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Abstract:
Background:
The most difficult aspect of diagnosing lung cancer is early diagnosis. According to the American Cancer Society, each year, there are around 11
million newly diagnosed instances of cancer worldwide. Radiologists often turn to Computed Tomography (CT) scans to diagnose respiratory
conditions, which can reveal if lung tissue remains normal or abnormal. However, there is an increased chance of inaccuracy and delay; therefore,
radiologists are concerned with the physical segmentation of nodules.

Objective:
The objective  of  the  research is  to  implement  an  advanced modified  threshold  segmentation and classification  model  for  early  and accurate
detection of lung cancer from CT images.

Methods:
Using  the  Support  Vector  Machines  (SVM)  classifier  as  well  as  the  Artificial  Neural  Network  (ANN)  classifier,  the  authors  propose  using
Modified adaptive threshold segmentation as a segmentation approach for cancer detection. Here, Lung Image Database Consortium (LIDC)
datasets, a collection of CT scans, are used as the video frames in an investigation to authorize the recitation of the suggested technique.

Results:
Both quantitative as well as qualitative analyses are used to analyze the segmentation function of the anticipated algorithm. Both the ANN and
SVM classifiers used in the suggested technique for lung cancer diagnosis achieve world-record levels of accuracy, with the former achieving a
96.3% detection rate and the latter a 97% rate of accuracy.

Conclusion:
This innovation may have a major impact on the worldwide rate of lung cancer rate due to its ability to detect lung tumors in their earliest stages
when they are most amenable to being avoided and treated. This method is useful because it provides more information and facilitates quick,
precise decision-making for doctors diagnosing lung cancer in their patients.
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1. INTRODUCTION
The  importance  of  early  lung  cancer  detection  in

improving patients' likelihood of living cannot be overstated.
The  time  element  is  crucial  in  identifying  irregularities  in
image features, especially cancer tumors like those seen in the
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lungs  as  well  as  the  breast.  So  image-based  processing
approaches  have  lately  gained  popularity  in  several  medical
disciplines  for  contrast  enhancement  during  pre-diagnosis  as
well  as  therapy  stages.  Lung  cancer  belongs  to  utmost
dangerous illnesses, having a mortality rate higher than those
of other diseases, such as colorectal and prostate cancers [1].
The  rate  of  survival  of  patients  can  be  improved  by  early
diagnosis and intervention of lung potential nodules. Although
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CT scans are considered an important tool for early diagnosis
and  identification  of  lesions  (potential  nodules),  radiologists
face a difficult task in translating the broad measurements of
thoracic tomographic images [2, 3]. As per the report, CT has a
much  greater  rate  of  detecting  possible  nodules  than  simple
radiography,  with  a  disparity  of  2  to  10 times  [4].  However,
analyzing a huge number of patient incidents is a daunting job
for  the  radiologist,  and it  has  a  direct  impact  on the  doctor's
workload,  which  raises  the  risk  of  false  detection  and,  as  a
result, increases the probability of error [5]. This necessitates
the creation of a computational device capable of automatically
detecting  lesions  and  explaining  their  various  effects  and
characteristics.

Unchecked  cell  proliferation  in  the  lungs  causes  lung
cancer,  and  discovering  this  early  dramatically  improves
patients'  chances  of  surviving  the  disease.  New CT scanners
have greatly improved the odds of early diagnosis, which has
helped many people with lung tumors get treatment as soon as
possible.  The  nodule  seems  to  be  a  focal  opacity  in  either  a
series form having a 3-30 mm diameter. Lung nodules range in
size from very small to quite large [6]. The utilization of CT to
capture images of the interior of a functioning human body has
become  common.  Multiple  X-ray  beams  are  used  to  scan  a
human body part using the CT method. The opposite part of the
body is  equipped with X-ray detectors.  Modern CT scanners
can  collect  as  many  as  320  CT  slices  simultaneously.  For
regular  chest  protocols,  a  2D  slice  thickness  of  2.5  mm  is
typically used. Each of the 400 frames in a standard chest CT
scan measures 512 by 512 pixels in size. Nodules that are too
small to be seen on standard radiographs can now be seen with
CT scans. The standard procedure for identifying lung nodules
is for a specialist radiologist to carefully examine CT images.
The  existing  problem  regarding  early  detection  is  automatic
lung  nodule  in  Lung  Image  Database  Consortium  (LIDC)
datasets. Image-based lung nodal recognition seems to be the
primary  standard  for  diagnosing  respiratory  illness.  These
problems could be fixed by designing an effective, minimally
sized  sequence  of  training  image  features.  One  of  them  had
lung  nodules  that  looked  exactly  like  the  one  that  was  of
interest  to  doctors.  Typical  steps  include  acquiring  images,
processing  them,  segmenting  the  lungs,  identifying  nodules,
and minimization of false positives. The first thing that has to
be  done  is  to  get  a  picture  of  the  lungs.  Many  publicly
accessible  web  datasets  are  now  open  to  scrutiny.  Some  of
them are the Lung Image Database Consortium (LIDC), Early
Lung Cancer Action Programme (ELCAP), and the Reference
Image Database for Evaluating Response to Therapy (RIDER).
Several studies have indeed made use of researchers' access to
private  databases,  which  they  have  obtained  through
collaboration  with  hospitals  [7,  8].

