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Abstract:

Introduction:

To examine the integration of artificial intelligence (AI) into Picture Archiving and Communication Systems (PACS) and assess its impact on
medical  imaging,  diagnostic  workflows,  and  patient  outcomes.  This  review  explores  the  technological  evolution,  key  advancements,  and
challenges associated with AI-enhanced PACS in healthcare settings.

Methods:

A comprehensive literature search was conducted in PubMed, Scopus, and Web of Science databases, covering articles from January 2000 to
October 2024. Search terms included “artificial intelligence,” “machine learning,” “deep learning,” and “PACS,” combined with keywords related
to diagnostic accuracy and workflow optimization. Articles were selected based on predefined inclusion and exclusion criteria, focusing on peer-
reviewed studies that discussed AI applications in PACS, innovations in medical imaging, and workflow improvements. A total of 183 studies met
the inclusion criteria, comprising original research, systematic reviews, and meta-analyses.

Results:

AI integration in PACS has significantly enhanced diagnostic accuracy, achieving improvements of up to 93.2% in some imaging modalities, such
as early tumor detection and anomaly identification. Workflow efficiency has been transformed, with diagnostic times reduced by up to 90% for
critical conditions like intracranial hemorrhages. Convolutional neural networks (CNNs) have demonstrated exceptional performance in image
segmentation, achieving up to 94% accuracy, and in motion artifact correction, further enhancing diagnostic precision. Natural language processing
(NLP) tools have expedited radiology workflows, reducing reporting times by 30–50% and improving consistency in report generation. Cloud-
based solutions have also improved accessibility, enabling real-time collaboration and remote diagnostics. However, challenges in data privacy,
regulatory compliance, and interoperability persist, emphasizing the need for standardized frameworks and robust security protocols.

Conclusion:

The integration of AI into PACS represents a pivotal transformation in medical imaging, offering improved diagnostic workflows and potential for
personalized patient care. Addressing existing challenges and enhancing interoperability will  be essential for maximizing the benefits of AI-
powered PACS in healthcare.
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1. INTRODUCTION

1.1. Overview of PACS and Its Evolution

The integration of artificial  intelligence (AI) into Picture
Archiving and Communication Systems (PACS) represents a
paradigm shift in medical imaging, fundamentally altering the
way  diagnostic  workflows  are  conducted.  As  healthcare
increasingly adopts digital  transformation,  the role of AI has
expanded  from  simple  automation  to  enabling  precision
diagnostics and personalized care. PACS systems, traditionally
designed  for  image  storage  and  management,  are  now
leveraging  AI  technologies  such  as  deep  learning  (DL)  and
natural  language  processing  (NLP)  to  address  critical
challenges, including rising diagnostic workloads, variability in
radiological  interpretations,  and the  need for  faster  decision-
making.  By  automating  complex  tasks  like  image
segmentation, anomaly detection, and predictive analytics, AI
integration  in  PACS  offers  a  scalable  solution  to  improve
efficiency and accuracy across healthcare systems [1, 2]. The
primary  aim  of  PACS  was  to  create  a  centralized  digital
repository for various imaging modalities such as X-ray, CT,
MRI,  and  ultrasound,  thereby  streamlining  radiological
workflows  and  enhancing  diagnostic  efficiency  [2].  This
transformation is particularly significant in the context of the
global rise in imaging demands. For instance, radiologists face
an average increase in workload of 6% per year, underscoring
the  urgency  for  innovative  solutions  to  maintain  diagnostic
accuracy without delays. AI-powered PACS systems not only
streamline  these  processes  but  also  enable  broader  access  to
high-quality imaging services through advancements in cloud
computing and interoperability frameworks. This review aims
to explore these transformative capabilities, while addressing
the challenges and opportunities that AI integration brings to
modern  radiology  [3].  Fig.  (1)  illustrates  a  timeline  of  key
milestones in  the evolution of  artificial  intelligence (AI)  and
machine  learning  (ML)  in  medical  imaging.  The  timeline
begins in the 1980s with early academic research into machine
learning applications for medical devices. The 1990s mark the
introduction  of  the  first  graphics  processing  units  (GPUs),
which  significantly  enhanced  computational  power,  enabling
the  rapid  processing  of  complex  medical  image  data.  This
decade also saw the first Food and Drug Administration (FDA)
approval  of  an  AI-based  device  for  mammography,
highlighting  a  crucial  regulatory  step  in  validating  AI
applications for clinical use. Moving into the 2010s, the figure
highlights  transformative  breakthroughs  in  deep  learning,
exemplified by advancements in the ImageNet challenge, and
the integration of cloud computing, which facilitated scalable
AI training and data analysis. The timeline progresses into the
2020s,  showcasing  the  emergence  of  federated  learning-an
innovative approach that allows AI models to be trained across
multiple  decentralized  data  sources  while  preserving  patient
privacy. Additionally, the use of AI for automated reporting in
medical  imaging  has  become  more  prevalent,  supported  by
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enhanced  computational  capabilities.  This  chronological
overview  captures  the  progressive  integration  of  AI  into
medical  imaging,  underscoring  its  transformative  impact  on
diagnostic workflows and the capabilities of PACS.

1.1.1. Early Development and Adoption

The  early  stages  of  PACS  development  focused  on
providing a centralized storage system for digital images across
multiple imaging modalities, significantly improving access to
radiological data within medical facilities [2]. By eliminating
the  need  for  physical  film  storage,  PACS  facilitated  faster
image  retrieval  and  enhanced  clinical  decision-making,
allowing  healthcare  professionals  to  collaborate  more
effectively  [3].

1.1.2. Integration with Radiology and Hospital Systems

As  PACS  evolved,  it  became  integrated  with  Radiology
Information Systems (RIS) and Hospital Information Systems
(HIS),  significantly  enhancing  departmental  workflows  and
minimizing data discrepancies [4, 5]. Standardization efforts,
such as the adoption of Digital Imaging and Communications
in  Medicine  (DICOM)  and  Health  Level  Seven  (HL7)
protocols,  have  been  critical  in  achieving  interoperability
between different systems, ensuring consistent communication
of  imaging  data  across  various  devices  and  platforms  [2,  6].
These  integrations  have  streamlined  diagnostic  processes,
reduced  the  likelihood  of  errors,  and  improved  patient  data
management efficiency.

Recent  data  underscores  the  widespread  adoption  of
Picture  Archiving  and  Communication  Systems  (PACS)  and
the increasing role of artificial intelligence (AI) in radiology. In
2022, the demand for PACS in hospitals accounted for 15.9%
of the market share, with expectations to surge at a compound
annual growth rate (CAGR) of 17% between 2023 and 2033,
driven  by  the  growing  adoption  of  advanced  technologies  to
safely store patient data and improve treatment outcomes [7].
The global AI in medical imaging market was valued at USD
1.01  billion  in  2023  and  is  projected  to  grow at  a  CAGR of
34.8% from 2024 to 2030, reflecting the rising demand for AI-
based  solutions  to  enhance  diagnostic  accuracy  and  reduce
radiologists' workload [8].

These trends highlight the critical role of AI in addressing
the  increasing  demand  for  imaging  services  and  improving
diagnostic  accuracy  and  efficiency,  providing  a  strong
foundation  for  exploring  its  integration  into  PACS.

1.1.3. Recent Advances and Trends

Recent  developments  in  PACS  have  been  driven  by  the
integration of AI and ML technologies, which aim to enhance
diagnostic  capabilities  [9,  10].  AI  algorithms  now  assist  in
image  analysis,  automate  routine  tasks,  and  provide  clinical
decision  support,  improving  both  diagnostic  accuracy  and
efficiency. The shift towards cloud-based PACS solutions has
further  enhanced  accessibility,  enabling  remote  viewing  and
collaboration-particularly  valuable  during  the  COVID-19
pandemic  [6,  11].  Cloud-based  systems  reduce  the  need  for
extensive  on-site  infrastructure,  offer  scalable  storage,  and
facilitate  real-time  data  updates  [5,  6].
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Fig. (1). Timeline of Key AI and ML Milestones in Medical Imaging. This figure presents a timeline of significant milestones in the integration of
artificial intelligence (AI) and machine learning (ML) into medical imaging, ranging from early research in the 1980s to recent advances in federated
learning and enhanced computational power in the 2020s. Each milestone reflects the transformative steps that have shaped AI-powered diagnostic
capabilities, enabling more accurate and efficient workflows within PACS.

The  transformative  potential  of  AI  is  evident  across
multiple domains, providing a context for its integration into
Picture Archiving and Communication Systems (PACS).  For
instance,  AI-driven  advancements  have  revolutionized
immersive  educational  tools,  such  as  gamified  augmented
reality and virtual reality platforms in agricultural education,
which  enhance  engagement  and  retention  rates  through
interactive learning environments [12]. Similarly, AI-powered
customer service models have optimized user experiences by
employing natural language processing and predictive analytics
to address customer inquiries more effectively [13].

In  finance,  studies  evaluating  AI’s  influence  on  market
values  underscore  the  distinction  between  authentic  growth
driven by data insights and speculative trends fueled by algori-
thmic  trading,  shedding  light  on  AI’s  potential  for  creating
sustain-able  economic  models.  These  findings  are  pertinent
when considering how AI can differentiate meaningful diagno-
stic improvements from superficial automation in PACS [14].

