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Bioinformatics Approaches in the Study of Cancer
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Abstract: A revolution is underway in the approach to studying the genetic basis of cancer. Massive
amounts of data are now being generated via high-throughput techniques such as DNA microarray
technology and new computational algorithms have been developed to aid in analysis. At the same
time, standards-based repositories, including the Stanford Microarray Database and the Gene
Expression Omnibus have been developed to store and disseminate the results of microarray
experiments. Bioinformatics, the convergence of biology, information science, and computation, has
played a key role in these developments. Recently developed techniques include Module Maps,
SLAMS (Stepwise Linkage Analysis of Microarray Signatures), and COPA (Cancer Outlier Profile
Analysis). What these techniques have in common is the application of novel algorithms to find high-
level gene expression patterns across heterogeneous microarray experiments. Large-scale initiatives
are underway as well. The Cancer Genome Atlas (TCGA) project is a logical extension of the Human
Genome Project and is meant to produce a comprehensive atlas of genetic changes associated with
cancer. The Cancer Biomedical Informatics Grid (caBIG™), led by the NCI, also represents a colossal
initiative involving virtually all aspects of cancer research and may help to transform the way cancer
research is conducted and data are shared.

INTRODUCTION gene expression and disease patterns. The use of
microarrays has resulted in the generation of vast
quantities of data with the need for high-throughput
computational techniques for analysis. Traditional
methods of analysis such as clustering have
revealed highly informative information for hypothesis
generation but have generally been limited to single
experimental runs focused on a specific cancer type.
Newer techniques have sought to move beyond the
single chip analysis and look for higher-level patterns
that are evident only across multiple, disparate
microarray experiments.

The approach to studying the genetic basis of
cancer is undergoing a revolution. Rather than
focusing on individual genes, scientists are now
exploring substantial components of the expressed
genome. The wealth of molecular information being
generated from the laboratory as well as the volume
of data being stored in the patient record is
continuing to increase at an astounding rate. Finding
new ways to integrate these data has been crucial to
developing novel insights into the genetics of
cancer. Thus bioinformatics, which is the
convergence of biology, information science, and
computation is continuing to emerge as a crucial
component of cancer biology research.

Module Maps

The use of “module maps” [1, 2] has shown
promise for delineating common patterns of gene
expression across heterogeneous tissue types and
disease processes for cancer. Modules are
determined by comparing biologically relevant gene
sets to expression data and extracting a subclass of
genes that are co-expressed in a statistically
significant manner. These modules are thought to
better reflect the true biological processes involved
since they are directly linked to the actual expression
in the samples. The module patterns can then be
compared across all tissue types to look for similar
signatures suggesting common underlying
processes.

Bioinformatics is playing an increasingly important
role not only for the computational methods and
tools that have been developed, but for the
continuing work of creating standards and
repositories as well. The following review will
summarize some of the recent developments in the
use of bioinformatics to study the genetics of cancer.
This review is not meant to characterize all of the
important progress in the field of bioinformatics, but
will serve to highlight a few areas that are
representative of current trends. Namely, the push to
integrate more and more data in new and different
ways to help speed cancer research and ultimately
lead to better treatments for patients. A recent study published in Nature Genetics [3]

demonstrates the interesting insights that can be
achieved for cancer research using module maps.
The authors collected results from almost 2,000
microarray experiments for a wide variety of cancers
and annotated them with clinically relevant data
including both diagnostic and prognostic information.
Beginning with approximately 3,000 gene sets
obtained from multiple sources, 456 modules were

NEW BIOINFORMATICS TECHNIQUES
DNA microarray technology has revolutionized the

process for discovering the relationships between
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found. These modules were then compared across
the different types of cancers. Their findings
revealed gene expression patterns common to
unrelated cancers, providing useful information
about mechanisms of cancer that could improve our
general understanding of how these disease
processes occur. For example, a bone osteoblastic
module, containing genes predominantly associated
with the proliferation and differentiation of both
chondrocytes and osteoblasts, was found to be
significantly associated and upregulated in certain
breast cancers and downregulated in lung cancer,
hepatocellular carcinoma, and acute lymphoblastic
leukemia. Such a common mechanism, once better
understood, could lead to the development of
therapeutic targets against a broad spectrum of
cancer types.

regulators with large downstream effects may not
even be included in the genetic signature itself.

