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Abstract:

Digital well-being records are multimodal and high-dimensional (HD). Better theradiagnostics stem from new computationally thorough and edgy
technologies, i.e., hyperspectral (HSI) imaging, super-resolution, and nanoimaging, but advance mess data portrayal and retrieval. A patient's state
involves  multiple  signals,  medical  imaging  (MI)  modalities,  clinical  variables,  dialogs  between  clinicians  and  patients,  metadata,  genome
sequencing, and signals from wearables. Patients' high volume, personalized data amassed over time have advanced artificial intelligence (AI)
models for higher-precision inferences, prognosis, and tracking. AI promises are undeniable, but with slow spreading and adoption, given partly
unstable AI model performance after real-world use. The HD data is a rate-limiting factor for AI algorithms generalizing real-world scenarios. This
paper studies many health data challenges to robust AI models' growth, aka the dimensionality curse (DC). This paper overviews DC in the MIs'
context, tackles the negative out-of-sample influence and stresses important worries for algorithm designers. It is tricky to choose an AI platform
and analyze hardships. Automating complex tasks requires more examination. Not all MI problems need automation via DL. AI developers spend
most time refining algorithms, and quality data are crucial. Noisy and incomplete data limits AI, requiring time to handle control, integration, and
analyses. AI demands data mixing skills absent in regular systems, requiring hardware/software speed and flexible storage. A partner or service can
fulfill anomaly detection, predictive analysis, and ensemble modeling.
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1. INTRODUCTION

Extant biomedical signal processing advances often stem
from classification/subdivision methods handling pixel/voxel
data, e.g., imagery segmentation, or their uses in diagnostics,
treatment planning, and follow-ups. This text tries to represent
properly  large  image  data  volumes  at  different  parts  of  a
medical  cyber-physical  system  (MCPS)  [1,  2],  besides
scale/resolution  challenges.  Lately,  data  has  grown  due  to
health systems' evolvements, expanding pixel/voxel resolutions
with faster reconstruction. Computed Tomography (CT) with
Magnetic Resonance Imaging (MRI) allow scaling resolutions
and reconstruction time in high-resolution (HR) body scans to
grasp massive data. Large medical imaging (MI) stems
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primarily  from  huge  picture  archiving  and  communication
systems  (PACS)  and  single  data  type  repositories.  High-
dimensional (HD) data display erraticism (Fig. 1). Viz, X-rays
are usually 2D but can be 3D or 4D, making them very large.
MicroscopePathology  Slides  (MPSs)  can  have  pixel/voxel
ranges  needing  much  memory.

Depending  on  their  distance,  scene  objects  possess
different  resolutions.  When  observing  a  parking  lot  from  a
distance, one instantly spots buildings, autos, and parking. At
the entry, the driver could only see parking spaces immediately
next  to  the  vehicle.  When  an  individual  approaches  other
vehicles  with  resolutions  equivalent  to  observer-perceived
details, a desirable location becomes visible. Signals' extremes
and their first derivatives help in qualitative descriptions. Scale
and resolution impact much when calculating a neighborhood
derivative. Stability criteria can detect events surviving large-
scale changes depicting an MI as a mix of family basis signals,
enabling various representation levels' analysis. Those with the
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most interest are chosen. Multiscale (or multiresolution) image
decompositions  (MIDs)  get  scale-specific  traits.  MIDs
decompose MIs into essential representative parts at a certain
scale  for  compression,  description,  segmentation,  and
registration  [3  -  6]:

(a)  Gaussian  pyramids  (GPs)  render  multiscale  MIs  via
low-pass (LP) filters and decimation.

(b)  LaPs  exhibit  bandpass  (BP)  MID  components.
Likewise, GP and LaP have 30% more pixels (overcomplete)
than the original image.

(c)  Wavelet  decompositions  (WDs)  depict  signals
effectively, being large MIDs with scale/orientation analyses,
LP, and HP filter banks. LP filters'  regularity and vanishing-
moment qualities affect shapes and representations.

Fig. 1 contd.....
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Fig. (1). Image modalities/resolutions: (a) X-ray, (b) MRI scan, (c) microscope slides, (d) SR, (e) RS drug use study, and (f) nanoparticles with drugs
in cells.