In  healthcare,  AI  has  demonstrated  its  value  in  cancer
diagnosis with architectures that integrate graduated levels of
trust,  ensuring  clinical  reliability  while  minimizing  false
positives  and  negatives  [15].  Recent  advancements  in
diagnostic  models,  such  as  a  multivariable  approach  for
identifying  unusual  infections  in  hospitalized  patients,
highlight  AI’s  capacity  for  integrating  diverse  clinical  data
[16].  Additionally,  foundational  AI  models  like  Med-SAM1
and Med-SAM2 have  showcased  remarkable  performance  in
segmenting complex 3D MRI structures,  including left  atrial
segmentation  in  LGE  MRI,  which  parallels  the  imaging
challenges  tackled  by  AI-powered  PACS  [17].

These  advancements  across  domains  demonstrate  the
versatility  and  transformative  potential  of  AI,  providing  a
strong  foundation  for  exploring  its  integration  into  PACS to
address diagnostic, workflow, and interoperability challenges.

1.2. The Rise of AI in Medical Imaging
Artificial  Intelligence  (AI)  has  emerged  as  a  key

innovation  in  medical  imaging,  driving  the  development  of
advanced  diagnostic  tools  that  enhance  patient  care.  The
integration  of  AI  with  PACS  has  led  to  significant
improvements  in  image  interpretation,  faster  diagnostic
workflows, and reduced workloads for radiologists [10, 18]. AI
technologies,  including  deep  learning  and  natural  language
processing (NLP), have expanded the capabilities of PACS by
enabling real-time data analysis and predictive analytics [19].

To illustrate the sequential development and integration of
AI  and  machine  learning  (ML)  technologies  within  medical
imaging, we present a comprehensive overview of the AI/ML
lifecycle. The lifecycle highlights critical stages from the initial
design  and  development  of  AI  models  to  their  real-world
clinical implementation. This framework helps to contextualize
the systematic process involved in creating robust, reliable, and
ethically  sound  AI  applications,  bridging  the  gap  between
innovative  research  and  clinical  practice.  The  following  Fig.
(2)  summarizes  these  stages,  offering  a  clear  visual
representation of the steps involved in advancing AI-powered
diagnostic tools in medical imaging.

1.2.1. AI Advancements and Clinical Applications

AI  algorithms  are  widely  used  for  analyzing  medical
images, detecting patterns, and identifying anomalies that may
be difficult  for  radiologists  to  discern.  These capabilities  are
crucial  for  early  diagnosis  and  treatment  planning  [19].  For
instance,  AI-enhanced  MRI  applications  have  shown
improvements  in  scanning  speed,  image  resolution,  and
reduced radiation exposure, which are essential for specialties
like  neurology,  orthopedics,  and  oncology  [20,  21].
Additionally, deep learning techniques have proven effective in
reducing noise and correcting motion artifacts in MRI, further
enhancing image quality [6]. In brain imaging, AI algorithms
have  demonstrated  high  accuracy  in  detecting  early-stage
tumors,  underscoring  their  transformative  impact  [22].
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Fig. (2). AI/ML Lifecycle in Medical Imaging. Key Stages from Development to Clinical Integration. This figure illustrates the lifecycle of artificial
intelligence (AI) and machine learning (ML) applications in medical imaging, highlighting seven essential stages: (1) Design and Development,
focusing  on  the  creation  and  refinement  of  AI  models;  (2)  Bias  Assessment,  evaluating  potential  biases  to  ensure  fairness;  (3)  Performance
Evaluation, objectively measuring accuracy and reliability; (4) Human-AI Collaboration, enhancing diagnostic processes through interaction between
clinicians and AI tools;  (5)  Transparency,  ensuring explainable and interpretable decision-making;  (6)  Translation,  converting AI research into
practical clinical applications; and (7) Real-World Use, applying AI models in clinical settings to improve patient care and streamline workflows. The
circular arrangement signifies the continuous process of refinement and integration of AI technologies in medical imaging.

1.2.2. Regulatory Approvals and Market Growth

The growing reliance on AI in medical imaging is reflected
in the increasing number of regulatory approvals. As of 2023,
the  U.S.  Food  and  Drug  Administration  (FDA)  had  cleared
over  700  AI-based  medical  imaging  algorithms,  with
approximately  76%  focused  on  radiology  applications  [23].
This  trend  highlights  the  expanding  role  of  AI  in  improving
diagnostic precision and efficiency. The global market for AI
in  medical  imaging  is  projected  to  grow  significantly,  with
estimates reaching $11.76 billion by 2033 [24].

1.2.3. Technological Integration and Future Perspectives

The integration of AI into medical imaging extends beyond
image quality enhancement to include automation of complex
tasks  such  as  image  segmentation  and  classification.  At  the
2023  Radiological  Society  of  North  America  (RSNA)
conference,  AI  was  showcased  for  its  role  in  automating
diagnostic  processes  and  providing  robust  clinical  decision
support  [25].  AI  tools  now  streamline  intricate  tasks  like
tracking  tumor  size,  aiding  radiologists  in  effective  case
management [23]. Table 1 summarizes the evolution of PACS
and  the  key  milestones  in  AI  integration  over  the  past  five
decades.

Table 1. Evolution of PACS Over Five Decades: Key Technological Milestones and AI Integration. This table summarizes the
significant  technological  milestones  in  PACS  development  and  the  integration  of  AI  from  the  1970s  to  the  present,
highlighting  the  impact  on  clinical  practice,  diagnostic  capabilities,  and  workflow  efficiency.

Decade Technological Milestones Key Developments in AI Integration Clinical Impacts

1970s
- Early development of PACS (Picture

Archiving and Communication Systems)
concept.

- AI was largely absent in healthcare and PACS
development during this era.

- Introduction of digital image storage and
communication, replacing analog film-
based systems (2000 PACS - filmless

radiology, 2000).

1980s

- Adoption of DICOM (Digital Imaging
and Communications in Medicine)

standard.

- Basic image processing algorithms used for
image enhancement and compression.

- Improved interoperability between
imaging modalities (MRI, CT, X-ray).

- Improved image compression techniques
and digital image archiving.

- First computer-aided detection systems
explored for limited applications.

- Facilitated the storage, retrieval, and
sharing of digital images across institutions.
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Decade Technological Milestones Key Developments in AI Integration Clinical Impacts

1990s

- Wide adoption of PACS across hospitals
for medical imaging.

- Introduction of early machine learning
algorithms for image analysis.

- Enhanced diagnostic capabilities with
early automated detection tools.

- Integration with Radiology Information
Systems (RIS) and Hospital Information

Systems (HIS).

- Emergence of computer-aided diagnosis
(CAD) for mammography and lung nodule

detection.

- Increased efficiency in imaging workflows
(2000 PACS - filmless radiology, 2000).

2000s

- Advances in PACS storage capacity with
the shift to cloud-based PACS.

- Computer vision techniques applied for
segmentation and pattern recognition.

- Enhanced remote access and sharing of
medical images.

- Use of web-based PACS viewers to
enable remote access to images.

- Introduction of deep learning techniques in
research for radiology image analysis.

- Workflow optimization through cloud-
based storage (2019 Integrating a Cloud-

Based PACS Viewer, 2019).
- Rise of digital radiography (DR). - Gradual AI integration for workflow improvements.

2010s

- PACS systems fully integrated with
electronic health records (EHR) and RIS.

- Rapid development of deep learning and
convolutional neural networks (CNNs) for

medical image analysis.

- Improved diagnostic accuracy and
efficiency.

- Advancements in imaging modalities:
MRI, CT, and PET.

- AI was applied in the segmentation,
classification, and detection of lesions in

medical images.

- Automated reporting systems and
enhanced image analysis capabilities.

- Growth in teleradiology.
- AI-powered PACS systems developed to assist
in image triage and prioritization (2022 State-of-

the-Art AI in MRI, 2022).
- Expansion of AI applications in radiology.

2020s
(Present)

- Increased reliance on cloud-based PACS
and edge computing for faster processing.

- Artificial intelligence now assists in nearly all
aspects of image management and diagnosis
(e.g., triage, segmentation, classification).

- Significant reduction in diagnostic errors
and improved radiologist productivity.

- AI fully integrated into PACS for
workflow optimization.

- AI enables real-time analysis of medical
images and predictive analytics.

- AI-driven personalized treatment planning
and predictive analytics in clinical care.

- Greater interoperability. - Natural language processing (NLP) is used for automated report generation (PACS-AI
Platform, 2024).

