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Abstract:

Objective:

The global incidence of lung cancer highlights the need for improved assessment of nodule characteristics to enhance early detection of lung
adenocarcinoma presenting as ground-glass nodules (GGNs). This study investigated the applicability of radiomics features of vascular structures
within GGNs for predicting invasiveness of GGNs.

Methods:

In total, 165 pathologically confirmed pulmonary GGNs were retrospectively analyzed. The nodules were classified into preinvasive and invasive
groups and randomly categorized into training and validation sets in a 7:3 ratio. Four models were constructed and evaluated: radiomics-GGN,
radiomics-vascular, clinical-radiomics-GGN, and clinical-radiomics-vascular. The predictive performance of these models was assessed using
receiver operating characteristic curves, decision curve analysis, calibration curves, and DeLong’s test.

Results:

Significant differences and density were observed between the preinvasive and invasive groups in terms of age, nodule length, average diameter,
morphology, lobulation sign (P  = 0.006, 0.038, 0.046, 0.049, 0.002 and0.008 respectively). In the radiomics-GGN model, the support vector
machine (SVM) approach outperformed logistic regression (LR), achieving an area under the curve (AUC) of 0.958 in the training set and 0.763 in
the validation set. Similarly, in the radiomics-vascular model, the SVM approach outperformed LR. Furthermore, the clinical-radiomics-vascular
model demonstrated superior predictive performance compared with the clinical-radiomics-GGN model, with an AUC of 0.918 in the training set
and 0.864 in the validation set. DeLong’s test indicated significant differences in predicting the invasiveness of pulmonary nodules between the
clinical-radiomics-vascular model and the clinical-radiomics-GGN model, both in the training and validation sets (P < 0.01).

Conclusion:

The radiomics models based on internal vascular structures of GGNs outperformed those based on GGNs alone, suggesting that incorporating
vascular radiomics analysis can improve the noninvasive assessment of GGN invasiveness, thereby aiding in clinical decision-making and guiding
biopsy selection and treatment planning.
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1. INTRODUCTION

Although  the  global  incidence  of  lung  cancer  varies,  it
remains the leading cause of cancer-related death in men and
the second most common cause of cancer mortality in women,
following  breast  cancer  [1].  Ground-glass  nodules  (GGNs),

commonly  considered  markers  of  early-stage  lung
adenocarcinoma,  are  increasingly  detected  due  to  the
widespread use of  low-dose computed tomography (CT) and
artificial  intelligence-based  diagnostic  systems  in  routine
screenings [2]. GGNs persisting for more than 3 months have a
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higher  likelihood  of  malignancy  than  solid  nodules,  with
63.0%–95.5% confirmed as lung cancer [3 - 5]. According to
the  World  Health  Organization  (WHO)  Classification  of
Thoracic  Tumours  (5th  edition),  lung  adenocarcinomas  are
categorized as minimally invasive adenocarcinoma (MIA) and
invasive adenocarcinoma (IA), whereas atypical adenomatous
hyperplasia  (AAH)  and  adenocarcinoma  in  situ  (AIS)  have
been  reclassified  as  precursor  glandular  lesions  (PGLs)  [6].
Patients with early-stage lung adenocarcinoma have shown a
postoperative 5-year survival rate of 100% [7], whereas those
with  IA  have  shown  a  survival  rate  of  90.0%–99.1%  [8,  9].
Wang et al.  [10] reported that mixed GGNs (mGGNs) larger
than 10 mm showed no recurrence or metastasis after 5 years.
Accurate  assessment  of  GGN  invasiveness  is  crucial  for
appropriate  treatment  selection,  timely  intervention,  and
overtreatment  prevention.

Currently, radiologists assess GGN invasiveness using CT
features, such as diameter, density, lobulation, and spiculation;
however, these indicators are highly subjective [6]. Radiomics
is  an  emerging  technology  that  utilizes  machine  vision  to
noninvasively  extract  comprehensive  tumor  biological
information  and  transform  it  into  quantitative  features  of
diagnostic value [11]. Several studies, including those by Weng
et al. [12] and Lv et al. [13], have developed radiomics models
to  differentiate  IA  from  other  GGN  subtypes.  IA  and  MIA
often  exhibit  complex,  irregular  vascular  structures;  hence,
vascular  features  within  GGNs  are  critical  indicators  of
malignancy and invasiveness. Gao et al. [14] classified GGN
vascular  features  into  four  types:  type  I,  vessels  along  the
periphery; type II, vessels passing through without alteration;
type III, twisted, dilated, or bent vessels; and type IV, vessels
forming  more  intricate  structures.  However,  owing  to  the
typically delicate nature of internal  vessels within GGNs, no
prior  studies  have  conducted  radiomics  analyses  specifically
targeting these vascular structures. Therefore, this study aimed
to  develop  predictive  models  integrating  clinical  imaging
features,  radiomics  features  of  vascular  structures  within
GGNs, and clinical data to enhance the assessment of nodule
invasiveness.