Fig. (2). Medical AI model block diagram.
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Section 2 checks dimension and resolution issues. Section
3  presents  Medical  Information  Fusion  (MIF).  Modalities,
control, and storage appear in Section 4. Section 5 parleys AI
image  handling.  Microscopy,  nanoimaging  (NI),  and  super-
resolution  (SR)  are  in  Section  6.  Section  7  treats  Virtual
Reality  (VR)  and  Augmented  Reality  (AR).  Hyperspectral
(HSI)  and  multispectral  imaging  (MSI)  in  health  appear  in
Section 8. Section 9 recaps and closes this text.

2. DIMENSIONALITY AND RESOLUTION ISSUES

The dimensionality curse (DC) labels the unpredictability
of  MI  dimensions  augmentation  with  snowballing
computational  efforts.  DC  explains  MI  volume  growth  from
HD spaces  as  extra  dimensions  emerge  in  AI,  data  analysis,
and data mining, among others. While dimensionality growth
adds more MI knowledge, thus taming data quality, it can boost
noise and redundancy.

Object  features  can  be  attributes  defining  entities;  each
denotes a feature vector (FV) entry. A group of n-dimensional
entries typifies a data point  (n-tuple) in AI algorithms. More
dimensions imply more features describing data and a longer
FV. e.g., in cancer studies, age, the total of cancerous nodes,
and shape descriptors can be a patient's prognosis features. But
factors  like  past  surgeries,  patient  history,  tumor  type,  and
other  features  help  define  the  prognosis  better.  Yet,  adding
features  tends  to  widen  dimensionality,  increasing
exponentially  the  quantity  of  points,  giving  a  good
performance of any AI process as more points for any given
FV  are  required  for  any  AI  model  to  be  valid.  Feature
engineering  (FE)  gets  an  FV  using  handcrafted  (HC)  or  DL
features from a raw MI to represent it. A model specialist plans
HC  features,  i.e.,  an  AI  algorithm  estimates,  learns,  and
automatically  gets  them  by  design  from  the  phenomenon
knowledge,  e.g.,  Gaussian  mixture  model  (GMM)
hyperparameters and texture-related metrics. DL represents and
learns  multiple  representation levels,  beginning with the raw
input. They merge simple, non-linear subdivisions where each
transforms  one  level's  representation  into  another  more
complex  and  slightly  abstract  level.  DL  shows  potential  for
automatic  predictive  features'  discovery.  DL  can  cut  graph
dimensionality well while keeping much structural info [7]. So,
FE  can  form a  predictive  model  employing  AI,  such  as  DL,
whose main gain is to infer high-level features incrementally
without domain expertise and conservative feature extraction.
DL outperforms HC models by a large margin in learning and
extracting  features  for  a  certain  task.  Still,  designers  cannot
control what features will emerge. Features can be only good
for  data  classification without  real-world (RW) insights,  i.e.,
they excel only for the trained task.

The  health  data  DC  is  huge  and  rising  fast.  Electronic
Health Records (EHRs) have biometrics from images,  voice,
wearables,  genetics,  and  other  sources,  portraying  a  rich
patient's  HD  health  data  (HDHD)  [8  -  10],  viz.  sub-mm
resolution  brain  MRI  pixels  afford  voxel-rich  imaging.
Wearables have massive samples per second, besides millions
of other human details (a vast clinical data footprint). HDHD
gives algorithm developers vast data streams. The HD vs. small
sample dilemma occurs if features exceed sample sizes. Raw

data  location  limits  doctors'  understanding.  AI  may  fix  this
problem since it can learn from clinical data streams (Fig. 2).
Software (SW) as a medical device leverages AI in its lifespan.
Designers get big training samples from many modalities for
model making. Cross-validation helps pick the final model and
feature  sets,  assessing post-model  precision  [11,  12].  Virtual
Worlds (VWs) help monitor and redeploy RW models.

Short  training  datasets  with  too  many  features  may
enhance  training  but  with  poor  generalizability  [13,  14].
Tracking  all  health  metrics'  potential  combinations  can  be
challenging.  Tricky  events  need  larger  sample  sizes.  Dataset
blind spots (DBSs) produce DC, hindering model development/
generalizability and causing negative effects. Too many DBSs
cause  disastrous  failures  when  dealing  with  unknown  data.
Small  HD  training  samples  are  sensitive  to  DBSs,  causing
errors;  e.g.,  massively  labeled  MIs  are  required  to  train  AI
models  mapping  participants'  gut  signals.  AI  helps  many
HDHD  models  trained  with  few  samples  [15].  Dimension
reduction  (DR)  can  curb  the  feature  space  with  principal
descriptive features, thus overcoming the DC in several ways
[16, 17].