Lung segmentation preprocessing seems to be the second
phase.  By  using  preprocessing,  CT  image  noise,  as  well  as
artifacts,  can  be  reduced.  Because  images  from  various  CT
scanners  might  differ  in  size  as  well  as  brightness,
preprocessing  measures  may  be  required  before  they  can  be
utilized.  Linear  isotropic  interpolation  was  used  for  data
restoration by Cascio, Donato, et al. to generate consistent 3D
spatial  reconstruction [9].  Median screening for compression
was performed by both Kim et  al.  and Soltanized et  al.  [10]

before going on to architectural solutions for noise reduction
[11]. Several studies have employed Gaussian filtering to get
rid of artifacts, and this includes the studies by Pu et al., Gori et
al., Wei et al., and Retico et al. [12 - 15]. Lung segmentation is
the third stage. As the name suggests, “lung segmentation” is
the  process  of  initially  isolating  lung  tissue  from  the
surrounding muscle and fat.  Lung division processes may be
broken down into two broad categories:  edge-based methods
and  thresholds  and  shapes  [16].  Choi  and  Choi's  method  for
quantifying lung capacity involves three stages: thresholding,
segmentation refinement, and volumetric determination based
on 3D-linked component coloring [17]. Keshani et al. used a
multi-step process to divide the lungs into individual segments
[18].  First,  an  adaptive  fuzzy  threshold  method  was  used  to
collect binary images. It used to require two windows to create
a  seamless  mask.  After  that,  the  lung  surface  area  was
calculated  using  active  contour  modeling.  Kim  et  al.'s
malleable  prototype  was  used  to  delineate  the  lung  regions.
Using an active contour modeling approach, Belloti et al. [19,
20] demonstrated a larger lung region that had been segmented.

Moreover,  at  step  4,  the  nodule  candidate  looks  to  have
been found. Choi and Choi matrices,  which are based on the
Hessian  metric,  can  be  used  to  find  potentially  useful  node
positions. To locate nodes, El-baz et al. developed a matching
strategy  based  on  an  evolutionary  algorithm  [21].  First,  a
genetic approach was developed to regulate the center, and an
appropriate radius was formed around the recognized picture.
The  second  strategy  was  an  algorithm  based  on  template
matching. The nodule was simulated by Cascio, Donato, and
colleagues  using  a  3D  mass-spring  model.  Suiyuan  and
Junfeng did thresholding in the study area, and the algorithm
was  applied  to  zero  in  likely  nodule  locations.  Separating
nodule shapes using dynamic programming was accomplished
by Xu et al. [22], Aoyama, and Wang et al. [22 - 25]. Fan et
al.'s  3D  template  matching  approach  is  used  to  partition  the
nodules [26]. Kostic et al. used 3D morphological processing
to classify lung nodules. The nodule candidate was found by
Enquobahrie  et  al.  [27],  who  utilized  surface  morphology
analysis and volume occupancy analysis. Li et al. [28] created
a rule-based classifier to recognize nodules. In their research on
nodule detection, Kawata et al.  [29] used k-means clustering
with  a  linear  discriminate  (LD)  classifier  [30].  To  locate
nodules, Matsumoto et al.  developed a novel filter called the
quantized convergence index filter [31]. To identify potential
nodule sites, Jia et al. and Fukano et al. respectively employed
a morphological  filter  and a hessian-based detection strategy
[32, 33]. Both Zhao et al. and Dehmeshki et al. used support
vector machines (SVM) to classify nodules [34, 35].

The use of feature classifiers to decrease false positives is
the fifth stage. SVM classifiers targeting node structure were
created by Choi and Choi and Santos et al. [36]. To lessen the
prevalence of false positives, El-baz et al. created a Bayesian
supervised classifier. Rule-based classifiers were developed by
Matsumoto et al. [37]. With their method, seven characteristics
were  determined  for  every  potential  nodule.  Using  these
features, we determined cutoff values that were above where
nodule candidates would be classified as actual nodules.

Effective  medical  image  interpretation  requires  two
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separate procedures: (1) recognizing attractive distinguishing
patterns  and  (2)  developing  the  possible  link  between  image
characteristics,  clinical  context,  and  probable  therapies  [38].
While  the  latter  needs  a  thorough  knowledge  and
comprehensive understanding of radioactivity occurrences and
clinical  aspects  of  disorders,  the  former  means  only  a  basic
knowledge of the radioactivity occurrences and clinical aspects
of  illnesses  [39].  The  number  of  failures  in  medical  data
perception  was  induced  by  perceptual  misunderstanding,
according to a large–scale report on misconduct in radiology
[40]. The normalization of observing environments, adequate
preparation of the observers, accessibility of identical images
and  clinical  evidence,  multiple  reporting,  and  image
quantitative  analysis  are  all  strategies  for  minimizing
perceptual errors [41].  Structured visual definitions based on
radiology semantics are also a successful approach for enabling
unequivocal interpretation of scanning signs, but they are still
seldom used during routine practice [42]. When applied to the
existing  techniques,  computerized  image  analysis  and
manipulation  ought  to  be  equipped  to  provide  detailed,
systematic,  and  repeatable  data  analysis  [43].  As  elevated
image  analysis  based  upon  computer-generated  image
quantification  as  well  as  its  clinical  meaning  resides  in  the
possession of the reasonable eye, the abilities of computers and
radiographers  are  considered  to  be  very  compatible.  To
overcome this issue, early detection and diagnosis are needed.
Trial  results  of  National  Lung  Screening  show  that  early
detection of lung tumors at lower-dose CT scans prevents 20%
of fatalities [44]. However, CT evaluations for lung screening
could  become  more  common  in  the  future.  As  a  result,  it
produces more images that  can be read by the radiologist  on
their  own  for  error-free  diagnosis  interpretation.  The  image
analysis tool that can be used is MATLAB. The Jpeg format is
used  for  the  image  pixels.  To  isolate  the  cancer-affected
sections,  extensive  pre-processing  and  differentiation  are
performed. Classification aims to check whether the object is
normal  or  not.  The  tumor  is  recognized  by  counting  all  the
pixels [45]. Multiple classifiers check the input image against
those in a database; cancer is detected by tallying up the pixels.
This  feature  extraction  process  is  crucial  in  identifying  and
categorizing applications. Multiple classifiers for texture-based
extracting features are used.