2. MATERIALS AND METHODS

2.1. Study Population

This  retrospective  study  analyzed  patients  with  primary
lung  adenocarcinoma  who  had  undergone  chest  CT  at
Ma'anshan City People’s Hospital between January, 2020 and
December,  2023  and  showed confirmed  pathological  results.
Clinical data and preoperative CT images were collected. The
inclusion criteria were as follows: (i) no neoadjuvant Therapy
before  surgery;  (ii)  surgery  performed  within 2  months  of
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routine  chest  CT;  (iii)  nodules  classified  as  pure  GGNs
(pGGNs) or mGGNs; (iv) CT images with sufficient quality to
visualize vascular structures within GGNs; and (v) pathological
confirmation as AAH, AIS, MIA, or IA. The exclusion criteria
were as follows: (i) prior biopsy, thoracic surgery, or antitumor
treatment before CT; (ii) history of other malignant diseases;
(iii)  low-quality  CT  images  preventing  accurate  lesion
delineation; (iv) poor visualization of vascular structures within
GGNs;  and  (v)  comorbid  pulmonary  fibrosis  or  emphysema
(Fig. 1). This study was approved by the ethics committee of
our  institution  (approval  no.:  2022012013),  and  the
requirement for written informed consent was waived due to its
retrospective design.

2.2. CT Examination

Noncontrast-enhanced  CT  was  performed  using  a  GE
LightSpeed  VCT  64  scanner  and  SOMATOM  Force  CT
scanner. The patients were positioned supine, and scanning was
conducted at the end of inspiration, covering the area from the
thoracic inlet to the lung base. The scanning parameters were
as follows: slice thickness, 5 mm; interslice gap, 5 mm; matrix
size, 512 × 512; tube voltage, 120 kV; tube current, 150 or 200
mA; and reconstruction slice thickness, 1.0 mm.

2.3. Image Postprocessing and Analysis

2.3.1. CT Image Postprocessing

All  CT  images  were  processed  and  analyzed  by  two
physicians with 9 and 10 years of experience in chest imaging
for  disease  diagnosis,  respectively.  Both  physicians  were
blinded to the patients’ clinical and pathological information.
Image interpretation was conducted in the lung window mode
using an imaging diagnostic system, with a window width of
1500  HU  and  a  window  level  of  −600  HU.  The  recorded
imaging characteristics of the nodules included location, long
and short, average diameters, average CT value, morphology,
lobulation, spiculation, pleural retraction, and density type. In
cases  of  disagreement,  a  consensus  was  reached  through
discussion.  Image  postprocessing  was  performed  using  a
Siemens  Syngo.  via  workstation,  primarily  employing  three-
dimensional postprocessing and orthogonal analysis to obtain
images  displaying  the  maximum  cross-section  of  vascular
structures within pulmonary GGNs. The images were saved in
DICOM format.

2.3.2. Radiomics Analysis

Tumor segmentation: All GGN CT images were imported
into  ITK-SNAP  (version  3.6.0;  www.itk-snap.org)  for
segmentation. Two physicians, one with 9 years and one with
10 years of experience in chest imaging for disease diagnosis,
independently  delineated  the  edges  of  the  largest  cross-
sectional  area  of  the  lesions  and  internal  vascular  structures.
Regions of interests (ROIs) were created based on pixel points
and  designated  as  ROI1  (lesion)  and  ROI2  (internal  vessel),
which  were  then  saved  in  NII  format  (Fig.  2).  In  cases  of
disagreement  during  segmentation,  consensus  was  reached
through  discussion  and  consultation.

mailto:heyongsheng881@163.com
mailto:yanghk1979@163.com
mailto:cq1444@sina.com
http://www.itk-snap.org


Radiomics of Vascular Structures in GGNs for Tumor Invasiveness Prediction Current Medical Imaging, 2025, Volume 21   3

Fig. (1). Sample enrollment, screening, and grouping flowchart.

Fig. (2). A 46-year-old woman with AIS presented as a pGGN. The nodule had a long diameter of approximately 0.7 cm and a short diameter of
approximately 0.5 cm, with an average CT value of −524 HU. (a) CT showing the nodule with a regular shape, without lobulation, spiculation, or
pleural retraction. (b) The ROI of the largest cross-section of the nodule. (c) The ROI of the internal vascular structures within the nodule. (d–f) A 68-
year-old man with MIA presented as an mGGN. The nodule had a long diameter of approximately 1.4 cm and a short diameter of approximately 0.7
cm, with an average CT value of −422 HU. (d) CT showing the nodule with an irregular shape, lobulation, and pleural retraction but no spiculation.
(e) The ROI of the largest cross-section of the nodule. (f) The ROI of the internal vascular structures within the nodule.
Abbreviations: GGN, ground-glass nodule; CT, computed tomography; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma;
mGGN, mixed GGN; pGGN, pure GGN; ROI, region of interest.
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Feature  extraction:  Radiomics  features  were  extracted
using the open-source Python package PyRadiomics (version
3.0.1), with images normalized before feature computation. In
total,  806  radiomics  features  were  extracted,  which  were
classified  into  feature-based  (shape  parameters,  first-order
texture parameters, gray-level run-length matrix, gray-level co-
occurrence matrix, and gray-level size zone matrix) and filter-
based (wavelet transforms, logarithmic features, and Laplacian
operators)  categories.  The  extracted  feature  data  were  then
linked to the corresponding labels of lung nodule invasiveness,
forming a complete research dataset (Fig. 3).