3. MEDICAL INFORMATION FUSION

Progress  in  sensors  has  improved  their  robustness  and
enlarged  MI  resolutions.  More  notably,  low-cost  fabrication
has popularized multiple sensors in many imaging uses. This
growth vastly enlarged the data depicting the same scene from
various  sensors.  Yet,  the  subsequent  sensor  information
processing  can  be  heavy  since  augmenting  the  number  of
sensors increases raw sensor data to be stored and processed,
meaning longer execution times or increased processing units
and storage devices, leading to costly solutions. Also, humans
may  face  difficulties  visualizing  various  images,  leading  to
significant performance drops [4, 18 - 22]. A potential solution
is to replace the whole set of sensors with a single composite
depiction, tying all pertinent sensor data as MIF. The idea is to
mix complementary,  redundant data from multiple images to
render a composite image with a better scene description than
any individual  source  image.  Hence,  the  fused  image should
aid in inspecting or extra handling.

3.1. MIF Fundamentals

MIF tends to be nontrivial  since (i)  attained images may
involve different sensors' dynamic ranges and resolutions; (ii)
there exists matching evidence (e.g., structures appearing only
in some input imageries; and (iii) some common data may have
reversed  contrast,  much  confusing  the  process.  Still,  fusion
should not rely on a priori sources' evidence to yield naturally
appealing fused images with these requisites:

(a) All relevant input images' info must be preserved;

(b)  No  artifacts  or  inconsistencies  should  confuse  an
observer  or  subsequent  processing  task;  and

(c) It needs reliability, robustness, and error tolerance (e.g.,
noise and misregistrations).

MIF  may  use  multitemporal  sensors  with  several  focal
lengths,  many  views,  or  various  exposure  settings.  MIF
happens  at  different  data  representation  levels  as  follows:
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3.1.1. Pixel-level

It  means the lowest  representation data blend level  since
each  fused  pixel  comes  from  a  set  of  pixels  in  the  source
images  customarily  within  small  windows  like  3×3  or  5×5.
Pixel-level  fusion  is  easy  and  time-efficient.  The  resulting
image  contains  the  sources'  data  but  is  very  sensitive  to
misregistration  [18].

3.1.2. Region-level

It  identifies  major  image parts'  qualities  like  size,  shape,
contrast, texture, or gray levels. A region map ties each pixel to
a feature based on segmentation to merge extracted sections.
This  avoids  snags,  e.g.,  blurring,  high  noise  sensitivity,  and
misregistration  [18].  Segmentation  affects  the  final  fusion
performance  quality  since  mistakes  might  cause  missing  or
degraded items in the fused image.

3.1.3. Voxel-level

Low-resolution (LR) and poor 3D scans [20 - 25] prevent
fancy  processes  from  matching  local  features  on  RW  depth
pictures. Each local volumetric patch descriptor learns a partial
3D data match label. Unsupervised learning collects data but
hinders RGB-D reconstruction. Descriptors generalize fusion
to varied deeds and scales. Better depth results from merging
3D-point  clouds  with  other  modalities,  fine-grained  texture,
and color evidence. Techniques include:

(i)  Object-centric  fusion  does  Region  of  Interest  (ROI)-
pooling on each modality from a shared set of 3D end-to-end
optimizations despite being sluggish and bulky.

(ii) A priori mapping for each point-cloud sample permits
continuous  fusion  across  all  stages.  Feature  blurring  occurs
when an FV matches many voxels in view.

(iii) Imitates the initial point cloud, but it is slow and needs
multiple steps to create it.

(iv) Point cloud seeding detection with semantic features
taken from an image boosts accuracy but limits recall.

3.1.4. Volumetric-region

Grouping  similar  voxels  is  difficult  [24  -  26].  Remote
sensing (RS) has powerful 3D merging. Mixing multiresolution
sets of geometrically overlapping surface measurements is hard
but  lowers  representation  costs.  A  discrete  surface  depiction
allows  fast  complex  object  reconstruction,  but  rebuilding  a
single-resolution  big  thing  is  unviable  since  restoration  is
object  size  independent.