A fragmented tissue density region of the patient is used to
make  a  lung  cancer  prediction  [46].  First,  a  suspiciousness
investigation is conducted, followed by classification is made
to  assess  the  degree  of  malignancy  [47].  A  method  of
extracting  the  features  is  used  to  analyze  the  data.  The
prediction regarding the development of lung cancer in patients
requires  performing  a  texture-based  assessment  [48].  To  do
this, a two-stage procedure is used. Initial processing involves
training the system with a large sample of both cancerous and
non-cancerous  images.  The  second  stage  is  testing,  which
involves  analyzing and making predictions  about  the  current
image  using  the  data  for  training  [49].  Preprocessing  is
accomplished via smoothing, augmentation, and localization in

a number of the current models. Segmentation techniques are
used to perform the division [50, 51]. After that, we employ the
GLCM to carry out the segmentation method. It is the job of
the classifiers to make a prognosis regarding whether or not the
nodule  becomes  cancerous.  However,  insufficient  controls
mean  that  not  all  targets  are  hit.  With  the  suggested  system,
this problem will no longer exist.

This  research  article  follows  the  outline  below.  The
thresholding procedure is incorporated into the realization of
the proposed investigation. The research aims to implement a
modified threshold segmentation and classification model for
early  as  well  as  accurate  detection  of  lung  cancer  from  CT
images.  On  focussing  the  objective,  we  proposed  employing
the  modified  adaptive  threshold  segmentation  (ADTM)
technique  in  combination  using  a  support  vector  machine
(SVM) classifier as well as an artificial neural network (ANN)
classifier  to  identify  cancer.  This  research  outcomes  are
obtained with the training and testing on the LIDC data sets.
This  technique  employs  a  patch-based  image  subdivision
strategy  of  nodule-specific  size  and  shape  information.  Both
the ANN and SVM classifiers used in the suggested technique
for  lung  cancer  diagnosis  achieve  world-record  levels  of
accuracy.

2. PROPOSED METHODOLOGY

Filtration, classification, and extraction of features are the
three phases of the recognition system. Lung cancer database-
based  images  can  be  utilized  as  inputs,  as  the  accuracy  and
effectiveness of tumor detection are enhanced by maintaining
these stages. A modified adaptive thresholding method is used
for segmentation, which helps to determine whether the input
image  has  an  infection  occurred.  Classifier  helps  to  make
detections more precise. MATLAB 2018a is used as a tool to
apply the proposed methods for diagnostic imaging.

Fig. (1) depicts various phases of the suggested system that
were applied to lung cancer detection. Lung Segmentation is
done  utilizing  adaptive  threshold,  and  feature  extraction  is
utilized  for  extracting  texture  and  shape  features.  Then
classification of features is done using ANN and SVM. Every
link inside an ANN-enabled ubiquitous input-output system is
assigned a weight, and this model is what makes the network
possible.  Such  a  system  has  an  input  layer,  an  intermediate
layer (or layers) as well as an output layer. To learn more about
a computational model, the importance of a certain relation is
tweaked. Changing the weight iteration procedure improves the
network's efficiency. The weighted number of inputs activates
neurons  in  a  neural  network.  The  stimulation  output  is
processed  via  the  transfer  function,  which  results  in  a  single
neuron output.  This  output  signal  causes  non-linearity  in  the
network.  Throughout  the  training,  this  network's  accuracy  is
improved  by  adjusting  the  transmission  rates  of  its
interconnected  nodes.  Furthermore,  an  SVM  classifier  is
employed for making a prognosis regarding whether or not the
nodules are cancerous.
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Fig. (1). Block illustration of the suggested method for identifying lung cancer.

2.1. Lung Image Database Consortium (LIDC) and Image
Database Resource Initiative (LIDC-IDRI) Dataset

Four  exceptionally  skilled  thoracic  radiologists'  included
lesion annotations throughout the LIDC-IDRI database. 1,018
low-dose lung CT images from 1010 lung patients are included
in LIDC-IDRI. Imagery comprising a clinical thoracic CT scan
as  well  as  an XML file  with  the  findings  of  a  2-stage image
annotation  process  completed  by  four  qualified  thoracic
radiologists  have  been  included  for  every  individual.  This
collection includes lung cancer screening along with diagnostic
thoracic  CT  pictures  with  labeled  lesions.  This  is  a  hub  for
CAD  techniques  for  lung  cancer  screening,  including
diagnostic  research,  teaching,  and  assessment.