Feature normalization: To account for varying scales in the
original  feature  data,  Z-score  normalization  was  applied,
standardizing all features by setting the mean to 0 and standard
deviation to 1. This process minimized the impact of different
scales on the model and ensured comparability during training.
Statistical  analyses,  including  the  construction  of  feature
distribution pie charts and selection of P-value, were conducted
to  identify  features  significantly  associated  with  nodule
invasiveness, forming the basis for subsequent feature selection
and model training.

Feature  selection:  To  reduce  model  complexity  and
enhance prediction accuracy, Pearson’s correlation coefficients

and least absolute shrinkage and selection operator (LASSO)
regression  were  employed  for  feature  selection.  Initially,
Pearson’s  correlation  coefficient  was  used  to  evaluate  the
strength of linear relationships between each radiomics feature
and lung nodule invasiveness. Values close to 1 or −1 indicated
strong positive or negative correlations, respectively, whereas
those  close  to  0  indicated  no  significant  linear  relationship.
Features  with  an  absolute  correlation  coefficient  above  a
predefined  threshold  (e.g.,  |r|  >  0.3)  were  selected  for
dimension  reduction  in  subsequent  LASSO  regression
analyses.  Through  LASSO  regression  analysis,  feature
selection  was  further  refined  by  incorporating  an  L1
regularization  term  in  the  loss  function,  compressing  certain
feature  coefficients  to  zero,  thereby  achieving  automatic
feature selection and a sparse representation. Cross-validation
was  performed  to  determine  the  optimal  regularization
parameter  λ,  ensuring  a  balance  between  model  bias  and
variance,  ultimately  identifying  the  most  significant  features
for predicting lung nodule invasiveness (Fig. 3). Penalties were
imposed  on  the  weights  of  nonessential  features  to  prevent
overfitting  caused  by  redundant  features.  Synthetic  minority
oversampling  was  applied  to  the  data,  which  significantly
reduced  the  risk  of  overfitting.

Fig. 3 contd.....
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Fig. (3). Radiomics workflow of this study, including feature extraction, selection, and model construction.

2.3.3. Model Construction and Evaluation
Patients  were  randomly  categorized  into  training  and

validation sets in a 7:3 ratio. In the training set, features from
different sequences and clinical characteristics were integrated
early  to  form  a  comprehensive  feature  set.  Based  on  the
selected  features,  two  machine  learning  models,  logistic
regression  (LR)  and  support  vector  machine  (SVM),  were
constructed,  and  cross-validation  was  carried  out  for  model
training and optimization. Both LR and SVM are widely used
in predictive modeling, particularly in medical imaging. LR is
effective  for  binary  classification  and  provides  clear
interpretability  of  feature–outcome  relationships,  whereas
SVM  is  well-suited  for  high-dimensional  data  and  complex,

nonlinear  decision  boundaries,  making  it  ideal  for  radiomics
studies  with  numerous  features.  To  evaluate  predictive
performance,  receiver  operating  characteristic  curve  analysis
was performed, and key metrics, including area under the curve
(AUC),  accuracy,  sensitivity,  specificity,  positive  predictive
value,  and  negative  predictive  value,  were  calculated.  In
addition,  decision  curve  analysis  (DCA),  calibration  curves,
and DeLong’s test were applied to comprehensively assess the
predictive  performance  of  the  clinical-radiomics-vascular
model  and  clinical-radiomics-GGN  model  (Fig.  3).  It  is
necessary  to  strictly  ensure  the  independence  of  the  test  set,
and it should only be used for final model evaluation.
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2.3.4. Histopathological Analysis

Histopathological  evaluation  was  conducted  by  a
pathologist  with  10  years  of  diagnostic  experience.  Upon
collection,  all  samples  were  immediately  fixed  in  4%
formaldehyde, embedded in paraffin blocks, and sectioned for
subsequent staining analyses. Continuous 4-µm-thick sections
were prepared from the paraffin-embedded samples. Standard
hematoxylin-eosin  staining  was  performed  to  examine  the
histological structure and cellular morphology of lung nodules,
focusing on cell atypia and basement membrane penetration.

2.3.5. Selection and Construction of Clinical Model Features

Using  the  “statsmodels”  library  in  Python,  all  numerical
features  were  standardized  using  the  Z-score  method  to
eliminate the impact of different feature scales. Univariate and
multivariate  regression  analyses  were  performed  using  LR
models, with the significance level set at α = 0.05 for all tests.
Univariate  regression  analysis  was  performed  to  assess  the
relationship  between  each  independent  feature  and  nodule
invasiveness,  and  statistically  significant  features  were
selected. Based on the obtained results, multivariate regression
analysis was conducted to identify features with independent
predictive value for nodule invasiveness. A stepwise selection
method with a P-value threshold of 0.05 was used to iteratively
filter  features  and  construct  the  final  multivariate  regression
model.  Subsequently,  the  clinical  prediction  model  for  lung
nodule  invasiveness  was  developed  by  integrating  clinical
information  and  imaging  features,  primarily  based  on  odds
ratios,  95%  confidence  intervals  (CIs),  and  P-values,  to
identify  features  with  significant  predictive  capabilities.