3.1.5. Decision-level

Various  sensors'  data  merge  at  the  greatest  abstraction
degree.  A decision map exists  for each picture by sorting all
input  pixels.  Fused  maps  results  from  distinct  decision  map
merging  discrepancies  [24  -  26].  The  proper  level  rests  on
source  attributes'  use,  execution  time,  and  nearby  tools  with
fusion  stages  strongly  linked  where  rules  shaping  composite
images' pixels may also help fuse regional features. Decision-
level  fusion  often  employs  a  regional-level  map  to  merge
visible and infrared (IR) imagery. Some views about key MI
analysis stages follow.

3.2. Data Acquisition Protocol

Most data-rich modalities in EHRs are acquired in-clinic
per  procedure.  While  collecting  RW  sensor  health  data  and
creating  robust  models  is  challenging  because  of  (i)
background noise, (ii) unknown variables, and (ii) intrinsic DC
with growing DBSs, especially when the sample size is small.
Designers  could  explore  active  tasks  to  replace  passive  data
collection  since  data  describing  characteristics  may  produce
DC  issues  with  DBS  consequences.  Top  performance  tasks
reduce the relative impact of unmeasured changes to estimate
clinical  contrasts  of  interest.  Viz  patients'  speech  may  be
slower and less precise when tested under a top-performance
job [27 - 30]. It would never emerge in passive data collecting
since  most  maximum  performance  challenges  are  outside
normal  speaking  patterns.

3.3. Training Data Collection

The  training  set  size  and  variety  should  reflect  the
conditions  after  model  deployment  [27  -  30].  More  samples
train  intricate  HD  models  properly,  even  when  sampling  is
varied  (e.g.,  data  from  many  sites).  Designers  can  leverage
current  policies  to  estimate  the  sample  size  for  training
classification.  As  regional  biases  in  clinical  AI  models,  a
mismatch  between  training  and  post-deployment  data
problematizes  a  covariate  shift  [28].  Biased  sampling  causes
marked  DBSs  between  training  and  post-deployment  data
distributions.  Creating  representative  datasets  for  training
involves  previous  knowledge  of  which  stratification
characteristics  correlate  with  predictors.  Carefully  mapping
these parameters and ranges can robustify AI models [29] but
not  assure  performance likeness  between layers.  To quantify
model  performance  variability  across  key  groups,  scientists
need representative data.

3.4. Model Validation

Before being used for analytics, professional intelligence,
or  AI  model  training,  data  is  validated  for  integrity,
correctness,  and  structure.  Model  validation  verifies  that  the
model  achieves  its  intended  goal  and  confirms  its  predictive
capacity. Smaller data sets require rigorous model assessment
processes. Better models must preserve individual samples and
use accurate  measurements  to  reuse a  test  dataset.  Designers
should not strive to boost performance by finding troublesome
test  set  instances  but  by  accepting  and  addressing  data
irregularities and DBSs. Without DBSs or DI processes, more
data must be collected.

4. MODALITIES, MANAGEMENT, AND STORAGE

4.1. Multispectral and Hyperspectral Imaging

HSI  and  MSI  can  develop  healthcare  via  spectrometers
settled  for  RS  to  get  images  over  ample  electromagnetic
spectrum wavelengths. Although RS can aid in illnesses' and
vectors'  spatial  mappings,  existing  HSI/MSI  data  extraction
means are not standardized for disease detection. Acquisition
schemes,  spectral  ranges,  spatial/temporal  resolutions,
measuring  mode,  dispersive  methods,  detectors,  and  other
techniques play a role in medical HSI (MHSI) technology with
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preprocessing,  feature  extraction/selection,  and  classification
processes for MHSI image analysis. MHSI mainly includes the
ultraviolet (UV), visible (VIS), near-infrared (NIR), and mid-
infrared (MIR) ranges.