2.2. Adaptive Threshold Segmentation (ADT) and Modified
Adaptive Threshold (ADTM) Segmentation

In  its  simplest  terms,  adaptive  thresholding  converts  a
color  or  grayscale  visual  display  into  source  images  that
accurately  reflect  the  classification.  To  implement  locally
adaptive thresholding, a threshold is calculated for each image
pixel  individually,  which  computes  the  threshold  for  every
pixel  to  use  the  local  mean  intensity  all-around  pixel's
neighborhood  with  a  sensitivity  factor  defined  by  sensitivity
[52]. Sensitivity is indeed a scalar with a value between 0 and 1
that  shows  sensitivity  to  thresholding  additional  pixels  as
foreground.  Whenever  the  pixel  score  is  lower  than  that  of
threshold values, the foreground score was assumed; however,
the background value was calculated. Bradle is another name
for this method. This method uses a neighborhood shape that is
computed as 2*floor(size(I)/16)+1, which is almost 1/8th the
size  of  the  picture.  In  the  Modified  Adaptive  Threshold,  in
addition  to  the  Adaptive  Threshold  method,  to  remove  the
outer ring structure or parts of the outer ring structure obtained
in some cases, we used a filtering criterion with an assumption
that the object’s Centroid of Interest lies in the upper 80% of
the image.

When  it  comes  to  storing,  exchanging,  and  transmitting
digital  records,  the  Digital  Imaging  and  Communications  in
Medicine (DICOM) standards were being universally adopted.
DICOM  images  are  often  compressed  for  storage  and
transmission  because  they  contain  multiple  high-resolution
images.  Because  of  this,  they  are  noisy.  So  image  noise
reduction  is  a  must.  Median  filtering  is  used  because  it
preserves edges while also reducing noise. By comparing every
pixel to its surroundings, a median filter may assess whether a
given  pixel  represents  its  surroundings.  The  pixel  rate  is
swapped out for an average of the norms of neighboring pixels.
In this case, we choose a 3-by-3-block area. To find the middle

value, we rank the neighboring input images numerically and
would then replace the target pixel with its median value. If the
number  of  adjacent  pixels  under  examination  is  even,  the
center and center pixels of the picture are averaged. The lungs
are  divided  into  segments  using  a  technique  called  modified
adaptive  threshold.  Areas,  Center  of  gravity,  Concave  Area,
Eccentricity,  Diameter,  Euler  Numbers,  Extension,  Extrema,
Minor Axis Long, Major Axis Length, Alignment, Enclosure,
and Solidity seem to be just 13 of the many shape features; 7
GLCMs  are  also  available.  Contrast,  Equilibrium  Energy,
Homogenisation,  Cluster  Prominence,  Cluster  Shade,
Dissimilarity, and 8 Intensity are all characteristics of texture.
Several statistical parameters are determined, such as the root-
mean-square  (RMS)  variance,  central  tendency,  dispersion,
skewness, and inverse difference moment (IDM). Normalized
values for the Principal Component Coefficients are calculated
by filtering out high and low-intensity features in the Single-
Level Discrete 2-D Wavelet Transform.

The  classification  effectiveness  of  the  predicted
methodology parameters of ADT as well as ADTM using ANN
and  SVM  are  measured  using  nine  performance  metrics,
including  precision,  errors,  sensitivities,  specificity,  false-
positive  rates,  F1  score,  Mathews  correlation  coefficient,  as
well as kappa-kappa. Cohen's Accuracy could be thought of as
the  proportion  of  accurately  predicted  pixels  [53,  54].  The
resulting equation is shown below.

Acc = (TP + TN)/ (TP + FP + TN + FN)

Below,  we  quantify  sensitivity  (the  fraction  of  node
variables  correctly  predicted)  and  accuracy  (the  fraction  of
input images correctly predicted).

Se = TP/(TP + FN)

Sp = TN/ (TN + FP)

The false negative ratio (FNR) seems to be the proportion
of  pixels  with  wrong values,  whereas  the  false  positive  ratio
(FPR) constitutes the proportion of pixels that are mistakenly
identified as nodes [25].

FPR = FP/(TP + TN)

FNR = FN /(TP + TN)

The overlapping value is an indicator of similarity that is a
reproduction of how the principles' subdivision result binds the
truth.

Overlap = TP/(TP + FP + FN)

Where,  True-positive  (TP)  =  exactly  found  number  as
nodule pixels. False-positive (FP) = incorrect found number as
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nodule  pixels.  True-negative  (TN)  =  the  number  of  exact
identifications as background pixels. False Negative (FN) = the
number of incorrect identifications as contextual images. Five
computation  measures  have  scores  ranging  from 0  to  1.  The
better the divisional performance, the lower the FPR as well as
FNR.

3. RESULTS AND DISCUSSION

To  begin,  we  must  first  convert  every  DICOM  image
within  the  LIDC dataset  to  Jpeg images,  after  which  we can
obtain a 534-training dataset and 150-testing database, each of
which  will  feature  images  of  malignant  as  well  as  benign
tumors of lung cancer. One of the test photographs included in
the  database  is  chosen  and  then  converted  to  grayscale  by
erasing the color and saturation information while saving the
brightness. To increase the quality of the images produced by
automatic image processing programs and lessen their reliance
on  human  input,  a  representativeness  reduction  technique  is
employed.  Contrast  enhancement  methods  may  be  divided
basically into two groups: those that operate in the frequency
domain  and  those  that  operate  in  the  spatial  domain.  Its
purpose  is  to  dampen  lower  frequencies  in  the  frequency
domain.  Median  filtering  is  utilized  during  preprocessing
because  it  preserves  edges  while  removing  unwanted  noise.
After  each  iteration,  the  filter  substitutes  every  score  match
with the average for neighboring pixels. Its “window” is simply
the  configuration  of  its  surrounding pixels,  which allows for
seamless panning across the entire display. Fig. (2) displays the
processed photos. The steps in preprocessing are,

Step 1: Initializing a 3×3 Square neighborhood

Step 2: Putting in the numerical arrangement of the pixel
data in the immediate area

Step 3: substituting the center pixel value for the one being
evaluated.