2.3.6. Statistical Analysis

All  statistical  analyses  were  performed  using  Statistical
Package  for  the  Social  Sciences  (SPSS)  (version  22.0).
Continuous  variables  with  a  normal  distribution  were
expressed  as  means  ±  standard  deviations,  whereas  those
without a normal distribution were expressed as medians with
interquartile  ranges  (IQRs).  Pearson’s  chi-square  test  was
applied to categorical variables in the patients’ general clinical
data and CT morphological features. For continuous variables,
statistical  test  selection  was  based  on  distribution
characteristics; an independent sample t-test was carried out for
normally  distributed  data  with  homogeneity  of  variance,
whereas the Wilcoxon rank-sum test was applied to data that
did not meet these criteria. A P-value of <0.05 was considered
statistically significant.

3. RESULTS

3.1. Clinical and Imaging Features

This  study  included  165  (59  males  and  106  females)
patients with GGNs. Of these, 126 presented with pGGNs, and
39 presented with mGGNs. The preinvasive group included 49
patients  with  AIS,  whereas  the  invasive  group  included  116
patients  with  MIA  and  IA.  In  total,  12  clinical  and  imaging

features  were  analyzed.  The  average  age  in  the  preinvasive
group was 50 (IQR: 40–65) years, whereas that in the invasive
group was 57 (IQR: 51–66) years, demonstrating a significant
difference  (Z  =  2067.5,  P  =  0.006).  The  average  CT  values
were −510.0 HU in the preinvasive group and −505.5 HU in
the  invasive  group,  but  this  difference  was  not  statistically
significant  (Z  =  2829.5,  P  =  0.966).  The  long  diameter  of
GGNs was 0.939 ± 0.516 cm (mean ± standard deviation) in
the  preinvasive  group  and  1.128  ±  0.538  cm  in  the  invasive
group, showing a significant difference (t = −2.088, P = 0.038).
Similarly,  the  average diameter  of  GGNs was 0.813 ± 0.436
cm  in  the  preinvasive  group  and  0.972  ±  0.475  cm  in  the
invasive group, exhibiting a significant difference (t = −2.009,
P = 0.046) (Table 1). However, no significant difference was
observed  in  the  short  diameter  of  GGNs  between  the  two
groups (t = −1.815, P = 0.071). Regarding nodule type, pGGNs
accounted  for  89.8%  of  all  GGNs  in  the  preinvasive  group
compared with 70.7% in the invasive group, whereas mGGNs
accounted  for  10.2%  of  all  GGNs  in  the  preinvasive  group
compared  with  29.3%  in  the  invasive  group,  showing  a
significant  difference  (χ2  =  6.967,  P  =  0.008).  In  terms  of
morphology, the proportion of round/oval-shaped nodules was
91.8%  in  the  preinvasive  group  and  79.3%  in  the  invasive
group, showing a significant difference (χ2 = 3.836, P = 0.049).
In  addition,  a  significant  difference  was  observed  in  the
presence of lobulation between the two groups (χ2 = 9.245, P =
0.002).  However,  no  significant  differences  were  observed
between the  two groups  in  terms of  sex,  nodule  distribution,
spiculation, and pleural traction (P = 0.865, 0.136, 0.192, and
0.088, respectively) (Table 1).

3.2. Radiomics Models

3.2.1. Predictive Value of the Radiomics-GGN Model

Patients  were randomly categorized into the training and
validation sets (7:3 ratio), with 81 invasive and 34 preinvasive
cases  in  the  training  set  and  35  invasive  and  15  preinvasive
cases  in  the  validation set.  A total  of  806 radiomics  features
were extracted, and feature selection was performed using P-
values,  correlation  coefficients,  and  LASSO  regression,
ultimately  identifying  18  optimal  features  for  model
development. Both LR and SVM models were constructed. In
the training set, the LR model achieved an accuracy of 0.809,
with a sensitivity of 0.797, specificity of 0.833, and AUC of
0.845  (95%  CI:  0.763–0.926).  In  the  validation  set,  the  LR
model demonstrated an accuracy of 0.740, sensitivity of 0.784,
specificity of 0.615, and AUC of 0.688 (95% CI: 0.498–0.879).
The  SVM model  outperformed the  LR model  in  the  training
set,  achieving  an  accuracy  of  0.896,  sensitivity  of  0.911,
specificity of 0.861, and AUC of 0.958 (95% CI: 0.925–0.991).
In the validation set, the SVM model achieved an accuracy of
0.700,  with  a  sensitivity  of  0.622,  specificity  of  0.923,  and
AUC  of  0.763  (95%  CI:  0.631–0.895)  (Table  2  and  Fig.  4).
DCA revealed that the radiomics model based on nodule ROIs
provided  a  comprehensive  and  accurate  data  for  clinical
decision-making  (Fig.  5).
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Table 1. Comparison of clinical and imaging features between the invasive and preinvasive groups.