1.3. Justification of the Review's Importance

The  integration  of  AI  into  PACS  marks  a  pivotal
advancement in medical imaging, with profound implications
for  diagnostic  accuracy,  workflow  optimization,  and  patient
care.  This  review  is  both  timely  and  crucial  for  guiding
healthcare  professionals  and  researchers  in  navigating  the
evolving  landscape  of  AI-powered  PACS.  By  examining
current trends and projecting future directions, this article aims
to be an essential resource for leveraging AI to enhance PACS
capabilities  and address  ongoing challenges in  the field.  The
following  bullet  points  outline  the  key  contributions  of  this
review:

Highlight the transformative role of AI integration in
PACS to  improve diagnostic  accuracy and workflow
efficiency.
Present  a  comprehensive review of the technological
advancements  in  AI,  including  deep  learning  and
natural  language  processing  applications  in  medical
imaging.
Address  critical  challenges  such  as  interoperability,
data  privacy,  and  regulatory  compliance  for  AI-
powered  PACS  adoption.
Identify emerging trends and future directions for AI in
radiology, with a focus on improving patient outcomes
and clinical workflows.
Propose  practical  recommendations  to  enhance  the
integration of AI into PACS systems based on existing
studies and technological innovations.

1.4. Aims and Reader Benefits

This  article  is  a  narrative  review  that  synthesizes
advancements,  challenges,  and  future  directions  in  the
integration of artificial intelligence (AI) into Picture Archiving
and  Communication  Systems  (PACS).  Unlike  a  systematic
review, it provides a focused exploration of key developments
and  clinical  applications  without  exhaustive  coverage  of  all
eligible studies. By highlighting the transformative effects of
AI on diagnostic workflows and accuracy, this article addresses
key challenges and proposes innovative solutions for seamless
AI  integration.  Readers  will  gain  insights  into  how  AI-
enhanced  PACS  can  streamline  clinical  processes,  reduce
diagnostic errors, and improve patient outcomes, making this
review  a  valuable  resource  for  clinicians,  researchers,  and
industry  stakeholders.

1.5. Proposed Section Plan

The  next  sentences  show  a  concise  overview  of  the
manuscript’s organization, outlining the content of each major
section.

Section  2:  Discusses  the  methods  used  for  the  literature
search, data extraction, and synthesis, providing a framework
for analyzing AI integration into PACS.

Section 3: Reviews the technological foundations and key
applications  of  AI  in  PACS,  including  diagnostic
enhancements,  workflow  optimization,  and  emerging
innovations.

Section  4:  Examines  the  Challenges  and  Barriers  to  AI-
PACS  Integration,  focusing  on  data  privacy,  regulatory
compliance,  and  interoperability  issues.

(Table 1) contd.....
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Section  5:  Explores  the  preparedness  of  current  PACS
infrastructures  for  AI  integration  and  proposes  strategies  to
overcome existing limitations.

Section 6: Highlights clinical applications and case studies
demonstrating  the  effectiveness  of  AI-powered  PACS  in
various  medical  specialties.

Section  7:  Discusses  ethical  considerations  and  patient-
centered  perspectives  in  the  adoption  of  AI  technologies  in
PACS.

Section 8: Summarizes future directions and trends for AI
integration in PACS, emphasizing the need for innovation and
collaboration in radiology.

2. METHODS:  COMPREHENSIVE  APPROACH  TO
ANALYZING AI IN PACS

This narrative review was designed to provide an in-depth
analysis  of  the  integration  of  artificial  intelligence  (AI)  into
Picture Archiving and Communication Systems (PACS). The
review follows a structured approach for literature search, data
selection,  extraction,  and  synthesis  to  ensure  comprehensive
coverage of the most recent developments, key challenges, and
emerging trends in the field.

2.1. Literature Search Strategy

A  comprehensive  literature  search  was  conducted  using
three major scientific databases: PubMed, Scopus, and Web of
Science. The search covered the period from January 2000 to
October  2024,  ensuring  the  inclusion  of  the  most  recent  and
relevant literature. The following Boolean search strategy was
applied:

(“artificial intelligence” OR “machine learning” OR “deep
learning”)  AND  (“PACS”  OR  “Picture  Archiving  and
Communication  Systems”)  AND  (“medical  imaging”  OR
“diagnostic  accuracy”  OR  “workflow  efficiency”).

Filters Applied:

Language:  English-only  articles  were  included  to
ensure clarity and accessibility of the content.
Publication  Type:  Peer-reviewed  studies,  systematic
reviews, meta-analyses, and original research articles
were  included,  while  editorials,  commentaries,  and
opinion  pieces  were  excluded.
Relevance: Articles were selected based on their focus
on  AI  applications  in  PACS,  innovations  in  medical
imaging,  and  workflow  enhancements.  Conference
abstracts without full-text availability were excluded.

The  literature  search  focused  on  identifying  significant
advancements  and  challenges  in  AI  integration  into  PACS.
Articles  were  selected  based  on  their  relevance,  impact,  and
contribution to the field, as determined by expert evaluation of
the topic.

2.2. Inclusion and Exclusion Criteria

To ensure the relevance and quality of the included studies,
predefined inclusion and exclusion criteria were applied:

Inclusion Criteria:

Articles published in English.
Peer-reviewed studies focusing on AI applications in
medical imaging, particularly within PACS.
Research  that  discusses  the  impact  of  AI  on  PACS
workflows, diagnostic accuracy, patient outcomes, and
data management.
Studies  involving  innovations  in  image  analysis,
segmentation, classification, and predictive analytics.

Exclusion Criteria:

Non-English articles.
Editorials,  commentaries,  and opinion pieces lacking
substantial data.
Conference abstracts without full-text availability.
Studies unrelated to the integration of AI into PACS or
focusing on non-medical applications of AI.

2.3. Data Extraction

Data extraction was conducted using a  standardized data
collection  form.  The  extracted  information  included  the
following  key  aspects:

Study characteristics: Author(s), year of publication,
study type (e.g., original research, systematic review).
AI  techniques  and  models:  Type  of  AI  algorithm
(e.g., convolutional neural networks, natural language
processing, generative adversarial networks).
Applications in PACS: Specific AI applications (e.g.,
image segmentation, anomaly detection, automation of
workflows).
Outcomes:  Reported  effects  on  diagnostic  accuracy,
workflow efficiency, and patient outcomes.
Challenges and limitations: Identified barriers to AI
integration, such as data privacy concerns, regulatory
issues, and technological limitations.

Two independent reviewers performed the data extraction
to  minimize  bias  and  ensure  the  accuracy  of  the  collected
information.  Discrepancies were resolved through discussion
or consultation with a third reviewer.

2.4. Data Synthesis

The  extracted  data  were  synthesized  qualitatively  to
provide  a  comprehensive  overview  of  AI  integration  into
PACS. The synthesis focused on identifying common themes,
key  advancements,  and  challenges  in  the  field.  The  findings
were categorized into major thematic areas:

AI-driven  image  processing  and  analysis:
Innovations in image segmentation, enhancement, and
classification.
Workflow  optimization  and  automation:  AI
applications  in  streamlining  diagnostic  processes,
including  worklist  prioritization  and  automated
reporting.
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Regulatory  and  ethical  considerations:  Challenges
related  to  data  privacy,  algorithmic  bias,  and
regulatory  compliance.
Future trends and emerging technologies: Potential
advancements  in  AI-powered  PACS,  such  as  the
integration of  augmented reality (AR),  virtual  reality
(VR), and edge computing.

The synthesis aimed to present a balanced perspective on
the current state of AI integration in PACS, highlighting both
the benefits and the barriers to widespread adoption.

3. THE INTERSECTION OF AI AND PACS

3.1. Technological Foundations
Artificial  intelligence  (AI)  is  an  interdisciplinary  field

described by John McCarthy as “the science and engineering
of making intelligent machines” [26]. AI combines statistical
algorithms and artificial neural networks (ANNs) to generate
insights  for  decision-making  and  problem-solving  in  various
contexts. ANNs are inspired by the biological neural networks
of  the  human  brain,  allowing  computer  systems  to  “learn”
complex relationships from data. Unlike traditional regression
models,  ANNs  exhibit  excellent  fault  tolerance,  high
processing speed, and the ability to model complex nonlinear
relationships,  making  them  well-suited  for  applications  in
medical  imaging  [27,  28].

3.2.  Artificial  Neural  Networks  (ANNs):  Training  and
Behavior

The effectiveness of ANNs depends on a thorough training
process,  where  the  network's  parameters  are  adjusted  to
optimize the weights of connections. This process, known as
training,  involves  exposing the  network to  input  data  until  it
learns  to  respond  correctly,  reaching  a  state  of  convergence.
ANNs  consist  of  three  primary  layers:  input,  hidden,  and
output  layers  [28].  The  perceptron,  introduced  by  Frank
Rosenblatt  in  1958,  is  a  basic  single-layer  model  using
supervised learning to classify input data into two categories
[29].  However,  it  struggles  with  non-linear  data,  such  as
complex  medical  images.

The  Backpropagation  algorithm,  a  multilayer  perceptron
model,  extends  the  single-layer  perceptron by adding hidden
layers,  allowing  it  to  handle  more  complex  relationships.
However,  this  model  requires  significant  computational
resources  and  depends  heavily  on  the  quality  of  the  training
data.

To  handle  more  complex  patterns,  the  backpropagation
algorithm, a multilayer perceptron model, extends the single-
layer network by adding hidden layers. This architecture allows
it  to  capture  intricate  relationships  but  requires  extensive
computational  resources  and  high-quality  training  data.
Machine  learning (ML),  a  subset  of  AI,  leverages  ANNs for
predictive analytics and decision-making, typically categorized
into three types: supervised, unsupervised, and reinforcement
learning [30].