Step 4: If the number of pixels in the neighborhood under
evaluation is  even,  the sum of  its  two middle pixel  values is
utilized.

Fig. (2). Median filtered image after preprocessing.

The  segmentation  of  lung  images  using  adaptive
thresholding  involves  the  following  steps.  Initially,  it
determines  the  range  of  global  threshold  values  that  can  be
used  to  convert  an  intensity  representation  toward  a  binary
image.  Images  are  distributed  into  fragments  as  component
areas or objects. Image subdivision aims to alter an illustration
of the image by providing more agreeable results. Because just
those  pixels  with  a  label  may  be  employed  to  partition  the
picture into discrete pieces, it is necessary at this stage to give
an  identifier  to  every  pixel  throughout  the  image.  The  most
prevalent application of image segmentation is the localization
of  objects  and  boundaries  in  pictures,  such  as  planes  and
curves.  Fig.  (3)  shows  a  segmented  image  using  the
thresholding  approach.  It  shows  important  information  in
image segmentation. The benefit of using a threshold is that the
segmented image attains less storing space and its dispensation
speed  increases.  The  thresholding  process  is  a  non-linear
operation  performed  on  an  image.  Grayscale  images  are
transformed in and out of binary ones. The thresholding value
assigned to this technique is between 0 and 1. Therefore, the
image will be segmented based on threshold values attained on
it.

Fig. (3). The output of Adaptive and Modified Adaptive Thresholds for
Malignant and Benign images.

The two most common applications of feature extraction
are  contour  recognition  as  well  as  image  distribution.  This
characteristic  is  a  recurrent  image  design.  The  binarization
technique is employed to spot lung cancer as well as isolate the
relevant  portion  of  a  photograph.  The  process  of  feature
extraction seems to have been a crucial step in identifying and
segmenting a wide variety of predetermined geometries.  The
amount  of  grayscale  or  monochrome  pixels  is  used  to
determine  the  degree  of  binarization.  A  key  part  of  the
binarization architecture is the demonstration that normal tissue
images have a significantly greater proportion of black pixels
than  aberrant  lung  images  with  white  pixels.  An  image  is
considered  abnormal  if  its  black-to-white  pixel  ratio  is
significantly  off  the  normal  range.  Binarization  is  used  to
obtain  the  images,  as  in  Fig.  (4).
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Fig. (4). The binarized, filled output of Benign images, cleared border, and malignant images.

The  aforementioned  binary  images  are  then  subjected  to
morphological  procedures,  which  degrade  binary  images  by
eliminating detail. The next step is to stretch the image to fill in
some pixels that would otherwise be invisible from the image's
periphery due to their location in the image's context. Finally, a
disk-shaped  segmentation  marker  is  used  to  isolate  the
segmented  region  in  the  image  pixels.

Grayscale image segmentation can yield a wide variety of
useful  features;  for  example,  13  form  attributes,  7  GLCM
feature descriptors, as well as 8 intensity parameters. These are
taken  from  the  basic  components  that  comprise  discrete  2-
dimensional wavelets with a single degree of granularity. Table
1  displays  the  13  retrieved  shape  features:  area,  centroid,
concave area,  eccentricities,  equiv dimension,  Euler  number,
extent,  extremes,  minor  and major  axis  lengths,  orientations,

perimeter, as well as solidity.

Table 2 lists the seven GLCM indicators that were derived:
contrast, stochastic energy, consistency, difference, as well as
cluster shade.

Table 3 displays the values for various intensity variables.
These  include  the  Standard  Deviation,  Skewness,  Mean,
Smoothness, Median, RMS (root-mean-square), Variance, and
Kurtosis,  as  well  as  IDM  (Islanding  detection  method).  The
homogeneity of the image affects IDM. IDM will receive small
contributions from inhomogeneous areas due to the weighting
function.  As  a  consequence,  inhomogeneous  images  have  a
lower  IDM  value,  whereas  homogeneous  images  have  a
comparatively greater value. The PCOs of a 1-level discrete 2-
dimensional wavelet transform can be utilized to infer intensity
characteristics.
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Table 1. Segmented regions' shape-based constraints.

S. No. Parameters Malignant Benign
1 Area 23009 16463
2 Centroid 256.643 273.8151
3 ConvexArea 27727.5 23601
4 Eccentricity 0.8263 0.8807
5 EquivDiameter 171.1263 144.7803
6 EulerNumber 1 1
7 Extent 0.6492 0.5317
8 Extrema 248.875 270.75
9 MajorAxisLength 245.7574 255.2849
10 MinorAxisLength 136.5139 120.9415
11 Orientation -0.8873 -7.0178
12 Perimeter 697.886 764.394
13 Solidity 0.83 0.6976

Table 2. GLCM-based Texture characteristics.

S. No. GLCM Parameters Malignant Benign
1 Contrast 0.0566 0.0314
2 Entropy 0.6445 0.3085
3 Energy 0.6967 0.8786
4 Homogeneity 0.9895 0.9955
5 ClusterProminence 149.2417 31.0958
6 ClusterShade 17.1372 5.5721
7 Dissimilarity 0.0276 0.0129

Table 3. Intensity parameters.