Parameters
Group

Statistical Method Test Value P
Pre-invasive Group (n=49) Invasive Group (n=116)

Age (years)    50.0(40.0-65.0)    57.0(51.0-66.0) Wilcoxon Rank-Sum
test    2067.5 0.006 **

Gender
Female    31 (63.3%)    75 (64.7%) Pearson's Chi-squared

test 0.029 0.865
Male    18 (36.7%)    41 (35.3%)

CT Value (HU)    -510.000(-638.000--356.000)    -505.500(-598.250--412.000) Wilcoxon Rank-Sum
test    2829.5 0.966

Long Diameter (cm)    0.939±0.516    1.128±0.538 Independent Samples t-
test    -2.088 0.038 *

Short Diameter (cm)    0.688±0.374    0.816±0.430 Independent Samples t-
test    -1.815 0.071

Average Diameter (cm)    0.813±0.436    0.972±0.475 Independent Samples t-
test    -2.009 0.046 *

Location

Right upper lung    20 (40.8%)    55 (47.4%)

Pearson's Chi-squared
test 7.007 0.136

Right lower lung    14 (28.6%)    15 (12.9%)
Right middle lung    2 (4.1%)    4 (3.4%)

Left upper lung    7 (14.3%)    29 (25.0%)
Left lower lung    6 (12.2%)    13 (11.2%)

Shape
Round/Oval    45 (91.8%)    92 (79.3%) Pearson's Chi-squared

test 3.836 0.049*
   Irregular    4 (8.2%)    24 (20.7%)

Lobulation
   No    45 (91.8%)    81 (69.8%) Pearson's Chi-squared

test 9.245 0.002 **
Yes    4 (8.2%)    35 (30.2%)

Spiculation
   No    32 (65.3%)    63 (54.3%) Pearson's Chi-squared

test 1.705 0.192
Yes    17 (34.7%)    53 (45.7%)

Pleural
Traction

   No    36 (73.5%)    69 (59.5%) Pearson's Chi-squared
test 2.912 0.088

Yes    13 (26.5%)    47 (40.5%)

Density
Pure ground glass    44 (89.8%)    82 (70.7%) Pearson's Chi-squared

test 6.967 0.008 **
Mixed ground glass    5 (10.2%)    34 (29.3%)

Values are given as n (%) or mean ± SD or median (interquartile range [IQR]). * indicates P < 0.05, ** indicates P < 0.01.

Fig. (4). Predictive value of the radiomics-GGN model. (a, b) The SVM model outperformed the LR model in both sets. In addition, the clinical-
radiomics model (combined) showed superior performance compared with models using radiomics alone.
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Table 2. Predictive value of the radiomics model based on nodule ROIs for GGN invasiveness.

Model Category ACC AUC (95%CI) SEN SPE PPV NPV Precision F1

LR-radiomics-GGN model
Training set 0.809 0.845 (0.763 - 0.926) 0.797 0.833 0.913 0.652 0.913 0.851

Validation set 0.740 0.688 (0.498 - 0.879) 0.784 0.615 0.853 0.500 0.853 0.817

SVM-radiomics-GGN model
Training set 0.896 0.958 (0.925 - 0.991) 0.911 0.861 0.935 0.816 0.935 0.923

Validation set 0.700 0.763 (0.631 - 0.895) 0.622 0.923 0.958 0.462 0.958 0.754

Fig. (5). DCA curves for three models based on nodule ROIs in the training set (a) and validation set (b).

3.2.2. Predictive Value of the Radiomics-vascular Model

Feature  selection  was  conducted  using  P-values,
correlation  coefficients,  and  LASSO  regression,  ultimately
identifying 15 optimal features for model development. Both
LR and SVM models were constructed. In the training set, the
LR  model  achieved  an  accuracy  of  0.826,  with  an  AUC  of
0.944  (95%  CI:  0.906–0.982),  sensitivity  of  0.774,  and
specificity  of  0.968.  In  the  validation  set,  the  LR  model
demonstrated an accuracy of 0.76, with an AUC of 0.71 (95%
CI: 0.541–0.880), sensitivity of 0.937, and specificity of 0.444
(Table  3  and  Fig.  6).  In  the  training  set,  the  SVM  model
exhibited better performance than the LR model, achieving an
accuracy  of  0.93,  AUC  of  0.992  (95%  CI:  0.981–1.000),
sensitivity of 0.905, and specificity of 1.000. However, in the
validation  set,  the  SVM model  showed  an  accuracy  of  0.66,

with an AUC of 0.766 (95% CI:  0.633–0.899),  sensitivity of
0.562,  and  specificity  of  0.833  (Table  4  and  Fig.  6).  DCA
confirmed  that  the  radiomics  model  based  on  vascular  ROIs
provided  the  comprehensive  and  accurate  data  for  clinical
decision-making  (Fig.  7).

3.2.3. Clinical-radiomics Models

During  the  development  of  clinical  models,  LR  analysis
was  performed.  Univariate  and  multivariate  LR  analyses
identified  morphology  and  lobulation  as  independent  risk
factors  for  lung  nodule  invasiveness  (P  <  0.05)  (Table  4).
These  features  were  integrated  during  the  development  of
clinical-radiomics  models.  Two  models  were  constructed:
clinical-radiomics-GGN  (Fig.  8)  and  clinical-radiomics-
vascular  (Fig.  9).