A team at Stanford University has developed a
method using linkage analysis of gene expression
data linked to DNA copy number changes in order to
identify chromosomal regions containing candidate
oncogene regulators. In this case the phenotype in
the linkage analysis is the gene expression profile
associated with a known tumor type. Their method,
SLAMS (Stepwise Linkage Analysis of Microarray
Signatures) [10], involves a four-step process Fig.
(1), the first of which is sorting tumors into two groups
based on the presence or absence of a known
genetic signature. Next, significant associations
between changes in copy number and the
expression profile are identified. Both amplifications
and deletions can be detected by correlating them
with either up- or down-regulation of the genetic
signature. The third step involves identifying
candidate regulators by comparing their level of
expression with that of the expression signature. The
final step in SLAMS is to use the expression levels of
the candidate regulators to predict the expression
profiles of other cancer samples not used in the first
three steps, which serves to validate the association.

While this technique was useful in elucidating
global patterns of disease that would not have been
evident by exploring single microarray experiments,
issues still surround this approach. The lack of
detailed, standardized clinical information with which
to annotate experiments makes such broad cross-
comparisons difficult. Furthermore, the variability in
results obtained from different normalization
techniques also can impact the utility of this type of
study. The choice of an ideal normalization method
[4,5] is still an area in need of further research.

The SLAMS method was tested by applying it to
breast cancer samples obtained from the Stanford
Microarray Database [11]. A previously known
“wound signature”, comprising 512 genes, was used
to separate the samples. This signature had
previously been shown to predict clinical prognostic
risk. Copy number changes at more than 6,500 loci
were used in this analysis. More than half of the 57
DNA probes significantly associated with the
signature were mapped to the proximal region of
chromosome 8q. Interestingly, the MYC gene (known
to be an oncogenic transcription factor) is located
within the distal region of chromosome 8q, an area
that was amplified in samples without the wound
signature. The authors thus concluded that a gene
(or genes) in the proximal 8q region might interact
with MYC to express the wound signature. Further
studies revealed a candidate co-regulator which,
when activated, was able to induce expression of
the previously known signature. This technique
shows great promise, but it will have to be validated
on other cancer types. Potential problems are that
the DNA copy number might not always be
associated with a change in the activity of a
regulator gene and that correlations made with this
method may simply be due to chromosomal
proximity.

SLAMS

Standard methods for classifying tumors based
on histology, grade, and staging continue to
represent the standard of care for almost all cancers.
Even detailed histologic specimens offer only a
crude view of what might be occurring at the
molecular level since two tissue types may look alike
but may not act alike, and complex interactions
cannot be characterized. Such molecular differences
likely underlie the heterogeneity in outcomes and
response to therapy for similarly classified tissues
and leads to great uncertainty when clinicians must
tailor a treatment regimen for a particular patient.

Gene expression profiles, derived from microarray
analyses, while still not widely used in clinical care,
offer the promise of a much greater detailed
approach to classifying tumors. When linked to
clinical data, these profiles, or signatures, have
proven to be effective for diagnosis [5] as well as for
predicting clinical outcomes including both prognosis
[6, 7] and therapeutic response to chemotherapeutic
drugs [8, 9].

Even this approach has its limitations. The
ultimate goal is not to simply find genetic markers
that aid in prediction but to determine how those
genes function in the disease process with
identification of potential therapeutic targets to
positively influence outcomes. Current techniques
aimed at elucidating function allow for only one or a
few genes in a signature to be studied in more detail
at a time. Furthermore, specific oncogenetic

COPA

Traditional techniques for identifying oncogene
expression profiles are limited in their ability to
identify patterns across multiple samples, especially
when those patterns may not be predominant
enough to stand out. This is due to the
heterogeneity of expression patterns in samples,
making it difficult to separate actual patterns from



Bioinformatics Approaches in the Study of Cancer Current Molecular Medicine,  2007, Vol. 7, No. 1     135

other background variations. To solve this problem, a
new method called COPA (Cancer Outlier Profile
Analysis) [12] was developed to find profiles that
might only be expressed in a subset of tumor
samples.