S. No. Intensity parameters Malignant Benign
1 Mean 00.0019 0.0012
2 Standard Deviation 00.0597 0.0587
3 RMS 00.0598 0.0498
4 Variance 00.0036 0.0026
5 Smoothness 00.9732 0.9672
6 Kurtosis 64.4715 78.564
7 Skewness 3.9275 4.752
8 IDM 1.432 3.7424

Measured  variables  yield  a  total  of  28  characteristics,
including  13  contours,  7  GLCM  feature  descriptors,  and  8
intensity characteristics. The above process was done for all the
534 images in the training database, and these features are used
for training the designed ANN-based classifier.  There are 20
levels in the secret layers. Because of its superior suitability to
the present investigation, the log-sigmoid transfer function has
been  used.  The  regression  map,  results,  training  state,  error
histogram, and error histogram of the ANN and SVM classifier

are  depicted  in  Figs.  (5  to  10)  correspondingly.  The  training
state plot of ANN is shown in Fig. (5), and the Error histogram
plot of ANN is shown in Fig. (6). Based on the obtained label 1
or  2,  the  output  displayed  tumor  images  as  benign  or
malignant, respectively. The regression plot of ANN is shown
in  Fig.  (7).  The  performance  plot  of  ADT  and  ADTM  with
ANN is shown in Fig. (8). The input image's real label values
are  determined  by  utilizing  the  constructed  feed-forward
computational  model  to  match  it  to  the  pre-existing  learned
image labels.
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Fig. (5). Training state plot of ANN.

Fig. (6). Error histogram plot of ANN.

According  to  the  results  of  this  research,  the  optimal
number of training iterations for a neural network referred to as
epochs  in  ANN  jargon  was  set  to  18.  To  avoid  overfitting,
which  can  occur  when  the  number  of  iterations  is  either  too
low  or  too  high,  we  designed  the  network  to  stop  training
whenever  the  best  generalization  is  achieved.  This  was
accomplished by dividing the histograms of directed gradients
(HOG)  data  into  three  sub-datasets:  70%  preparation,  15%
validation, and 15% checking. The HOG database was used for
conditioning the network, while the reliability of the data set
was used to test the network's accuracy. When the fault for the

validation  dataset  began  to  rise,  the  network  training  ended.
We also provided the mean square errors (MSE) as well as the
accuracy  rate  for  every  trial,  where  the  number  of  hidden
neurons varied from 2 - 18 throughout the two phases (from the
confusion matrix plot). The MSE is a measure of how far off
the output is  from the goal.  Verification vectors will  quickly
trigger to terminate training if the network procedure upon that
verification matrices keeps on delivering or keeping the same,
as  evidenced  by  a  rising  trend  within  MSE  for  validation
specimen. We also run a test using a test dataset to see whether
the network generalizes well, but this did not impact training.
Epoch 17 has the highest accuracy results.
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Fig. (7). Regression plot of ANN.

Fig. (8). Performance evaluation of ADT and ADTM with ANN.
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Fig. (9). Confusion Matrices for ADTM with ANN classifier.

Fig. (10). Performance evaluation with SVM classifier.

Error  histogram  refers  to  the  distribution  of  deviations
from the predicted value of such a target variable after training
a feed-forward neural network. Since they indicate the degree
to which actual values deviate from their target counterparts,
such error estimates can be negative. The term “bins” describes

the range of the graph's vertical lines. There are currently 30
discrete groups within the higher error spectra. Upon that Y-
axis, we can see the percentage of the whole dataset that fits
through  every  bin  [53].  Fig.  (6)  displays  the  theoretical
network's error histogram, which displays how the error scales
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are  distributed.  To  evaluate  the  results,  the  terms  Sensitivity
(SE), Accuracy (AC), and Specificity (SP) are employed. The
diagnostic accuracy of a test is measured by its sensitivity. The
capacity of a test to definitively exclude a potential outcome is
known  as  its  “specificity.”  The  number  of  observations
correctly categorized determines classification accuracy.  The
regression  plot  of  network  outputs  concerning  preparation,
research, validation and test sets is shown in Fig. (7). A straight
line  represents  the  best-fit  linear  regression  line  between
outcomes  and  aims.  The  correlation  between  several  outputs
and the targets is denoted by R, where R=1 indicates a perfect
match.  To  put  it  another  way,  if  R=0,  there  will  be  no
connection  between  outcomes  and  objectives.

Multiple  classes  are  labeled  and  predicted  to  generate  a
confusion matrix [55]. a False Positive (FP), A True Positive
(TP), a True Negative (TN), and a False Negative (FN) are all
possible  outcomes  in  the  Two-Class  of  Confusion  Matrix.
Accuracy,  error,  Sensitivity  (Recall  or  TP  rate),  Specificity,
Precision, FPR-FP rate, F1 score, MCC-Matthews correlation
coefficient, and kappa-kappa Cohen's are calculated to evaluate
the accuracy of ADT and ADTM using ANN, as illustrated in
(Fig. 1 and Table 4).