Table 3. Predictive value of the radiomics-vascular model for GGN invasiveness.

Model Category ACC AUC (95%CI) SEN SPE PPV NPV Precision F1

LR-radiomics-
vascular model

Training set 0.826 0.944
(0.906 - 0.982) 0.774 0.968 0.985 0.612 0.985 0.867

Validation set 0.760 0.710 (0.541 - 0.880) 0.937 0.444 0.750 0.800 0.750 0.833

SVM-radiomics-
vascular model

Training set 0.930 0.992 (0.981 - 1.000) 0.905 1.000 1.000 0.795 1.000 0.950
Validation set 0.660 0.766 (0.633 - 0.899) 0.562 0.833 0.857 0.517 0.857 0.679

LR, logistic regression; SVM, support vector machine; ACC, accuracy; AUC, area under the curve; CI, confidence interval; SEN, sensitivity; SPE, specificity; PPV,
positive predictive value; NPV, negative predictive value.
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Fig. (6). Predictive value of the radiomics-vascular model. (a, b) The SVM model outperformed the LR model in both sets. The clinical-radiomics
model (combined) showed superior performance in the validation set.

(b)(a)

Fig. (7). DCA curves for three models based on vascular features, both in the training set (a) and validation set (b).

Table 4. Logistic regression analysis of clinical and imaging features between the invasive and preinvasive groups.

Parameters
Univariate Logistic Regression Multivariate Logistic Regression

OR (95%CI) P OR (95%CI) P
Age 1.003 (0.997-1.008) 0.447 -

Gender 0.941 (0.822-1.077) 0.454 -
CT value 1.000 (0.999-1.000) 0.221 -

Long diameter 0.924 (0.817-1.044) 0.285 -
Short diameter 0.933 (0.795-1.096) 0.478 -

Average diameter 0.923 (0.801-1.064) 0.351 -
Location 0.998 (0.956-1.042) 0.933 -

Shape 1.356 (1.147-1.605) 0.003** 1.289 (1.083-1.534) 0.017*
Lobulation 1.249 (1.075-1.451) 0.015* 1.173 (1.005-1.368) 0.049*
Spiculation 1.152 (1.012-1.311) 0.073 -

Pleural traction 1.031 (0.901-1.181) 0.704 -
Density 1.191 (1.023-1.387) 0.059 -
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Fig. (8). Nomogram constructed based on the clinical-radiomics-GGN model.

Fig. (9). Nomogram constructed based on the clinical-radiomics-vascular model.

3.2.4. Predictive Value of the Clinical-radiomics-GGN model
for GGN Invasiveness

The  clinical-radiomics-GGN  model  was  developed  by
integrating  the  radiomics  features  of  GGNs  with  clinical
imaging characteristics. Performance analysis revealed that in
the  training  set,  the  model  achieved  an  accuracy  of  0.843,
sensitivity of 0.890, and specificity of 0.727, with an AUC of
0.872 (95% CI: 0.796–0.948). In addition, both the precision
and  F1  scores  were  0.89.  In  the  validation  set,  the  model
maintained  strong  predictive  performance,  achieving  an
accuracy  of  0.820,  sensitivity  of  0.912,  and  specificity  of
0.625, with an AUC of 0.779 (95% CI: 0.615–0.944) (Table 5
and Fig. 4). These metrics indicated that the model maintained
high  predictive  accuracy  and  reliability  in  the  validation  set.
Notably,  the  clinical-radiomics  model  outperformed  models
based on only radiomics features,  highlighting the additional
value of incorporating clinical imaging characteristics.

3.2.5.  Predictive  Value  of  the  Clinical-radiomics-vascular
Model for GGN Invasiveness

The clinical-radiomics-vascular model was developed by
integrating  radiomics  features  of  vascular  ROIs  within  the

nodules  with  clinical  imaging  characteristics.  In  the  training
set,  the  model  achieved  an  accuracy  of  0.800,  sensitivity  of
0.732,  and specificity of  0.970,  with an AUC of 0.918 (95%
CI: 0.870–0.967). The precision and F1 scores were 0.984 and
0.839,  respectively.  In  the  validation  set,  the  model
demonstrated strong predictive performance, with an accuracy
of 0.860, sensitivity of 0.882, specificity of 0.812, and AUC of
0.864  (95%  CI:  0.723–1.000)  (Table  5  and  Fig.  6).  The
clinical-radiomics  model  based  on  vascular  ROIs  exhibited
superior  predictive  efficacy  compared  with  models  based
solely  on  radiomics  features  and  outperformed  the  clinical-
radiomics-GGN model based on nodule ROIs.

DCA and calibration curve analyses demonstrated that the
clinical-radiomics  model  based  on  vascular  ROIs  showed
higher  efficacy  than  the  clinical-radiomics-GGN  model  in
clinical  practice,  with  predicted  outcomes  aligning  more
closely  with  actual  results  (Figs.  7  and  10).  In  addition,
DeLong’s test revealed significant differences in predicting the
invasiveness  of  pulmonary  nodules  between  the  clinical-
radiomics-vascular  model  and  the  clinical-radiomics-GGN
model, both in the training set (Z = 6.043, P < 0.01) and the
validation  set  (Z  =  3.170,  P  <  0.01),  further  confirming  the
superiority of the vascular-based model.
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Table 5. Predictive value of different clinical-radiomics models for GGN invasiveness.