Supervised  Learning:  This  method  pairs  input  data[1]
with corresponding output labels. The network learns
by  adjusting  weights  based  on  the  error  between
predicted  and  actual  outcomes,  making  it  highly
effective  for  tasks  such  as  image  classification.
Unsupervised Learning: In this approach, the network[2]
groups  input  data  based  on  inherent  statistical
properties without predefined output labels. It is useful
for  discovering  hidden  patterns  in  medical  imaging
data.
Reinforcement  Learning:  This  technique  involves  a[3]
model  learning  through  interactions  with  its
environment,  receiving  feedback  in  the  form  of
rewards  or  penalties.  It  is  particularly  beneficial  for
dynamic  decision-making  in  medical  imaging
processes.

3.3.  Deep  Learning  and  Convolutional  Neural  Networks
(CNNs)

Deep learning (DL), a subset of ML, focuses on learning
complex data representations through multiple layers [31]. The
most prominent deep learning model in medical imaging is the
convolutional neural network (CNN), designed for processing
image data. CNNs consist of three main layers: convolutional,
pooling,  and  fully  connected  layers.  The  convolutional  layer
extracts  features  from  the  input  image,  the  pooling  layer
reduces  dimensionality,  and  the  fully  connected  layer  maps
these features to classification outputs [32, 33].

CNNs have proven effective in detecting, segmenting, and
classifying medical images, significantly improving diagnostic
accuracy. For example, CNNs in MRI analysis have been used
to detect brain lesions, outperforming traditional radiological
methods  in  identifying  early-stage  tumors.  However,  deep
learning models require extensive training on large, annotated
datasets, which can be challenging to obtain in medical settings
due to data privacy concerns [34, 35].

3.4. Integration of DICOM Standards in AI-Powered PACS

The  DICOM  (Digital  Imaging  and  Communications  in
Medicine)  standard,  established in  the  1980s,  plays  a  crucial
role  in  ensuring  the  interoperability  of  medical  imaging
systems. PACS, designed to manage and store medical images,
relies  heavily  on  DICOM  standards  for  data  generation,
transmission, and display [1]. The integration of AI with PACS
requires  adherence  to  these  standards,  allowing  for  seamless
communication between various imaging devices, servers, and
diagnostic workstations.

The  combined  use  of  AI  and  DICOM  standards  has
enabled  the  development  of  advanced  PACS  functionalities,
such as automated tissue segmentation and multi-source data
integration. These capabilities enhance diagnostic accuracy and
streamline  workflows,  making  PACS  a  vital  component  of
modern radiology services [3].
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Table 2. AI-Powered PACS Applications Across Different Imaging Modalities. Overview of various AI techniques used in
PACS, categorized by application goals, imaging modalities, network architectures, and additional data sources, emphasizing
advancements in automated analysis, segmentation, and clinical support.

Reference Goal Technique Images Modality Network Architecture Additional

Beetz, 2022 [185] Analysis of Body
Composition

Automatic
Segmentation 200 CT (L3) slides CNN: U-Net Metabolic

data

Yepes, 2018 [38] Measure brain ventricular
volume

Decrypt and
Uncompress MRI Support Vector Machine

(SVM) -

Yang, 2020 [186] Extract multi-source data
for diagnosis

AI analysis & Info
extractor Digital X-ray/MRI/CT/US Natural Language

Processing (NLP) HIS-RIS data

Navab NJH, 2015
[187] Delimit Neural Structures Segmentation Electron Microscopic CNN: U-Net -

Zhang, 2020 [39] Delimit Liver Tumor Segmentation CT (LiTS2017 & 3D-
IRCADb 2019 databases)

CNN: V-Net based on
distance metric -

Sridhar, 2022 [188]
Reduce storage,
processing, and

transmission
Compression DR/CT/Mammograms

Recurrent-Net
GenPSOWVQ (with

wavelet)
-

Chen, 2021 [189] Testing for COVID-19 Classification CT

CNN-Ensemble (VGG-19,
Resnet-101, DenseNet-201,

Inception-v3) (voting
strategy)

-

Halabi, 2019 [190] Bone age assessment Prediction DR-Hand Inception-v3 &
DenseNet-32 -

Arunachalam, 2019
[191]

Identify viable and
necrotic areas on

osteosarcoma

Detection &
Classification Histology slides SVM & CNN -

Sayres, 2019 [192] Grading for Diabetic
Retinopathy Classification Retina images CNN -

Pinto, 2019 [193] Structure report Info extractor DR CNN -

Kovacs, 2017 [194] Correlate PACS-HIS to
clinical follow-up Info extractor - Natural Language

Processing (NLP)

Electronic
Medical
Records
(EMR)

3.5. Current State of AI-Powered PACS

AI-powered  PACS  have  evolved  beyond  basic  image
storage solutions to become sophisticated diagnostic platforms
capable  of  real-time  image  analysis  and  enhanced  data
management.  The  integration  of  AI  models  into  PACS  has
enabled  advanced  functionalities  such  as  automated  lesion
detection, multi-modal image fusion, and predictive analytics,
significantly enhancing the diagnostic capabilities of medical
imaging systems [6, 9].

Modern AI-enhanced PACS systems utilize deep learning
algorithms  for  tasks  including  image  reconstruction,
segmentation,  and  classification.  For  example,  convolutional
neural networks (CNNs) are employed to process and analyze
medical images, improving accuracy in detecting pathologies
like brain tumors,  pulmonary nodules,  and liver  lesions.  The
integration of deep learning techniques has accelerated image
processing  workflows,  allowing  for  faster  interpretation  and
reducing radiologist workload (Table 2).

AI  applications  in  medical  imaging  modalities  such  as
MRI,  CT,  and  ultrasound  have  shown  significant
advancements.  In  MRI,  deep  learning  algorithms  have  been
instrumental in noise reduction and motion artifact correction,
which  enhance  image  clarity  and  diagnostic  precision  [36].
Shimron  and  Perlman  reviewed  the  latest  advances  in
leveraging AI to improve MRI workflows [37]. Additionally,

Yepes et al. [38] developed automatic methods to decrypt and
uncompress  MRI  images  at  the  voxel  level  to  prevent
disruptions  in  PACS  operations.  AI-enhanced  CT  image
reconstruction can improve image resolution, providing finer
anatomical  details  and  enabling  the  use  of  lower  radiation
doses [39]. Moreover, AI-based automated tissue segmentation
is becoming essential to the medical community, reducing the
manual  post-processing  time  of  CT  datasets,  which  is  often
time-consuming and subjective [40].

Similarly,  AI  techniques  applied  in  CT  imaging  have
optimized scan protocols, allowing for reduced radiation doses
while  maintaining  high-resolution  image  quality.  Ultrasound
imaging has also benefited from AI integration, with automated
tools for organ segmentation and real-time anomaly detection,
facilitating faster clinical assessments [41].

AI  also  plays  a  key  role  in  optimizing  radiological
workflows.  Applications  include  motion  artifact  and  noise
reduction, automated radiation dose estimation, and generating
MRI sequences based on findings. Additionally, AI contributes
to  workflow  management  by  enhancing  patient  scheduling,
prioritizing  worklists,  assisting  with  pre-dictation,  extracting
multi-source  data,  and  supporting  annotation-based  feature
extraction  tasks  and  radiology  reporting  [42,  43].

AI-powered PACS systems have also improved workflow
efficiency by automating routine tasks like image annotation,
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prioritization of critical cases, and structured reporting. These
enhancements not only streamline radiological operations but
also contribute to better  clinical  decision-making and patient
management.  The  automation  of  report  generation  using
natural language processing (NLP) tools in PACS has further
reduced  turnaround  times,  allowing  radiologists  to  focus  on
complex cases.

Table  2  summarizes  key  advancements  in  AI-based
integrated PACS, highlighting its role in enhancing diagnostic
workflows  across  different  medical  specialties.  These
innovations  illustrate  the  ongoing  transformation  of  PACS
from  traditional  image  repositories  to  dynamic,  AI-driven
diagnostic  tools  that  support  precision  medicine  and
personalized  healthcare.

4. CHALLENGES  AND  BARRIERS  TO  AI-PACS
INTEGRATION

Despite the promising potential of AI as a diagnostic tool,
its adoption in PACS has been slow and limited. This is largely
due  to  challenges  associated  with  integrating  AI  into  the
existing  radiology  workflow  and  automating  complex  image
management  tasks.  AI  technologies  in  medical  imaging  still
face significant limitations, including high false-positive rates
and a limited capacity for complex reasoning.

Effective AI integration into PACS requires automation of
key  image  management  processes  such  as  storage,  retrieval,
and distribution. AI systems must also support real-time image
analysis,  facilitating  personalized  treatment  planning  and
enhancing  diagnostic  efficiency.  Additionally,  successful

integration  necessitates  components  for  operationalization,
performance monitoring, and continuous system improvement.
AI tools must allow radiologists to evaluate the results, identify
issues with image quality, and ensure reliability [44].