A  slide  can  be  an  RGB  image  with  only  three  bands.
Because of multiple spectral bands or channels beyond visible
light, digital HSI/MSI pathology helps diagnose/treat illnesses,
handle  inter-observer  variability,  and  save  examination  time
[31].  The  HSI/MSI  spectroscopy  directly  measures  light's
incoming  radiance  spectrum  (reflection  or  transmission)  and
the sample's scattering and absorption. It may, yet, be used to
quantify fluorescence. Each HSI/MSI pixel represents the light
captured by the camera from a series of measures showing the
substance's  spectral  signatures  and  permits  identifying  parts
[32,  33].  CAD  tools,  as  well  as  HSI/MSI,  can  tackle  color,
autofluorescence, as well as immunohistochemistry for stained
and unstained histology samples. Refraction and reflection in
non-homogeneous biological tissues are linked to light speed
and direction differences, and changes in reflective/refractive
indices  detect  illnesses.  When  molecules  exhibit  radiation
absorption peaks at a certain wavelength, they show transitions
between  two  energy  levels  and  serve  as  molecules'  response
fingerprints  for  diagnostic  info.  Finally,  certain  tissues  glow
when  boosted  by  external  light  sources.  e.g.,  proteins  and
nucleic  acids  produce  fluorescence  when  stimulated  by  UV
light. New HSI/MSI cameras, analytic schemes, and computer
power can aid automatic in vivo/ex vivo disease detection and
image-guided  surgery  using  data  about  spectral  and
morphological samples after proper knowledge mining. There
are several analytical options for HSI/MSI processing. AI can
treat spectral data directly or after feature extraction. DR alters
records  mathematically  to  retain  just  the  most  vital
information.  Band  selection  ways  identify  major  spectral
bands.  Recently,  DL  has  permitted  autonomous  HSI/MSI
feature  extraction  and  categorization  [33,  34].  The  key  DL
benefit for supervised classification is clarifying which dataset
traits better identify different constituents [35 - 37]. HSI data
cubes with many IR spectra bands can get reliably through a
narrow  bandwidth  laser  continuum  [38],  permitting
multivariate  analysis,  besides  spatial  distribution  nanoscale
maps  of  materials.

4.2. Super-resolution

Super-Resolution (SR) creates an HR image from LR ones
with high-pixel density and richer scene details. Applications
need  HR  for  pattern  recognition,  image  analysis,  diagnostic
imaging, surveillance, forensics, and zooming in on a specific
image.  HR pictures  are  scarce,  given their  cost  and practical
sensor  restrictions.  Affordable  MI  processing  can  solve  SR
challenges less costly and use existing LR devices.

4.3. Molecular Imaging and Nanoimaging

Because  light  travels  through  water  and  air,  optical
microscopes  (OMs)  can  observe  in  vivo.  So,  they  deal  with
biological things and other elements in natural settings. Color
photos from OMs are more detailed than monochrome images.
OMs can offer intrinsic sample properties up to 0.5 μm in the
visible and mid-IR light bands [39]. Since visible light cannot
photograph nanomaterials,  optical  microscopes  (OMs)  suffer

from light diffraction. Surface plasmons for superlensing allow
faultless  NI  capture  with  a  nanoprobe.  Multicolor,  3D
stochastic  reconstruction  microscopy  can  now  see  cellular
structures with molecular-scale detail. When paired with many
fluorescent  probing  and  biochemical-specific  labeling
procedures,  multicolor  fluorescence  microscopy  visualizes
molecular living organisms' interactions and processes. Yet, as
fluorescence microscopy has  a  diffraction-limited resolution,
many  detailed,  tiny  biological  structures  are  not  tested.
Molecular imaging (MolIm) handles living patients' molecules
of  interest  versus  histology,  which  takes  preserved  tissue
samples'  molecular  data  [26].  The  patient's  body  may  create
molecules suddenly or receive them from a specialist. In MRI,
CT,  and  PET,  a  contrast  agent  is  injected  into  a  patient's
bloodstream to follow its  travel  throughout the body.  MolIm
evolved  from  radiography  to  better  understand  and  monitor
organisms and metabolic processes. Currently, MolIm research
includes (i) finding previously unknown molecules, (ii) finding
additional contrast agents, and (iii) seeking functional contrast
agents to educate about healthy vs. sick cells and tissues. HSI
IR  with  NI  can  detect  and  chemically  analyze  molecules
without risky extraction or taggings. Some HSI IR potentials in
NI  include  drug  use  and  deep  MI  analysis.  This  yields
nanoscale-resolved  chemical  and  compositional  maps  to
recognize  local  chemical  interactions.