Model Category ACC AUC (95%CI) SEN SPE PPV NPV Precision F1

clinical-radiomics
-GGN model

Training set 0.843 0.872 (0.796-0.948) 0.890 0.727 0.890 0.727 0.890 0.890
Validation set 0.820 0.779 (0.615-0.944) 0.912 0.625 0.838 0.769 0.838 0.873

clinical-radiomics
-vascular model

Training set 0.800 0.918 (0.870-0.967) 0.732 0.970 0.984 0.593 0.984 0.839
Validation set 0.860 0.864 (0.723-1.000) 0.882 0.812 0.909 0.765 0.909 0.896

ACC, accuracy; AUC, area under the curve; CI, confidence interval; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value.
DeLong’s test revealed significant differences between the two clinical-radiomics models in both the training (Z = 6.043, P < 0.01) and validation (Z = 3.170, P < 0.01)
sets.

Fig. (10). Calibration curves of the two clinical-radiomics models in the training set (a) and validation set (b). The results indicate that the clinical-
radiomics model based on vascular ROIs (orange curve) demonstrated higher efficacy in clinical practice.

4. DISCUSSION
As age increases, the risk of tumor development rises, with

lung cancer incidence substantially increasing after the age of
40 years [15]. The Fleischner Society Guidelines (2017) [16]
report a higher malignancy rate for GGNs in the upper lobes. In
our  study,  111  nodules  (including  27  preinvasive  and  84
invasive nodules) were located in the upper lobes, possibly due
to higher oxygen levels promoting tumor growth. The growth
patterns  of  GGNs  define  their  CT  imaging  characteristics.
GGNs originate  from adherent  tumor cell  growth,  leading to
alveolar  epithelium  thickening  and  reduced  alveolar  air
content,  appearing  as  pure  ground-glass  opacity  on  CT.
Conversely, invasive areas follow nonadherent growth patterns
(acinar, papillary, micropapillary, and solid), further reducing
alveolar  air  content  and  increasing  CT  density  or  solid
components. Ichinose et al. [17] identified high CT values as a
key  predictor  of  histological  invasiveness  in  GGNs.  Density
types differed significantly between groups (P = 0.008), while
average  CT  values  showed  no  significant  difference.  This
could  be  attributed  to  minimal  solid  components  in  some
GGNs, which did not significantly affect the overall CT values.
Spiculation, a strong malignancy indicator, reflects fibroblast
proliferation,  fibrous  contraction,  and  tumor  invasion  into
surrounding tissue,  appearing as fine,  needle-like projections
on  CT.  In  our  study,  spiculation  did  not  significantly
distinguish preinvasive from invasive lesions, likely due to the
small size and early stage of tumors lacking matrix invasion. In

addition,  pleural  retraction  is  often  associated  with  GGN
invasiveness, likely due to invasive lesions exerting traction on
the pleura via the pulmonary fibrous framework. In our study,
pleural indentation was more common in invasive lesions, but
the difference was not significant (P  = 0.088).  We measured
the  maximum  and  perpendicular  diameters  at  the  axial
maximum  level,  using  their  average  value  as  the  mean
diameter. Invasive GGNs had significantly larger and average
diameters  than  preinvasive  ones,  aligning  with  prior  studies
[18,  19].  Liu  et  al.  [18]  analyzed  105  GGNs  and  reported  a
critical diameter of 12.55 mm for invasiveness, whereas Zhou
et  al.  [19]  suggested  13.6  mm  as  the  critical  diameter,  with
variations  likely  due  to  different  measurement  techniques.
Currently,  no  standardized  threshold  exists  for  GGN
invasiveness. Irregular morphology and lobulation were more
common  in  invasive  GGNs,  with  multivariate  analysis
identifying irregular morphology as an independent predictor
of  invasiveness.  Pathologically,  differential  growth rates  and
interlobular  septa  may  result  in  surface  irregularities  and
lobulation on CT. A previous study showed that lobulation is
commonly observed in lung cancer [20].