The rows of the multiplication chart, including a confusion
matrix, stand for the target domain (Output Class), whereas the
bars  stand  for  the  class  label  themselves  (Target  Class).
Accurate  particulars  are  represented  by  the  cells  along  that
diagonal.  The  labels  above  the  off-diagonal  cells  that
correspond  to  the  breakthroughs  are  wrong.  Uncertainty

matrices  display  the  relative  frequency  of  right  and  wrong
categories. Appropriate classifications are represented by green
squares upon that diagonally of said matrices and wrong ones
by red squares. Distinct cells demonstrate the percentage of the
overall  observations  that  can  be  interpreted,  as  well  as  the
entire amount of explanations. Columns on the far side of both
maps  indicate  what  percentage  of  expected  occurrences  was
correctly  and  incorrectly  labeled.  Among  the  most  common
criteria used was the percentage of false positives or accuracy
(or  positive  predictive  score).  The  line  at  the  bottom  of  the
graph displays the percentage of successfully and incorrectly
classified cases across all anticipated classes. Two metrics that
saw frequent use are recalled (called true +ve rate and false -ve
rate). The accuracy is represented by the number of white cells
in the bottom right portion of the map.

In Fig. (9), the confusion matrix with targeted and output
classes is indicated. The number and percentage of successfully
replicated arrangements using the trained system are displayed
in the top two diagonal cells. Only 488 images out of 534 could
be  confidently  labeled  as  benign  (the  true  positive).  Nearly
ninety-two  percent  of  the  534  photographs  are  compared  to
show  similarity.  To  the  same  extent,  12  instances  are
accurately diagnosed as malignant (true negative). Only 2.2%
of all  photos can be distinguished from this.  A false-positive
rate of 1.5% was achieved when 8 malignant imageries were
misclassified as benign. Also,  4.9% of all  data,  or 26 benign
images, are misclassified as cancerous (False negative). With
the  ANN  classifier,  ADTM  achieves  an  impressive  96.3%
accuracy  with  a  margin  of  error  of  only  3.7%.

Table 4. Performance analysis of ADT and ADTM using ANN.

S. No. Performance Analysis ADT ADTM
1 Accuracy 95.3184 96.2547
2 Error 4.6816 3.7453
3 Sensitivity 99.9999 98.3871
4 Specificity 34.2105 68.4211
5 Precision 95.2015 97.6
6 False positive rate 65.7895 31.5789
7 F1_score 97.5418 97.992
8 Mathews Correlation Coefficient 57.0692 70.3457
9 Kappa 49.1351 70.2208

Table 5. Evaluation Metrics of ADT & ADTM using SVM classifier.

S. No. Performance Analysis ADT ADTM
1 Accuracy 96.0674 97.0037
2 Error 3.9326 2.9963
3 Sensitivity 99.9999 99.5968
4 Specificity 44.7368 63.1579
5 Precision 95.9381 97.2441
6 False positive rate 55.2632 36.8421
7 F1_score 97.9269 98.4064
8 Mathews Correlation Coefficient 65.5131 74.9653
9 Kappa 60.0613 73.4658
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The results of an SVM classifier performance analysis are
displayed in (Table 5 and Fig. 10). Most 97.00% total accuracy
is better than that of the other classifiers studied for this paper
by a wide margin. Since SVM is less sensitive to the sample
and  uses  only  support  vectors  to  create  the  separating
hyperplane,  a  rise  in  the  number  of  training  specimens  had
little effect on accuracy.

Fig.  (11)  shows  the  ADTM-SVM  confusion  matrix  with
the input class and the expected output class. Only 494 of the
534  photos  can  be  safely  classified  as  malignant,  the  true
positive. Almost 93% of the 534 photographs on the site have
some  similarity  to  this.  In  a  similar  vein,  14  cases  met  the
criteria for malignancy (true negative). To be exact, it is similar
to  2.6% of  all  photos.  Two  photos  are  misclassified  as  false

positive  (as  benign),  or  0.4%.  Conversely,  4.5%  of  the  total
data  corresponds  to  24  benign  photos  wrongly  classified  as
cancer  (False  negative).  ADTM  using  an  SVM  classifier,
achieves  97.0%  accuracy  with  a  3.0%  margin  of  error.
Classification  models  combining  depth  features,  radiomics
features, and multi-scale features are compared and depicted in
Table 6.

To properly examine the impact of every single component
within  the  suggested  investigation,  we  conducted  extensive
ablation  procedures  using  7  training  alongside  two  testing
groups  [64  -  66].  Table  7  compares  our  results  from  using
classifiers with those from not using them when screening for
ADT and ADTM.

Fig. (11). Confusion Matrix for ADTM with SVM.

Table 6. Analysis of various classification models.

Reference No. Type Sensitivity Specificity Accuracy
[56] Combinational features 73.70 95.40 83.20
[57] Hybrid model 78.80 87.90 93.80
[58] Radiomics + CNN 97.00 88.00 89.00
[59] Hybrid model 78.00 88.00 85.00
[60] Multi-scale approach 79.43 93.76 87.65
[61] Multi-feature CNN 91.00 89.00 92.00
[62] CNN (n-ClsNet) 93.78 90.14 93.80
[63] Multi-feature multi-scale CNN 85.00 94.00 90.00

- Proposed (ADTM+ANN) 98.3871 68.4211 96.25
- Proposed (ADTM+SVM) 99.5968 63.1579 97.00
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Table 7. Evaluation using parameters of ADT & ADTM with and without classifiers.