4.1. Data Privacy and Security

The  storage  server  is  a  critical  component  of  PACS,  as
server  failures  can severely disrupt  radiology workflows and
hinder  automated  image  management.  Ensuring  the
availability,  integrity,  and  long-term  storage  of  medical
imaging  data  poses  substantial  challenges.  Apart  from
managing  large  data  volumes,  it  is  crucial  to  safeguard  the
integrity and security of the information [45].

Data  security  in  PACS  systems  is  governed  by  the
ISO/IEC  27000  standard,  which  defines  the  C-I-A  triad:
Confidentiality,  Integrity,  and  Availability.  Confidentiality
ensures  that  only  authorized  personnel  can  access  sensitive
data.  Integrity  involves  preserving  the  accuracy  and
completeness  of  data,  often  through  the  use  of  verification
codes  that  detect  any  alterations.  Availability  ensures  that
authorized users have continuous access to the data, supported
by backup systems and redundancy measures [46].

Adhering to the C-I-A triad is essential for PACS systems,
which  should  also  implement  data  redundancy  via  backup
databases  or  secondary  storage  servers  to  prevent  data  loss.
Regenerating lost data can be time-consuming, especially when
manual  migration  of  archived  images  is  required  [47,  48].
Table 3 outlines recommended measures for enhancing PACS
information security, crucial for mitigating insider threats and
ensuring data protection during disaster events [49].

Table  3.  Recommended  security  measures  for  PACS  data  protection  include  data  encryption,  access  control,  risk
management,  and  compliance  with  regulatory  standards  such  as  DICOM,  HIPAA,  and  ISO  27000.

Recommendation Action Example

Establish security policies
Risk Management Medical device asset management

Perform backup, redundancy, and automatic
recovery Controlling secure sensitive data in third-party cloud storage

Application firewalls, proxy
servers, and network inspection

tools
Components Controls Control of third-party practices or downstream suppliers who

may implement malicious technology

Data Encryption Remote backup of encrypted copies

Communications Capabilities Interoperability with clinical systems like RIS
Control of network traffic: network zoning, denial of service

when network infrastructure is saturated, or IP addresses can be
disrupted

Establish Access Control
Mechanisms

Authentication
Mechanisms limiting remote technical support For access to imaging devices and clinical systems

Define User Roles with different
privileges

Role definition for radiologists, technicians,
clinicians, and administrators

Radiologist: can write radiology reports; Technician: can
confirm the patient exam but cannot write reports; Clinician:

can view reports and images; Administrator: can configure and
manage the entire PACS

Interoperability

Intranet PACS support for role-based access
controls PACS-RIS-HIS intranet

Internet PACS support for secure
communication, data protection, and access

controls

PACS Web Internet: cloud storage capabilities, SSL-based
communication channels

Meet Standards Interface that allows clinical systems (HIS and
RIS) to interact with PACS DICOM, HL7, ISO27000, HIPAA
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4.2. Regulatory and Compliance Issues

Regulatory  and  legal  challenges  in  the  context  of  PACS
have not been thoroughly addressed, despite their importance.
It  is  vital  to  consider  the protection and security  of  sensitive
patient  data,  as  well  as  the  legal  admissibility,  validity,  and
reliability of digital images. Key issues include data retention
periods,  system  upgrades,  and  the  impact  of  image
compression.  For  instance,  lossless  compression  preserves
image  quality,  whereas  lossy  compression  may  result  in
degradation.  Until  regulatory  standards  are  fully  established,
the DICOM committee and the ECRI organization recommend
using lossless images to maintain diagnostic accuracy [50].

PACS  is  classified  as  a  Class  2  medical  device,  with
specific  regulatory  requirements  varying  by  country.  In  the
United  States,  for  example,  PACS  components  may  require
FDA 510(k) premarket notification [51].  Certain elements of
PACS may be subject to additional regulations depending on
their  functions,  while  others  may  fall  under  less  stringent
controls.

Part 15 of the DICOM standard (PS 3.15) outlines security
profiles for communication and digital signatures, addressing
licensing,  staff  accreditation,  and  technical  responsibilities.
HIPAA regulations  further  ensure  the  integrity,  authenticity,
and  confidentiality  of  data,  especially  when  image  retrieval
extends  beyond  a  protected  local  area  network  (LAN).
Personalized digital signatures are recommended to secure data
transmission in these instances.

To  comply  with  legal  and  ethical  requirements,  PACS
systems  and  their  integrated  AI  tools  must  adhere  to
established  standards  like  DICOM  and  HIPAA,  as  well  as
broader information technology guidelines. Organizations must
implement  controls  based  on  their  specific  policies  and
regulatory  frameworks  [52].

4.3. Interoperability and Standardization

Accessing  and  sharing  digital  health  data  is  challenging
due  to  heterogeneous  data  formats,  the  sensitivity  of  the
information,  and  the  need  for  strict  privacy  and  security
measures.  Interoperability  in  medical  imaging  refers  to  the
secure  and  timely  integration  of  health  information  systems,
which  is  essential  for  complete  and  accurate  clinical  data
interpretation.  A  lack  of  interoperability  can  result  in
fragmented data, leading to suboptimal clinical outcomes and
increased costs.

Achieving interoperability is crucial for the integration of
technologies  from  different  PACS  vendors,  especially  when
handling  diverse  data  structures  and  various  media  formats,
including  static  and  dynamic  images,  2D and  3D images,  as
well  as  DICOM and non-DICOM data.  Security  and privacy
are fundamental considerations, and integrating AI tools with
PACS to enhance efficiency must address these concerns, such
as by automating study or series selection [53].

Standards  play  a  key  role  in  promoting  interoperability.
PACS systems should support industry standards like DICOM
and HL7 to enable the seamless exchange of information with
other  healthcare  systems,  including  HIS  and  RIS,  as  well  as
with  medical  imaging  devices.  The  evolution  of  the  HL7

framework into the Fast Healthcare Interoperability Resources
(FHIR) standard has improved the flexibility of healthcare data
exchange. FHIR combines the best  features of previous HL7
standards,  providing  a  unified  specification  while  leveraging
modern  web  technologies  for  rapid  deployment  and  ease  of
adoption [54].

5. INFRASTRUCTURE  AND  WORKFORCE
READINESS FOR AI-PACS INTEGRATION

The  integration  of  AI  into  PACS  offers  numerous
advantages,  including:

Enhanced capability to process large datasets.[1]
Functioning  as  an  effective  second  reader,  reducing[2]
diagnostic errors.
Lower risk of missing relevant findings.[3]
Shorter diagnostic times.[4]
Automation of image management tasks.[5]

Manufacturers  have  begun  embedding  intelligent  tools
within  PACS  to  boost  diagnostic  accuracy  and  streamline
radiological workflows. These enhancements include features
like voice dictation, automated report generation, and the use
of  prior  reports  to  prepopulate  templates,  aiding  in  the
assessment of disease severity. AI integration also supports a
unified worklist that automates the assignment of exams based
on body regions, templates, protocols, and communication of
results, all conforming to international standards.

5.1. Infrastructure Readiness

To meet the demands of modern radiology, AI tools have
been  integrated  into  both  hardware  and  software
infrastructures. This includes advanced workload management
solutions,  robust  visualization  software,  cloud  computing
resources,  and  AI  applications  for  improved  workflow
management. Future developments may incorporate virtual and
augmented  reality  to  provide  immersive  visualization  of
medical  images.

With increasing interoperability and interconnected health
data  systems,  advancements  in  machine  learning  algorithms
and  big  data  analytics  continue  to  enhance  medical  imaging
processes. The widespread adoption of cloud connectivity has
improved  patient  care  by  streamlining  data  processing  and
enhancing the efficiency of medical imaging workflows.

Software  solutions  like  intelligent  worklists  have  been
developed to optimize productivity, alleviate “list anxiety,” and
accelerate  patient  care.  These  tools  utilize  real-time  data  to
identify  potential  bottlenecks  and  suggest  corrective  actions,
helping healthcare staff  minimize delays and reduce hospital
stays. Machine learning applications across various modalities
have  also  facilitated  the  integration  of  heterogeneous  data
sources, including medical images, lab results, and electronic
health records.

Hospitals  and medical  research  centers  must  ensure  they
have  the  appropriate  IT  infrastructure  to  support  these
advancements. For example, edge computing sites offer local
data processing capabilities,  reducing latency and supporting
enhanced workflow management in healthcare settings.
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5.2. Workforce Adaptation and Training

The  integration  of  AI  into  diagnostic  imaging  is
transforming  the  field  by  automating  tasks  and  assisting  in
anomaly detection. Radiologists must be adequately trained to
use these tools effectively and understand their implications for
medical practice and radiology education.

Radiology  departments  should  leverage  AI  as  an
educational  tool  for  trainees  while  also  recognizing  its
limitations. This balanced approach will help prepare the next
generation  of  radiologists  to  integrate  AI  into  their  daily
workflow  and  make  informed  clinical  decisions.

Active  collaboration  between  radiologists  and  AI
developers is crucial throughout the AI lifecycle-from design
and development to deployment. This partnership ensures that
AI  tools  are  designed  to  meet  clinical  needs  and  minimize
potential risks in the decision-making process.