4.4. Virtual and Augmented Realities

VR  is  immersive,  allowing  users  to  fully  engage  in  a
realistic  or  lifelike  virtual  world  (VW),  distinct  from reality.
Medical AR is very effective for combining RW with VR so
specialists  can  view  things  like  X-rays,  arm  veins,  shattered
bones,  head  tumors,  EHRs,  etc.,  before  employing  AR.
Something floats in front of an expert in AR, with data overlaid
in  distinct  realms.  Recent  developments  extended  VR/AR to
healthcare.  While  patients  prefer  VR,  clinicians  employ
VR/AR in various ways. Adoption to clinical usage has been
hampered by issues  with  QoE [26,  40,  41].  Many healthcare
settings  now  have  consumer-level  VR/AR  HW  accessible.
Experts  will  determine  the  safety  and  patient  benefits.  Costs
and integration are other factors. Experts predict more medical
VR/AR uses like.

4.4.1. Clinic-based AR/VR

AR/VR  impacts  primary  care,  clinics,  surgeries,
emergency  room,  and  dental  offices  as  it  matures  [42].  e.g.,
surgeons can plan complex surgeries with AR/VR with SW to
enhance RW locations.  There  are  several  chances  to  educate
people and improve actions/care. Handheld laser devices can
see through skin and veins to find veins to pull blood or insert
an  IV.  Health  suppliers  can  lower  superfluous  needle  pokes
risks and save time.

4.4.2. Surgery

AR/VR  aid  in  high-risk  treatments  like  AR  surgery  [43,
44]. Headgear can simultaneously project X-rays or CT scans
onto  the  body,  with  MIs  lining  up  perfectly.  Still,  radiation
exposure entails X-ray care with fast freehand gain, though it
needs comprehensive body data and practice. Its early spinal
surgery use is due to the spine's rigidity. Moving the belly or
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chest confuses the VW and RW alignment. AR/VR is slowly
entering high-risk actions.

4.4.3. Medical Education

AR may help in training [45, 46] and solving mistakes in
surgeries.  Teaching  and  learning  do  not  need  precision.  AR
allows mobile users to study items and anatomy by rotating a
3D model and scanning a QR code in the anatomy lab (or on a
corpse) to access videos or talks.

4.4.4. 3D Models

MIs  are  no  longer  inferred  by  thoughts.  Segmenting
anatomical  regions  involves  human  mediation.  Other  SW
platforms include AR/VR visualization engines, DICOM input,
automated segmentation, and 3D-mesh creation. VR/AR offer
novel 3D MI representations [47].

4.4.5. Molecular Imaging (MolIm)

MolIm  can  potentially  play  a  critical  role  in  healthcare
[26].  With  increasingly  high-resolution  systems,  multimodal
imaging  platforms,  and  large  datasets  generated  by  modern
MolIm  methods,  it  has  become  imperative  to  develop  new
approaches to store, process, and visualize information. VR/AR
adaptation  to  visualize  MolIm is  an  intuitive  emerging  trend
that can accommodate the growing complexity and volume of
multimodal  molecular  data.  Clinical  VR/AR  applications
highlight  existing  challenges  for  these  technologies'  wider
adoption before concluding with anticipated future directions.

5. HANDLING HD IMAGERIES WITH AI

HD confounds settings because if  one applies DL to raw
images, the result may be a very long FV, making it difficult
for  humans  to  understand  images'  traits.  Likewise,  when  it
comes to content-based image retrieval (CBIR), it is better to
curb having an FV that does not make indexing and handling
databases too hard. Short sample numbers favor DBSs, i.e., the
training data contains blind spots or rare patterns. Hence, this
constrained  data  domain  (small  info  scenario)  does  not  have
every  possible  variation  in  the  training  set,  leading  to  poor
performance. Data imputation (DI) helps bypass data scarcity
by  replacing  missing  data  to  get  a  more  complete  data  set.
Single  DI  fills  in  one  value  for  missing  evidence  without  a
clear  model.  CBIR  indexes  MIs  to  extract  attributes  and
conduct  breakdowns.  Growing  social  and  varied  media
acquisition  systems  can  shatter  regular  systems.  Optimizing
dimensions to speed up exploration is crucial. An expert may
reduce  searches  via  metadata  and  a  simple  FV.  CBIR  data
dimensions and complexity grow. DR expedites MI processing
and overcomes DC.