S. No. Features ADT ADTM ADT + ANN ADTM + ANN ADT + SVM ADTM + SVM
1 Accuracy 54.21 76.32 95.3184 96.2547 96.0674 97.0037
2 Error 6.36 5.95 4.6816 3.7453 3.9326 2.9963
3 Sensitivity 52.18 69.68 99.9999 98.3871 99.9999 99.5968
4 Specificity 56.94 73.77 34.2105 68.4211 44.7368 63.1579
5 Precision 54.00 75.48 95.2015 97.6 95.9381 97.2441
6 False positive rate 45.97 52.56 65.7895 31.5789 55.2632 36.8421

Fig. (12). Ethical and legal considerations in AI.

The  systems  use  ANN  as  well  as  SVM,  two  types  of
intelligent classifiers that have proven effective in separating
benign from malignant lung tumors. The primary goal of this
study  is  to  refine  existing  image-processing  methods  for
segmenting lung tumors into discrete regions.  The suggested
methods  for  automated  lung  tumor  segmentation  using  CT
images are easy to implement yet potentially play an important
role in modern medicine. The suggested method provides the
best possible option for rapidly and accurately diagnosing lung
cancer. As a result, the proposed system employs sophisticated
image processing methods like thresholding in an easy-to-use
framework  to  facilitate  cancer  detection.  Numerous  affected
and  unaffected  images  from  an  online  database  are  used  to
evaluate  the  developed  system.  The  goal  of  the  tests  was  to
prove that the suggested system could successfully detect lung
tumors without human intervention and pave the way for early
diagnosis.

3.1.  Ethical  Issues  Regarding  Artificial  Intelligence  (AI)
and Machine Learning (ML) in Medical Diagnosis

Due  to  advances  in  computing,  the  reasoning  process
underpinning Artificial Intelligent System (AIS) results may be
obscured, rendering in-depth analysis impractical. Adopting AI
to  assist  clinicians  in  the  future  may  result  in  a  shift  in
stakeholder dynamics and clinical decision-making [67]. Using

AIS  in  the  future  to  aid  clinicians  possess  the  capability  to
completely  alter  the  healthcare  system  if  it  is  extensively
adopted. Safe use of novel technology within clinical settings is
crucial  to  clinicians.  Since  robot  physicians  and  nurses  lack
human characteristics,  such as  compassion,  their  interactions
with  patients  will  be  less  empathic,  considerate,  and
appropriate [68]. This is arguably the most severe drawback of
AI  in  the  medical  field.  Artificial  intelligence  in  healthcare
needs to be flexible enough to respond to novel situations while
maintaining  ethical  standards.  AIS  can  have  sudden  and
dramatic failures when the environment or conditions change
[69]. In a single second, AI may go from extremely savvy to
extremely naïve. The ethical and legal consideration of AI is
shown in Fig. (12).

It is important to ensure the human decision-maker makes
the  choices  and  that  the  machine  understands  and  can  work
within the restrictions of the structure of the system. Whenever
a  medical  diagnosis  and  therapy  system  is  mostly  accurate,
doctors using it  may get complacent as well  as stop learning
new things or enjoying their work [70]. Moreover, individuals
may  accept  the  results  of  a  decision  support  system  without
considering  their  limitations.  Similarly,  there  are  legitimate
cyber  security  risks  with  the  usage  of  AI  with  no  human
intervention. In contrast to medical professionals, technologists



14   Current Medical Imaging, 2024, Volume 20 Nair et al.

are not held legally accountable for their actions; instead, the
profession  relies  on  the  application  of  ethical  standards  of
conduct  [71].  This  metaphor  well  captures  the  core  of  the
discussion about accountability for the adverse effects of AIS
implementation  in  healthcare  settings.  Considerations  about
patient  safety  rise  when  AISs  used  in  clinical  settings  aren't
currently  evaluated  or  verified.  This  aspect  of  technology  is
indeed  challenging  to  master.  Despite  the  need  for  a  new
approvals framework and strategy for AI systems, the ultimate
responsibility  for  their  use  remains  with  the  qualified
professionals  and  hospitals  that  employ  them.  AI-based
medical devices will assist individuals in making treatment and
procedure decisions, as opposed to replacing them entirely. As
our  dependence  on  it  grows,  we  must  ensure  that  judgments
made by AI are impartial  and free of prejudice.  Transparent,
accessible,  and  accountable  AI  systems  are  the  only  way
forward. The usage of AI systems is on the rise in the field of
medicine, where they are surpassing people by bettering patient
paths  and  surgical  results.  It  is  expected  that  AI  will  either
complement,  coexist  alongside  or  replace  existing  medical
systems.

CONCLUSION

In comparison to other types of tumors, the fatality rate is
highest for lung cancer. In this research, images are processed
and classified to arrive at a diagnosis. The nodes are identified,
and  certain  characteristics  have  been  removed  using  these
measures.  The  derived  characteristics  are  used  to  classify
disease  stages.  The  phases  of  lung  tumors  are  classified
employing a feed-forward neural network. This innovation may
have a major impact on the worldwide rate of lung cancer rate
due to its ability to detect lung tumors in their earliest stages
when  they  are  most  amenable  to  being  avoided  and  treated.
This  method  is  useful  because  it  provides  more  information
and facilitates quick and precise decision-making for doctors
diagnosing  lung  cancer  in  their  patients.  The  suggested
approach  for  lung  cancer  diagnosis  only  with  the  ANN
classifier has an accuracy of 96.3%, while the SVM classifier
has an accuracy of 97%; this suggests that the SVM classifier
offers high accuracy using ADTM in lung tumor classification.
Moreover,  both  the  ANN  and  SVM  classifiers  used  in  the
suggested technique for lung cancer diagnosis achieve world-
record levels of accuracy.
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