The COPA technique is able to identify outlier
expression profiles where the overall expression
levels for a particular set of genes is low and only a
small subset of tumor samples shows overexpression
Fig. (2). The first step in this process is to set the
median value of expression to zero and then
determining the median absolute deviation (MAD) for
each gene. The expression values are then divided
by their corresponding MAD, resulting in a set of
transformed expression values. This technique
serves to flatten the average dynamic range of most
expression profiles where most cancerous samples
demonstrate overexpression and serves to highlight
profiles that deviate from the average level of
expression. The level of deviation from the average
expression pattern is then ranked for each gene to
provide a list of outlier genes worthy of further
exploration.

When COPA was applied to the Oncomine
database [13], comprising 132 gene expression data
sets and over 10,000 microarray experiments,
several outlier profiles were identified. What was
most intriguing is that two of the outlier genes
identified, ERG and ETV1 (located on 21q22.3 and
7p21.2, respectively), were shown to be among the
top ten outliers to exist in prostate samples from six
independent studies even though their prior
association with cancer involved a gene fusion in
Ewing’s sarcoma and myeloid leukemia. Analysis of
three independent prostate microarray studies found
that more than half of the cancer samples revealed
overexpression of either ERG or ETV1 whereas no
such overexpression was identified in any of the
benign controls. Furthermore, overexpression of
ERG and ETV1 was mutually exclusive.

Additional laboratory work provided the reason for
this: about 60-70% of prostate cancers were found
to have a gene fusion of TMPRSS2 and either ERG
or ETV1.

This was the first time a non-random, recurrent
gene fusion had been found in a common epithelial
solid tumor (such rearrangements were previously
thought to occur primarily in sarcomas, leukemias,
and lymphomas). Not only might this rearrangement
be responsible for the majority of prostate cancers
but, due to the high incidence of this common tumor,
it may actually represent the most common
rearrangement in human cancers overall. This
discovery will surely encourage scientists to take
another look at other tumors that may exhibit similar
rearrangements and may lead to new diagnostic
tests or therapeutic targets. Because the COPA
method can be applied to any expression data, only
time will tell how useful COPA will be in unmasking
other novel associations worthy of exploration.

Fig. (1). Diagram representing the process for performing a
SLAMS analysis. (1) Tumors are sorted into two groups
based on the presence or absence of a known genetic
signature; (2) Significant associations between changes in
copy number and the expression profile are identified.
Significance Analysis of Microarrays (SAM) is used to
determine the association between the genetic signature
and copy number changes; (3) Candidate regulators are
identified by comparing their level of expression with that
of the expression signature; (4) Expression levels of the
candidate regulators are used to predict the expression
profiles of other cancer samples not used in the first three
steps, in order to validate the association.

DATA REPOSITORIES, STANDARDS, AND
ANALYSIS TOOLS

The analyses described above would not have
been possible without the investigators being able to
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Fig. (2). Biomarker profiles (upper left) are usually characterized by extensive overexpression in cancer (red) compared to
normal tissues (blue). Oncogene outlier profiles are usually characterized with overexpression in only a small subset of
cancer samples (upper right). Application of the COPA transformation flattens the range of expression values in biomarker
profiles (lower left) but can highlight the expression values in outlier profiles (lower right).

bring together many publicly accessible microarray
gene expression datasets. Advantages of making
such data readily available were outlined in an open
letter submitted to various journals by the Microarray
Gene Expression Data (MGED) Society [14] and
included the ability to link microarray results to other
types of data sources to enhance the ability to
interpret gene expression patterns. Clearly this is a
successful strategy.

Microarray analysis tools specific to cancer also
exist. Gene Logic’s BioExpress® System Oncology
Suite [19] is a commercially available application
designed to allow investigators to explore microarray
data for cancers involving over 30 tissue types. It
includes negative controls, as well as primary,
metastatic, and benign tumors. To aid in the
discovery process the data sets are annotated with
richly detailed clinical information including clinical
staging, pathology reports, and complete blood
counts. The tool also integrates data from the Kyoto
Encyclopedia of Genes and Genomes (KEGG)
database, BioCarta™, and other sources. The
BioExpress® Oncology Suite offers visualization and
statistical analysis tools as well. Gene Logic also
offers their ASCENTA® System [20] which contains
about 8,700 Affymetrix GeneChip® mouse, human,
and rat arrays. While not specific to oncology, it does
provide analysis tools to explore co-expression and
differential gene expression between the samples.