Hard (adversarial) phenomenon-descriptive datasets have
achieved robustness for specific inference types via DI. These
datasets can train many models, often consenting to learn the
emphasized  manifestation  and  improving  the  tough  dataset,
showing  blind  spots  in  the  initial  training  data.  Albeit
improving a model in training, it might still be exposed to other
tricky datasets for the same phenomenon but extracted from a
different  distribution,  e.g.,  having  a  dissimilar  syntactic
complexity level. Extending methods to drive inferences about

a model's aptitude to learn and generalize a given phenomenon
rather  than  learning  a  dataset  may  introduce  hardships.  AI-
oriented policies help build enhanced datasets for more robust
and broadly ameliorated models. Validation scrutiny practices
can  assess  the  model's  performance  and  detect  DBSs.  While
hard, several AI tactics can support robust models that emulate
missing  data,  ease  usage,  and  handles  difficult  HD
representations  well.

5.1. Feature Engineering

Features are a major model design aspect. The ideal feature
space  for  typifying  a  scenario  is  unknown.  They help  merge
data improving a model's process of exploratory feature choice.
Deleting  extraneous  model  characteristics  enhances  its
robustness  but  does  not  remove  DBSs  if  HD and  small  data
regimes occur. Selecting a small feature collection that changes
with illness but remains constant daily aids in reducing DC [48,
49].  A  small  sample  size  favors  a  priori  attention  to  fewer
features. Clinical labeling is costly, yet sensor data are usually
bulky. Transfer learning keeps reusable clinical traits in lower-
dimensional (LD) feature space [48, 49] as sensors collect daily
high-density  data.  Repeatable  AI  studies  utilize  statistics  to
examine  human  impact  on  measurements  while  minimizing
variance.  Before  creating  a  model,  feature  variability  with
frequently-used  characteristics  help  with  HW  and  settings.

5.2. Model Training and Tuning

After collecting training sets and choosing features, model
training and tweaking should follow HDHD machine learning
(ML), metaheuristics, and other DC-sensitive AI practices [50 -
52]. Data-driven regularization and ensemble averaging better
HD robustness. Training and testing datasets are split. The first
dataset  learns  and  validates  the  model  with  candidates
compared  to  ignoring  sparse  data  [50  -  52].  Small  sample
numbers can cause overfitting, optimistic forecasts, chiefly for
HD models. Overfitting fits data too well into a model. Ideally,
a  model  must  do  training  superbly  and  generalize  well  for
predictions  with  other  training  sets.  Larger  sample  sizes
impede  test  data  reuse.

5.3. Deep Learning

AI  can  also  enrich  HD  data  usage  with  DBSs.  Deep
Learning (DL) can handle ranked feature representations [53]
to remediate dataset problems. DL algorithms may focus on LR
images due to HD features' caching. Novel DL approaches for
huge MIs must

(a) Process detail pertinent MI components;

(b) Scale to an unlimited number of valid MI parts;

(c) Scale to an infinite number of input data types.

(d) Experiment with acceleration hardware (HW); and

(e) Show object parts' dependency.

Growing data must use less processing time, energy, and
HW  assets.  A  large  bias  may  occur  if  data  are  missing.
Applying DI to MIs is still hard due to the images' nature and
complexity. Generative Adversarial Networks (GANs) variants
can address this problem. Datasets may be compressed to feed
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a DL model, saving memory while locating relevant parts from
a possibly fuzzy LR image. Estimated improved-quality areas
can populate parts of DBS locations to aid in patch extraction
from  the  total  or  a  portion  of  the  HR  image  via,  e.g.,  SR,
focusing  on  certain  scene  elements.  The  final  estimate
combines patches and LR embedding representations. A DBS
only matters if the model meets data from that faulty part of the
feature  space.  While  one  may  cut  DBS  volumes  during
training, one will not know if a consequential, coherent DBS
exists until deploying the model. SR has boosted systems and
defeated  the  optical  SR  diffraction  limit  with  strengthened
sensor  resolutions.