To  support  this  transition,  the  Radiological  Society  of
North  America  (RSNA)  offers  an  Imaging  AI  Certificate
Program  [54].  This  program  provides  radiologists  with
essential knowledge to address the challenges posed by AI in
medical  imaging,  including  model  development,  fairness
assessment  across  diverse  populations,  and  navigating  the
complexities  of  AI  processes  like  data  input,  pre-processing,
feature extraction, and classification.

6. CLINICAL APPLICATIONS AND CASE STUDIES OF
AI IN PACS

The integration of artificial intelligence (AI) with Picture
Archiving  and  Communication  Systems  (PACS)  has  shown
promising  results  across  various  clinical  domains.  Multiple
studies  have  demonstrated  AI's  ability  to  enhance  diagnostic
accuracy,  streamline  workflows,  and  support  personalized
medicine  by  leveraging  predictive  analytics  and  integrating
with electronic health records (EHRs). Reviews by Khalifa and
Najjar  emphasize  AI’s  transformative  role  in  radiology,
particularly in image segmentation, computer-aided diagnosis,
and workflow optimization [55, 56].

The  following  case  studies  highlight  the  significant
benefits  and  advancements  achieved  through  successful  AI-
PACS integration in clinical practice.

6.1. Successful Integrations of AI with PACS

6.1.1. Pneumonology

AI has proven particularly effective in pneumology, aiding
in  the  interpretation  of  chest  radiographs  and  prioritizing
diagnostic  workflows.  AI-driven  diagnostic  reports  help
referring physicians  make timely  decisions,  while  automated
worklist prioritization improves radiologists' efficiency [57]. A
streamlined  reporting  workflow  integrating  AI  results  into
structured  radiology  reports  has  become  essential  for
enhancing  diagnostic  accuracy  and  speed  [58].  Fig.  (3)
illustrates  the  complete  AI-to-SR  pipeline  workflow.

In one notable  study,  Aidoc's  AI software was evaluated
for prioritizing acute intracranial hemorrhage (ICH) cases in a
dataset of 8,723 non-contrast head CT scans. The AI flagged
1,829  scans  as  positive,  reducing  review  delays  by  90%  for
outpatients (604 minutes) and 10% for inpatients (38 minutes).
This substantial decrease in review time significantly enhanced
diagnostic efficiency at an academic medical center [59].

A  retrospective  analysis  assessed  an  AI  algorithm’s
performance in detecting pulmonary embolism (PE) on 1,504
contrast-enhanced CT scans from COVID-19 patients. The AI
demonstrated a sensitivity of 93.2% and specificity of 99.6%,
maintaining  high  accuracy  across  all  severity  levels.  The
algorithm was more effective on CT pulmonary angiography
than  standard  contrast-enhanced  CT  scans,  showcasing  its
ability  to  enhance  diagnostic  precision  regardless  of  disease
severity [60].

Another  case  study  evaluated  Aidoc's  FDA-approved
convolutional  neural  network  (CNN),  C-spine,  for  detecting
cervical  spine  fractures  on  665  CT  examinations.  The  CNN
achieved an accuracy of 92%, with 76% sensitivity and 97%
specificity,  compared  to  radiologists  who  achieved  95%
accuracy,  93%  sensitivity,  and  96%  specificity.  The  CNN’s
ability  to  prioritize  worklists  and  assist  in  detecting  cervical
spine fractures highlights its potential as a supportive tool for
radiologists [61].

6.1.2. Neurology

AI  integration  has  shown  remarkable  promise  in
neurology,  particularly  in  detecting  intracranial  hemorrhages
(ICH) and primary brain tumors. A multi-center cohort study
assessed the effectiveness of  AI in identifying ICH on 4,946
non-contrast  head  CT  scans  at  level  I  trauma  centers.  Using
Aidoc's  software,  a  neuroradiologist  reviewed  discrepancies
between AI predictions and radiology reports. The AI detected
29  additional  ICH  cases  that  human  radiologists  missed,
improving detection rates by 12.2% and reducing the incidence
of missed ICHs from 10.9% to 1.9%. This study underscores
the potential of AI to significantly enhance diagnostic accuracy
in emergency settings [62].

A retrospective analytical  study investigated AI’s role in
detecting primary brain tumors in pediatric patients using MRI
images. Machine learning algorithms applied through artificial
neural networks achieved high accuracy in identifying tumors
in this population, demonstrating the value of AI in pediatric
neuroradiology [63].

Further research has explored the use of AI integrated with
PACS for  detecting  neurodegenerative  conditions.  A notable
study from the Stevens Institute of Technology developed an
AI system utilizing convolutional neural networks, achieving a
96%  success  rate  in  identifying  early  stages  of  Alzheimer’s
disease.  This  application  of  AI  in  neuroimaging represents  a
significant  advancement  in  the  early  diagnosis  and
management  of  neurodegenerative  diseases  [64].
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Fig. (3). Workflow of AI-Powered Structured Reporting in PACS. This illustration depicts the end-to-end workflow of integrating AI into PACS,
from initial image acquisition to final structured reporting. Key stages include AI-assisted image analysis, data processing within a DICOM SR
platform, and XML-based structured reporting populated with AI findings, enabling seamless communication between radiologists, clinical referrers,
and  PACS systems  for  enhanced  diagnostic  accuracy  and  efficiency.  AI:  Artificial  Intelligence;  PACS:  Picture  Archiving  and  Communication
Systems; DICOM: Digital Imaging and Communications in Medicine; SR: Structured Reporting; XML: Extensible Markup Language.

6.2. Innovative AI Applications in Medical Imaging

The  integration  of  advanced  artificial  intelligence  (AI)
applications  in  medical  imaging  has  the  potential  to
revolutionize the field, enhancing the accuracy, efficiency, and
reliability  of  diagnostic  analyses.  Recent  reviews  highlight
significant  advancements  in  AI  technologies,  particularly  in
natural  language  processing  (NLP)  and  image  analysis.  For
instance,  Bidirectional  Encoder  Representations  from
Transformers  (BERT),  an  NLP  model,  has  transformed
radiology  by  effectively  classifying  and  extracting  complex
information from radiology reports. BERT’s ability to analyze
sentence context by considering both preceding and following
words has improved protocol assignment and the interpretation
of imaging studies [65].

NLP  innovations  have  facilitated  the  automated
understanding of  clinical  narratives  within radiology reports,
enabling better protocol assignment and more accurate image
interpretation.  These  advancements  streamline  clinical
workflows, enhance patient care, and address challenges such

as  reproducibility  and  explainability,  fostering  greater
collaboration  in  radiology  practice  [66].

The  following  examples  illustrate  key  innovative  AI
applications  in  medical  imaging:

6.2.1. Liver and Lesion Segmentation
Skwirczyński  et  al.  utilized  the  nnU-Net  framework  for

segmenting liver and lesions in MR images, achieving a Dice
coefficient of approximately 0.98 for liver segmentation and an
AUC  ROC  of  0.925  for  lesion  classification.  These  results
demonstrate nnU-Net’s potential to assist in clinical diagnosis
by providing reliable automated analysis [67].

6.2.2. Enhanced Liver Diffusion-Weighted Imaging (DWI)
An  AI  algorithm  was  developed  to  mitigate  motion-

induced  signal  loss  in  liver  DWI  caused  by  cardiac  and
respiratory movements. Deep learning techniques guided post-
processing,  improving  liver  homogeneity  and  lesion
detectability,  thus  offering  significant  clinical  benefits  [68].
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6.2.3. Early Breast Cancer Detection

AI  networks  analyzing  MRI  scans  of  BRCA  mutation
carriers significantly improved early detection of breast cancer,
correctly  identifying  65%  of  tumors  initially  missed  by
radiologists. This approach holds promise for earlier diagnosis,
potentially improving survival rates and patient quality of life
[69].

6.2.4. Hybrid Diagnostic Approach for Breast Cancer

A  study  combining  automated  feature  extraction  with
domain  expertise  achieved  up  to  98%  accuracy  in
distinguishing  benign  from  malignant  cases  using  neural
network classifiers.  This  hybrid  method enhanced diagnostic
performance using histopathology images [70].

6.2.5. Lung Cancer Detection from Histopathological Images

AI  applications  improved  the  early  detection  and
classification of lung cancer, achieving 91.57% accuracy with a
Decision  Tree  classifier  and  Grey  Wolf  Optimization.  This
approach  enhanced  segmentation,  feature  extraction,  and
classification  capabilities  [71].

6.2.6. Improved Lung Field Segmentation

A  method  combining  superpixel  resizing  with  encoder-
decoder  networks  significantly  enhanced  lung  field
segmentation accuracy in chest X-rays, aiding in the diagnosis
of  pulmonary  diseases  such  as  tuberculosis,  pneumonia,  and
lung cancer [72].

6.2.7. Prostate MRI Segmentation

The nnU-Net model demonstrated superior performance in
automating  prostate  MRI  segmentation,  achieving  high
accuracy  and  lower  error  rates.  This  is  crucial  for  accurate
diagnosis and effective treatment planning [73].