Various repositories exist for storing microarray
data and include the Stanford Microarray Database
(SMD) [11], European Bioinformatics Institute’s
ArrayExpress [15], and the National Cancer
Institute’s Gene Expression Omnibus (GEO) [16]
which is maintained by the National Center for
Biotechnology Information (NCBI). While primarily for
storage, these repositories do offer some limited
data analysis options such as hierarchical clustering.
Standard data formats have also been adopted in
order to ensure the transportability and reuse of data
sets. Examples of such standards include the
Microarray Gene Expression Markup Language
(MAGE-ML) [17] and the Minimum Information About
a Microarray Experiment (MIAME) [18].

Similar to Gene Logic’s offerings is the Oncomine
[13] database Fig. (3). True to its name, Oncomine is
a data mining tool specific to oncology-related
microarray analysis with free access to academic
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Fig. (3). Oncomine: A Cancer Microarry Compendium. This diagram shows a general overview of the key components of
Oncomine. Data are imported to the Oncomine database via a data pipeline as well as a gene annotation data warehouse.
Data are then analyzed and standardized for comparison across studies. End users interact with the Oncomine web
servers. These servers provide many visual representations (e.g. Interaction networks, co-expression, differential
expression, and enrichment modules) of the data in the compendium to aid in the exploration of interesting or novel
relationships.

users. Oncomine focuses only on microarrays of
human cancer tissues and normal controls, although
it is not limited to Affymetrix chips. As of this writing it
included nearly 10,000 microarrays representing over
30 tissue types. Data are normalized for easy
comparisons across studies and analyses are pre-
computed to make data exploration extremely quick.
Microarrays are annotated with data from 14 external

sources and analysis tools include visualization of
differential expression, co-expression, enrichment
analysis, and an interaction network analysis.

A relatively recent addition to the suite of cancer-
specific analysis tools are caArray [21] and
caWorkbench [22], developed through the caBIG™
initiative (described below). The caArray tool is an
open source data repository for microarray data and
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annotations that will support diverse file formats
including Affymetrix, GenePix, and ImaGene, as well
as the XML-based MAGE-ML format. While
repositories such as the SMD have released their
source code so that individuals or institutions could
install a local version, what differentiates the caArray
initiative from others is the potential for seamless
sharing of public datasets across a federated grid of
databases without any central storage or control of
the information. The adoption of low-level data
transfer standards across the caBIG™ grid will also
allow for data to be imported into other caBIG™
compliant tools including caWorkbench. The
caWorkbench application is a tool being developed
for a myriad of uses including analysis of microarray
data, pathways, and sequences. It is built using a
plug-in architecture so that users can add desired
components including normalization, filtering, and
clustering. While its user base is currently limited,
increased adoption will likely occur as the caBIG™
initiative becomes more mature.

LARGE-SCALE INITIATIVES
A growing trend with the tools and techniques

currently in vogue is the integration of hundreds of
samples, studies, and data types combined from
multiple sources. Not all samples were originally
created by the authors but were shared through
public resources. The benefits of this data
integration are numerous. Nevertheless, data
integration from disparate data silos is very labor
intensive and takes away from time spent conducting
valuable research. Recent initiatives are seeking to
eliminate the research bottleneck caused by a lack
of standards and interoperability. Other initiatives are
looking to characterize cancer on a global scale so
that investigators will have more useful data to
analyze and integrate in novel ways.

caBIG™

The cancer biomedical informatics grid (caBIG™)
[23] Fig. (4) is an ambitious NCI-funded initiative to

