC biomarker analysis of p53 
and another CDKI, p27, but found no prognostic 
associations with their cohort of SRT patients. 

E-Cadherin 
E-cadherin is associated with tumor invasiveness, 

metastatic dissemination, and poor patient prognosis 
[174, 175] including in prostate cancer [176-181]. E-
Cadherin is a single-span transmembrane glycoprotein 
that establishes homophilic interactions with adjacent 
E-cadherin molecules expressed by neighboring cells 
assisting in formation of adherens junctions [182, 183]. 
Preclinical data suggests that knock-down of E-
cadherin is sufficient to confer a phenotype of 
epithelial-mesenchymal transition (EMT) to normal and 
malignant cells and these cells that have undergone 
EMT are subsequently chemoresistant [184]. Some 
preclinical and clinical data suggest an EMT phenotype 
may confer a worse prognosis for prostate cancer 
patients [185]. Ray et al. [186] examined a small cohort 
of 37 patient samples for abnormal localization of E-
cadherin by IHC who had been treated with a median 
of 68.4 Gy (range 64.8-70.2) SRT. Clinical 
characteristics of this cohort were most men had a 

pGleason score < 7 (29/37), extraprostatic disease 
>pT3 (25/37) and positive surgical margins (24/37). 
Most patients had pre-SRT PSA that was <1 ng/ml 
(29/37). They found 68% (25/37) of their cohort had 
abnormal localization of E-cadherin following manual 
analysis of their IHC. Aberrant E-cadherin was an 
independent prognostic biomarker in this SRT 
population and conferred a worse PSA failure rate [HR 
= 3.8, p = 0.03; (defined as > 0.2 ng/ml greater than the 
nadir)].  

Ki-67 
Ki-67 staining index as a marker of proliferation and 

use as a biomarker has demonstrated impressive 
independent prognostic ability in definitive cases of 
prostate cancer as described above and is a logical 
molecular biomarker candidate in the salvage setting. A 
group from the Mayo Clinic [187] assayed their a cohort 
of 147 patients treated with SRT (average 66.6 Gy) 
using Ki-67 IHC with techniques similar to those used 
above in the RTOG 92-02 trial. Other germane clinical 
characteristics of this cohort were most men had a 
pGleason score < 7 (115/147), extraprostatic disease 
>pT3 (97/147), positive surgical margins (87/147) and 
follow-up was 6.2 years on average (range 0.6-14.7 
years). The average pre-SRT PSA was 0.05 ng/ml 
(range 0.1-15.3). The average Ki-67 staining index was 
2.5 in their cohort (range 0-20.9). High Ki-67 (as 
defined as >4) was an independent prognostic 
biomarker in this SRT population and conferred a 
worse PSA failure rate [RR = 2.02, p = 0.005; (defined 
as > 0.4 ng/ml or greater than the nadir)]. These SRT 
data and the RTOG studies in combination suggest 
that Ki-67 staining may be a general prognostic 
biomarker for prostate cancer. 

B7-H3  
The B7 ligand (encode by CD276) is a member of 

the B7 family of immuno-moldulation molecules [188-
191]. B7-H3 functions are likely context dependent and 
can involve inhibition or stimulation of the immune 
response [192-195], but overexpression of B7-H3 has 
been correlated to worse clinical outcomes in prostate 
cancer [196]. The same group of investigators from the 
Mayo Clinic analyzed their SRT cohort of patients 
above for B7-H3 overexpression using IHC [197]. 
Manual scoring was performed and a majority of the 
tumors expressed B7-H3, but the intensity varied with 
49 (33%) patient tumors showing weak B7-H3 staining, 
70 (47%) with moderate B7-H3 intensity and 29 (20%) 
with strong B7-H3 staining. Interestingly, strong B7-H3 
staining was independently prognostic for more likely 
PSA failure following SRT (RR = 2.87, p = 0.003). 

FUTURE PERSPECTIVE 
The immediate future for the existing tissue-based 

molecular biomarkers as we have detailed above, is 
their prospective validation in clinical trials. The 
creation of integrative clinical-biomarker nomograms is 
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on the near horizon for prostate cancer radiation 
therapy [41]. Combining the prognostic and predictive 
abilities of molecular biomarkers with other clinical 
factors that are independently prognostic and/or 
predictive is the next straightforward extension of 
current nomograms. We have focused our review on 
tissue-based molecular biomarkers, but an explosion of 
data is emerging from biomarker studies in other 
specimen types [4, 5]. In addition, imaging-based 
biomarker research is provocative and has the potential 
to further augment the tools for directing prostate 
cancer therapy [198]. Ultimately, the future of prostate 
cancer biomarkers, and medical biomarkers in general, 
will be a multiscale [199] and personalized approach 
that integrates genomic [200], transcriptomic [201], 
proteomic [202] and metabolomic [203] data to provide 
direction for personalized prostate cancer 
management. 
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