6.2.8. Tumor Volume Measurement in Pediatric Oncology

The nnU-Net framework was also used to automate tumor
volume  measurements  in  pediatric  oncology,  achieving  a
median Dice score of 0.90. This score closely matched manual
segmentations, indicating high accuracy and reliability [74].

6.2.9. Synthetic MRI Image Generation

An AI-driven open-source tool was developed to generate
synthetic  MRI  images,  enhancing  diagnostic  imaging
efficiency and providing educational opportunities with a user-
friendly, customizable platform [75].

6.2.10. Denoising Micro CT Images

The UnetU model, based on the U-net CNN architecture,
significantly  improved  the  quality  and  speed  of  denoising
Micro  CT  images,  achieving  a  15-fold  faster  performance
compared  to  traditional  methods  [76].

6.2.11.  Generative  Adversarial  Networks  (GANs)  in
Tomographic Imaging

A study utilizing GANs to infer missing measurements in
tomographic  imaging  showed  improved  image  quality,

reducing artifacts by up to 7 dB in Peak Signal-to-Noise Ratio.
GANs,  consisting  of  a  generator  and  a  discriminator,
collaborate  to  enhance  image  quality  [77].

6.3. AI Applications Using MRI Medical Imaging

6.3.1. Recent Advances in AI Applications for Pelvic MRI

Artificial intelligence (AI) has significantly advanced the
field of pelvic magnetic resonance imaging (MRI), especially
in diagnosing conditions affecting the prostate, bladder, uterus,
ovaries, and rectum. AI techniques, including machine learning
(ML) and deep learning (DL), have enhanced various stages of
the pelvic MRI diagnostic process, such as image acquisition,
reconstruction, lesion detection, and risk assessment [78].

One  notable  improvement  is  the  automation  of  field-of-
view (FOV) settings based on anatomical structures, leading to
better  image  angulation  and  enhanced  scan  quality  [79,  80].
Deep learning reconstruction (DLR) has reduced scan times by
up to 70% while maintaining or even enhancing the quality of
T2-weighted imaging (T2WI) [81 - 84]. The reduction of noise
and  artifacts  in  these  scans  has  greatly  improved  diagnostic
accuracy.

AI has also made significant strides in lesion detection and
segmentation.  Advanced  models  now  generate  heat  maps  to
pinpoint potential lesion sites, while automated segmentation
tools  facilitate  quantitative  evaluations  of  tumor  volume and
parameters like the apparent diffusion coefficient (ADC) [85 -
87].  In  prostate  MRI,  AI  applications  have  shown  notable
improvements in detecting and classifying clinically significant
cancers,  aiding  in  more  precise  diagnosis  and  treatment
planning  [88  -  90].

Despite these advances, challenges persist. A key issue is
the generalizability of AI models, which are often trained on
limited  datasets,  making  them  vulnerable  to  overfitting.
Researchers suggest that using large, multicenter datasets could
enhance  model  robustness  [91].  Additionally,  increasing  the
interpretability of AI algorithms remains essential for gaining
clinical acceptance and validation [92 - 94].

6.3.2.  Diagnostic  Performance  of  AI-based  Algorithms  in
Discriminating Multiple Sclerosis Using MRI Features

AI  algorithms  have  shown  promise  in  differentiating
Neuromyelitis  Optica  Spectrum  Disorder  (NMOSD)  from
Multiple  Sclerosis  (MS)  using  MRI  features.  Accurate
discrimination between these conditions is crucial due to their
overlapping clinical and radiological characteristics, which can
lead to diagnostic errors and inappropriate treatment [95, 96].
Both  ML  and  DL  models  have  been  employed  to  enhance
diagnostic accuracy, particularly in analyzing brain and spinal
MRI scans [97, 98].

A  meta-analysis  of  15  studies  revealed  that  AI-based
algorithms demonstrated strong diagnostic performance, with
pooled accuracy, sensitivity, and specificity of 82%, 83%, and
80%, respectively [99]. Notably, MRI-based algorithms alone
achieved similar diagnostic metrics, with an accuracy of 83%,
sensitivity of 81%, and specificity of 84%, underscoring AI’s
potential in improving diagnostic precision [100]. Distinctive
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MRI features, such as Dawson’s finger-type lesions for MS and
linear ependymal lesions for NMOSD, are commonly utilized
by AI models to enhance diagnostic accuracy [101].

However,  variations  in  MRI  imaging  protocols  and
inconsistencies in AI model performance across studies present
challenges.  Future  research  should  prioritize  the  use  of
multicenter  datasets  and  standardized  imaging  protocols  to
enhance  the  generalizability  and  clinical  reliability  of  AI
algorithms  [95].  Additionally,  integrating  multimodal  data,
such as combining clinical information with imaging features,
may further improve the diagnostic capabilities of AI systems
[102].

6.3.3. AI Applications in Breast Imaging

AI  has  made  a  significant  impact  on  breast  imaging,
especially  in  screening  mammography  for  breast  cancer
detection.  Early  computer-aided  detection  (CAD)  systems
faced limitations, but recent advancements in ML and DL have
demonstrated  improved  diagnostic  performance  [103].
Currently, there are over 20 FDA-approved AI applications for
breast  imaging,  focusing  on  tasks  such  as  cancer  detection,
decision support, breast density quantification, and workflow
optimization [103].

AI  has  shown  notable  value  in  breast  cancer  detection
during  screening  mammography.  AI  algorithms  trained  on
extensive  datasets  have  achieved  sensitivity  and  specificity
levels comparable to those of radiologists, with the potential to
reduce  both  false  positives  and  false  negatives  [104].  These
enhancements allow AI models to be seamlessly integrated into
clinical workflows, either as a second reader or as a triage tool,
improving diagnostic efficiency. Additionally, AI has proven
beneficial in reducing the time radiologists spend interpreting
digital breast tomosynthesis (DBT) images, thereby enhancing
overall productivity [105, 106].

Beyond cancer detection, AI applications are expanding to
other  areas  of  breast  imaging,  such  as  risk  assessment  and
evaluating  treatment  responses.  AI-based  tools  for  breast
density quantification have shown high accuracy and are now
routinely  used  in  clinical  practice  to  aid  in  risk  stratification
[107].  Furthermore,  AI  is  being  explored  for  assessing
responses to neoadjuvant chemotherapy, with promising results
in predicting treatment outcomes based on MRI features [108].

Despite these advances, challenges persist in generalizing
AI  models  across  diverse  populations  and  imaging  systems.
Ensuring the robustness of AI applications in various clinical
settings is a priority for future research to maintain consistent
performance and reliability [109].

6.3.4.  Ethical  Challenges  of  Artificial  Intelligence  in
Neuroradiology

The integration of AI into neuroradiology has the potential
to  enhance  diagnostic  accuracy,  support  clinical  decision-
making,  and  enable  personalized  treatment  plans  [110].
However,  these  advancements  also  bring  forth  significant
ethical  challenges,  particularly  related  to  data  privacy,
informed consent, and liability [111]. AI models require large
datasets, often derived from anonymized patient records, which

raises concerns about data ownership and control. While some
argue  that  anonymized  data  should  be  freely  accessible  for
research,  others  emphasize  the  need  for  securing  patient
consent  and  trust  in  data-sharing  practices  [112  -  114].

Data  privacy  is  a  critical  concern,  especially  in
neuroradiology, where AI models could inadvertently expose
personal  identifiers.  Techniques  like  defacing  and  skull-
stripping  are  employed  to  protect  patient  identities,  but
advanced  imaging  methods  may  still  enable  re-identification
based on surface anatomy features [115, 116]. This highlights
the need for stringent data governance protocols that balance
ethical considerations with the necessity of using medical data
for  AI research.  Privacy regulations and concerns also differ
across  jurisdictions,  complicating  the  establishment  of
universal  guidelines  [112].

Bias in AI algorithms is another significant issue. When AI
systems  are  trained  on  datasets  that  lack  diversity,  they  may
yield  biased  outcomes  that  disproportionately  affect
underrepresented  groups.  This  has  been  observed  in  medical
imaging, where algorithms trained on imbalanced datasets have
demonstrated  reduced  diagnostic  accuracy  for  certain
demographic populations [117 - 119]. Addressing this problem
requires  prioritizing  dataset  diversity  during  model
development  to  prevent  exacerbating  health  disparities  [120,
121].

Liability  is  a  complex  challenge  in  the  context  of  AI-
supported clinical decision-making. Determining responsibility
for  errors  made  by  AI  systems  can  be  contentious-should
liability rest with the healthcare providers who use the AI tools
or with the developers who create them? Some studies suggest
shared  responsibility  between  clinicians  and  developers,  but
this  remains  a  debated  issue  that  requires  further  legal
clarification  [122  -  124].

While  AI  offers  significant  potential  benefits  for
neuroradiology, addressing the ethical issues of data privacy,
bias,  and  liability  is  essential  for  responsible  and  equitable
deployment  of  these  technologies  in  clinical  practice  [125  -
127].