5.4. Model Generalization

Generalization rates how a model predicts unobserved data
with optimum generalized error  (GE) performance.  A bigger
regularized model thru training can shrink GEs, cut overfitting,
optimize  speed,  and  boost  performance.  Feature  selection
betters  classification  accuracy  by  removing  non-informative
components and enhancing class contrast. HD MIs are hard to
study, unmanageable to grasp, and costly to store. Their points
often  lie  near  lower-dimensionality  (LD)  spaces,  hinting  at
small DC and converting HD MI to LD without wasting data.
DR gains include:

(a) As dimensions shrink, storage space diminishes;

(b) Less computational burden with fewer dimensions;

(c) Poorly performance with HD, forcing DR;

(d)  Cut  features  help  multicollinearity  (if  more  exercise
burns more calories, a stored variable links factors);

(e) Better HD handling by reducing to 2D or 3D.

DR  includes  missing  value  ratio,  linear  discriminant
analysis  (LDA),  factor  analysis  (FA),  principal  component
analysis  (PCA)  [54  -  56],  independent  component  analysis
(ICA),  high-correlation  filter,  low-variance  filter,  random
forest (RF), projections' centered ploys, backward feature veto,
forward  feature  choice,  t-distributed  stochastic  neighbor
embedding (t-SNE), and uniform manifold approximation and
projection (UMAP). Other schemes can have higher variance
in  the  first  feature  space.  Trendy  manifold  learning  entails
locally  linear  embedding,  multidimensional  scaling,  Isomap,
and Laplacian eigenmaps.  Not all  data types do well.  Tumor
and proteome data help choose MI DR settings. Reduced-space
classification followed by performance estimation is better.

6. DISCUSSION

MI  benefits  from  diagnosis  to  surgery  and  follow-ups,
dealing with ever-increasing data volumes and resolutions due
to MI modalities. This paper includes managing, treating, and
portraying  scaled  MI  for  customized  bioimaging,  VR/AR,
MSI/HSI,  NI,  and SR.  MI processing and visualization must
meet  MCPS  projections.  Scalable  HW/  SW  parallelizations
help  high-performance  multidimensional  HR  recordings  and
processing  on  dissimilar  machines/MCPSs.  Such  systems
provide  quick  access  to  numerous  tools  via  a  health-
programming  environment  with  varied  SW  requirements  for
development  and  several  representation  structures.  Complex

datasets must fulfill robustness tests for specific inference types
relying on DI to explore models and datasets to learn/refine the
phenomenon, showing blind spots in the training data. A model
may still be exposed to other tricky datasets aiming at the same
phenomenon but  extracted from a different  distribution,  e.g.,
having various syntactic intricacies. Extending a model's skill
to learn and generalize with AI may improve robustness and
model  comprehension.  Besides  spatial  distribution  and
nanoscale  MI  maps,  HSI  data  with  many  IR  spectra  bands
permit  multivariate  analysis.  HSI  IR  with  NI  can  become
mainstream as enhanced computer power and algorithms detect
and analyze cells/molecules. HSI and SR combined facilitate
MI  tasks.  Indexing  MI  via  CBIR  happens  often.  Social  and
varied  media  acquisition  methods  have  strained  standard
multimedia  processing systems.  Reducing the data's  size  can
speed up the search phase and make it computer-readable. DR
approaches help defeat DC.

CONCLUSION

Multimodal  HSI,  super-resolution,  and  HD  NI  increase
theradiagnostics but defy dataset representation and retrieval. A
patient's  condition  can  incorporate  wearable  signals,  MI
modalities,  clinical  considerations,  information,  genetic
sequencing,  and  clinician-patient  dialogs.  AI  inferences,
prognosis, and tracking have improved with high-volume data,
showing  clear  promises,  but  RW  applications  are
unpredictable,  slowing  adoption.  HD data  restricts  AI's  real-
world growth. This study explores how MIs' properties prevent
AI models from overcoming the dimensionality curse, out-of-
sample biases, and designers' concerns. Choosing and assessing
AI  platforms  is  complex.  Study  complex  automation.  MI
concerns  do  not  always  require  DL.  Hence,  while  AI
professionals must use high-quality data, unclean data delays
AI  governance,  integration,  and  analytics.  AI  needs  rapid,
versatile HW/SW and data-mixing skills as part of a service for
anomaly  detection,  predictive  analysis,  and  ensemble
modeling.
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