Fig. (4). Diagram showing the general organizational structure of the caBIGTM initiative. Domain Workspaces encompass
projects with similar themes and include Clinical Trial Management Systems, Integrative Cancer Research, In Vivo Imaging,
and Tissue Banking & Pathology Tools. Cross-Cutting Workspaces are those which impact the activities of all other
workspaces and include Architecture and Vocabularies & Common Data Elements. Strategic level Workspaces include
Strategic Planning, Training, as well as Data Sharing & Intellectual Capital.
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connect Cancer Centers and other research
institutions in a network, or grid, to seamlessly share
and analyze biomedical data with the ultimate goal
of developing novel and effective approaches for
preventing, detecting, and treating cancer. The
caBIG™ community is comprised of more than 800
people from over 80 organizations on more than 70

projects ranging from management of clinical trials to
tools for analysis of gene expression data. Those
involved include both funded participants and
volunteers from academia, industry, and the
community. Tools developed by caBIG™ will be
made freely available to all researchers in order to
foster their dissemination and adoption.

Fig. (5). A schematic diagram representing the structure of the proposed Cancer Genome Atlas (TCGA) program, a joint
initiative between the NCI and the National Human Genome Research Institute (NHGRI). Collected specimens will be
distributed to each of four cancer genome characterization centers (CCGC) for analysis. Data will then be processed via
the TCGA bioinformatics core and shared with the greater cancer research community for further investigation.
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By adopting standards across all aspects of
cancer research, investigators using caBIG™ tools
should be able to generate and test hypotheses
faster than ever before. At the core of caBIG™ is
caGrid, which will provide the underlying
infrastructure for seamless and secure transmission
of data to other grid nodes around the nation and
perhaps eventually the world. Conforming to the
standards developed by caBIG™ will ensure both
syntactic interoperability with the grid itself as well as
semantic interoperability with the controlled
vocabularies and common data elements currently
being adopted for use in caBIG™ applications.
Compatibility with the grid architecture must be
achieved in four general categories: Interfaces,
Vocabularies/Terminologies and Ontologies, Data
Elements, and Information Models.

FUTURE CHALLENGES
While the application of bioinformatics to cancer

research has allowed for staggering progress,
significant challenges remain. New analysis
techniques will continue to be needed in order to
make sense of the myriad genetic changes
associated with cancer, especially when those
changes are subtle and poorly understood.
Methodologies for data integration will be needed as
well as normalization algorithms for samples brought
together from different laboratories under different
conditions. Also needed will be continued
development and adoption of standard formats for
data storage and sample annotation.

The ability to link microarray data with detailed
clinical patient information in a de-identified and
computable manner still does not occur as often as it
should. It will be necessary to move beyond simply
labeling a specimen in a microarray study as being
positive or negative for cancer; rather, detailed
clinical annotation will be necessary for elucidating
the genetic role in cancer subtypes, reactions to
therapies, as well as other difficult to quantitate
parameters effecting the quality of life for patients.
Not all medical records are in electronic format, and
much clinical information that is electronic is still
stored as free-text. Extracting that information
reliably remains a significant challenge.

The caBIG™ initiative is still relatively new. Many
tools are not yet ready for adoption and other
details, including those related to compatibility, are
still being determined. Large scale adoption is likely
many years away, although the adoption rate may
increase as the NIH requires caBIG™ compatibility
as a condition for funding.

The TCGA

The completion of the Human Genome Project
(HGP) in 2003 marked a major milestone in genomics
research and helped to establish the importance of
bioinformatics for storing and analyzing the vast
amounts of data that were generated. The success
of the HGP helped build the foundation for further
research into details of the human genome, with the
recent establishment of The Cancer Genome Atlas
(TCGA) [24]. Whereas the HGP was meant to
provide the baseline genetic code of the human
genome, the TCGA, a joint endeavor between the
NCI and the National Human Genome Research
Institute (NHGRI), is meant to provide a centrally
maintained, comprehensive atlas of genetic changes
related to cancer.

Because caBIG™ touches on almost all aspects
of cancer, from clinical bedside to basic bench
research, it may have the biggest potential to
positively change the standard research paradigm. If
successful, caBIG™ will likely transform the way
research is conducted and data are shared. Perhaps
once this occurs the cancer research community will
be poised to meet the challenge set forth by the
current director of the NCI, Andrew von Eschenbach,
to “eliminate the suffering and death due to cancer
by 2015”.
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