Since the introduction of radiomics by Lambin et al. [11]
in 2012, it has been widely integrated into medical imaging and
pathology,  particularly  for  assessing  tumor  heterogeneity.
Radiomics  is  commonly  used  for  the  diagnosis,  staging,
grading, and evaluation of various malignant diseases, as well
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as  for  assessing  therapeutic  effects  and  prognosis  [21  -  23].
Romeo  et  al.  [24]  and  Shen  et  al.  [25]  demonstrated  that
radiomics  classifiers  and  combined  models  could  effectively
distinguish the nature of lung nodules. Several studies [26 - 28]
have  also  confirmed  the  diagnostic  value  of  radiomics  in
predicting GGN invasiveness. For instance, Jiang et al. [29, 30]
and  Wu et  al.  [31]  used  radiomics  to  evaluate  specific  signs
and  peritumoral  features  of  GGNs,  further  supporting  their
predictive value. However, studies on the radiomics features of
internal vascular structures within GGNs remain limited. In our
study, radiomics features were extracted from entire GGNs and
their  internal  vascular  structures  using  various  algorithms.
Subsequently,  relevant  features  were  selected  and  prediction
models  were  developed.  These  models  were  then  combined
with traditional CT signs to enhance their predictive accuracy.
Among  them,  the  model  based  on  internal  vascular  ROIs
exhibited the best  diagnostic performance in the training set.
Vascular  density  and  complexity  in  GGNs  correlate  with
malignancy, as increased angiogenesis often indicates greater
invasiveness [32]. Liang et al. [32] demonstrated that analysis
of  vascular  features  can  effectively  differentiate  invasive
nodules  from  noninvasive  ones.  The  diagnostic  value  of
internal  vascular  structures  in  pulmonary  nodules  can  be
understood  through  several  key  aspects,  such  as  (i)  vascular
density and nodule nature: increased vascular density within a
nodule  suggests  active  metabolism  and  growth,  indicating
malignancy, as tumors require robust angiogenesis for nutrient
and  oxygen  supply;  (ii)  vascular  morphological  features:
irregular  vascular  structures,  branching  patterns,  and
permeability  are  critical  for  determining  malignancy.
Malignant nodules typically exhibit complex, irregular vascular
networks, which are detectable via high-precision imaging; and
(iii)  angiogenesis  and  invasiveness:  the  degree  of  vascular
formation  within  nodules  is  closely  linked  to  their  invasive
potential.  Invasive  lung  cancer  often  exhibits  marked
neovascularization,  promoting  tumor  growth,  invasion,  and
metastasis,  with  vascular  abnormalities  becoming  more
apparent as the disease progresses.  Gao et al.  [14] suggested
that vascular anomalies are more frequently observed in MIA-
and IA-classified GGNs. In clinical practice, the assessment of
fine  vessels  within  GGNs  is  often  subjective.  Advances  in
imaging  have  made  radiomics  a  powerful  tool  for  extracting
detailed vascular features beyond basic morphology, including
complexity, uniformity, and spatial relationships. Quantifying
vascular  morphology  provides  a  noninvasive,  objective
approach  to  differentiate  benign  from  malignant  nodules.
Moreover,  previous  studies  [33  -  35]  demonstrated  that
combining radiomics with traditional CT features significantly
improves  the  model’s  predictive  accuracy  for  GGN
invasiveness. Our study shows that combining radiomics with
clinical  features  enhances  predictive  performance,
underscoring  the  value  of  vascular  radiomics  in  lung  cancer
assessment.  Given  the  model’s  potential  clinical  application,
future studies should include external multicenter validation to
confirm its generalizability. Differences in imaging protocols
and patient populations across institutions may affect radiomic
feature robustness. Therefore, multicenter studies are needed to
ensure model reliability and support broader clinical adoption.

Our  study  had  some  limitations.  First,  all  samples  were

obtained  from  a  single  center  and  analyzed  retrospectively,
which may have introduced selection bias. Second, the single-
center nature of our study and the lack of an external validation
set  may  limit  the  generalizability  of  our  findings.  Although
internal  validation  through  classification  into  training  and
validation sets in a 7:3 ratio provided insights into the model’s
performance,  external  validation  with  multicenter  data  is
crucial  for  confirming  robustness  and  clinical  applicability.
Third, the uneven distribution of GGN pathological subtypes in
our dataset, with fewer PGLs, may have introduced bias. This
discrepancy likely results from the fact that most PGLs require
follow-up  rather  than  surgical  removal,  leading  to  their
underrepresentation  in  the  study.

CONCLUSION
Radiomics  models  offer  a  valuable  tool  for  the

preoperative  prediction  of  GGN  invasiveness,  with  models
based  on  radiomics  features  of  internal  vascular  structures
demonstrating superior predictive efficiency. For radiologists,
this  model  serves  as  a  noninvasive  decision-support  tool,
aiding  in  the  differentiation  between  high-risk  GGNs  that
require  early  intervention  and  low-risk  nodules  suitable  for
conservative  management.  By  enabling  the  noninvasive
assessment  of  GGN  invasiveness,  this  model  can  reduce
unnecessary  biopsies  in  low-risk  cases.  With  continuous
advancements in medical imaging technology and data analysis
methods,  radiomics  is  expected  to  play  an  increasingly
significant role in the diagnosis, treatment, and management of
lung nodules and other pulmonary diseases.

LIST OF ABBREVIATIONS

GGN = Ground-Glass Nodule

AIS = Adenocarcinoma In Situ

PGL = Precursor Glandular Lesions

MIA = Minimally Invasive Adenocarcinoma

IA = Invasive Adenocarcinoma

mGGN = Mixed GGN

pGGN = Pure GGN

WHO = World Health Organization

CT = Computed Tomography

LD-CT = Low-Dose Computed Tomography

ROI = Region Of Interest

LASSO = Least Absolute Shrinkage And Selection Operator

LR = Logistic Regression

SMOTE = Synthetic Minority Oversampling Technique

ACC = Accuracy

SEN = Sensitivity

SPE = Specificity

SVM = Support Vector Machine
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