6.3.5.  AI-Enhanced  Detection  of  Clinically  Relevant
Anomalies in MRI

AI  has  transformed  the  detection  of  clinically  relevant
anomalies in magnetic resonance imaging (MRI), significantly
increasing both diagnostic speed and precision. The integration
of  advanced  ML  and  DL  techniques  has  facilitated  the
identification  of  structural  and  functional  abnormalities  that
were  previously  difficult  to  detect  using  traditional  methods
[20].

Anomalies  in  MRI,  such  as  tumors,  infarcts,  and
degenerative  changes,  represent  deviations  from  typical
anatomical  patterns.  AI  systems  excel  in  processing  large
datasets and extracting intricate features, often surpassing the
capabilities of manual detection. The shift towards explainable
AI (XAI) models  has further  enhanced clinical  transparency,
enabling  clinicians  to  understand  the  rationale  behind  AI-
generated diagnoses, which is critical for building clinical trust
and promoting widespread adoption [128].
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AI-based  anomaly  detection  in  MRI  typically  involves
preprocessing steps like image normalization and denoising to
enhance  diagnostic  clarity  [100].  Convolutional  neural
networks (CNNs), a type of DL model, have been particularly
effective  in  segmenting  and  classifying  abnormalities,
including  tumors  and  vascular  anomalies  [98].  CNNs  have
shown  high  sensitivity  and  specificity  in  identifying  brain
lesions,  outperforming  conventional  radiological  approaches
[97].

However,  challenges remain,  particularly in ensuring the
generalizability  of  AI  models.  Many  models  are  trained  on
limited or homogeneous datasets, which can compromise their
performance in diverse clinical environments. To address this,
robust  model  development  requires  multicenter  datasets  and
continuous  learning  to  enhance  diagnostic  reliability  across
various settings [20].

The  field  of  AI-enhanced  anomaly  detection  in  MRI  is
evolving  rapidly,  with  the  potential  to  greatly  improve
diagnostic  accuracy  and  efficiency.  Nonetheless,  ongoing
research  and  development  are  necessary  to  overcome  issues
related to data diversity and model interpretability [20].

6.3.6. AI-Enabled Prospects in MRI-Guided Radiotherapy

MRI-guided  radiotherapy  (MRIgRT)  marks  a  significant
advancement  in  radiation  oncology  by  providing  superior
anatomical detail through continuous imaging during treatment
[129]. This approach allows precise targeting of tumors while
minimizing damage to surrounding healthy tissues [130]. One
of  the  most  promising  applications  of  AI  in  MRIgRT  is  the
enhancement of real-time motion management. AI algorithms,
especially deep learning models, are being developed to predict
and  compensate  for  intra-fractional  tumor  motion,  which  is
crucial for achieving optimal treatment outcomes [131, 132].

Current  AI  applications  in  MRIgRT  include  motion
tracking,  estimation,  and  prediction.  Using  cine  MRI
sequences,  AI can localize  treatment  targets  in  real-time and
anticipate  movements  caused  by  respiration  or  other
physiological factors [51]. This predictive capability is vital for
reducing system latency, significantly influencing the accuracy
of beam delivery during radiotherapy [133, 134]. Deep learning
models,  such  as  convolutional  neural  networks  (CNNs)  and
long short-term memory (LSTM) networks, have shown strong
potential  in  motion  prediction,  consistently  outperforming
traditional  methods  [135,  136].  These  AI-driven  models
enhance  the  real-time  adaptation  of  radiotherapy  beams,
ensuring  accurate  dose  delivery  even  during  complex  tumor
movements [137, 138].

Despite  these  advancements,  integrating  AI  into  clinical
practice remains challenging, particularly due to the need for
larger, more diverse datasets to improve the generalizability of
AI  models  [50].  Continued  development  of  tailored  AI
solutions for MRIgRT is expected to enhance the precision of
radiation  therapy,  reduce  treatment  durations,  and  ultimately
improve patient outcomes [139].

6.3.7.  The  Role  of  AI  in  Prostate  MRI  Quality  and
Interpretation

AI  has  made  substantial  contributions  to  improving  the
quality  and  interpretation  of  prostate  MRI,  particularly  in
multiparametric MRI (mpMRI),  which includes T2-weighted

imaging  (T2WI),  diffusion-weighted  imaging  (DWI),  and
dynamic contrast-enhanced MRI (DCE-MRI). These imaging
modalities  are  essential  for  detecting  and  managing  prostate
cancer (PCa), but variability in acquisition and interpretation
remains a challenge due to differences in scanner technologies,
imaging  parameters,  and  observer  variability  [140,  141].
Although  efforts  to  standardize  prostate  MRI  using  systems
like  PI-RADS  and  PI-QUAL  have  improved  consistency,
human  error  persists  [142].

AI  integration  into  prostate  MRI  aims  to  automate
processes  and  reduce  errors,  particularly  in  tasks  like  image
quality  assessment,  registration,  segmentation,  and  feature
extraction.  AI-based  tools  have  shown  improvements  in
diagnostic performance by enhancing image consistency across
various  clinical  settings  [143,  144].  The  ability  of  AI
algorithms  to  process  large  datasets  and  reduce  variability
between institutions highlights their potential for standardizing
image quality and interpretation [145].

However,  the  clinical  implementation  of  AI  in  prostate
MRI  faces  challenges,  including  the  need  for  rigorous
validation  and  external  testing.  Variability  in  MRI  quality
across centers underscores the necessity for AI systems capable
of  adapting to  different  imaging protocols  and scanner  types
[146]. Additionally, reliance on annotated datasets introduces
subjectivity, which must be mitigated through robust reference
standards  [147].  While  AI  shows  promise  for  enhancing
prostate  MRI  quality  and  interpretation,  further  research  is
required  to  ensure  its  effectiveness  in  diverse  clinical
environments  [148].

6.3.8. AI in Predicting Survival for Brain Tumor Patients
Artificial intelligence (AI) has become a valuable tool for

predicting survival outcomes in brain tumor patients using MRI
data.  Gliomas,  particularly  glioblastomas  (GBM),  pose
significant prognostic challenges due to their aggressive nature
and  heterogeneity  [21].  GBM,  the  most  common  and  lethal
form  of  glioma,  has  a  poor  prognosis,  with  only  5-7%  of
patients surviving beyond five years despite intensive treatment
[149, 150].

AI-based  techniques,  including  ML  and  DL  algorithms,
have demonstrated success in predicting overall survival (OS)
by  extracting  quantitative  data  from  MRI  images  through
radiomics.  Radiomic  analysis  enables  the  classification  of
patients into survival groups (short-, mid-, and long-term), with
ML models like support vector machines (SVMs) and random
forests (RFs) achieving accuracy rates up to 98% [151, 152].
DL  models,  which  learn  automatically  from  large  datasets
without hand-crafted features, are emerging as superior tools
for survival prediction [153].

Recent AI models have focused on leveraging multimodal
MRI  data,  including  perfusion-weighted  imaging  (PWI)  and
diffusion-weighted imaging (DWI), to enhance the accuracy of
survival predictions. These techniques provide comprehensive
information  about  tumor  physiology,  contributing  to  more
robust predictive models. Nonetheless, the generalizability of
these AI models remains limited by the small and non-diverse
datasets used for training [154, 155]. While AI shows potential
in  predicting  survival  for  brain  tumor  patients,  broader
validation  on  diverse  datasets  is  necessary  for  clinical
applicability  [21].
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Table 4. AI Innovations in MRI Applications Across Medical Specialties. Summary of AI methods utilized in MRI across
medical  specialties,  detailing  clinical  applications,  disease  focus,  and  relevance  to  diagnostic  accuracy  and  patient
management.

Speciality AI Method Clinical Disease Relevance

Breast Imaging Deep Learning, Machine Learning Breast cancer detection Improves breast cancer detection accuracy, risk
assessment, and decision support [100].

Pelvic MRI Convolutional Neural Networks (CNN),
Deep Learning Reconstruction (DLR)

Prostate cancer, Bladder,
Uterus, Ovaries, Rectum

disorders

Enhances lesion detection, organ segmentation,
and risk stratification in pelvic organs [101].

Neuroradiology Deep Neural Networks (DNN), Artificial
Neural Networks (ANN)

Multiple Sclerosis (MS),
NMOSD, Brain lesions

Ethical challenges and advanced anomaly
detection in brain imaging [103].

Brain Tumors Machine Learning (ML), Radiomics,
Deep Learning (DL) Gliomas (e.g., Glioblastoma) Predicts survival and stratifies patients into

survival groups [104].

Prostate MRI Computer-Aided Detection (CAD), Deep
Learning (DL)

Prostate cancer detection and
quality control

Reduces variability and improves diagnostic
accuracy of prostate MRI [105].

Radiotherapy (MRI-
guided)

Motion tracking and prediction via AI
(Deep Learning, Machine Learning)

Tumor motion management in
radiotherapy

Improves real-time motion management and
treatment accuracy during radiotherapy [107].

Cardiac MRI Deep Learning (DL), Machine Learning
(ML) Cardiovascular diseases

Enhances diagnostic precision and reduces
acquisition time in cardiovascular disease

management [108].

6.3.9.  Innovations  in  AI  for  Cardiac  MRI:  Current  and
Future Prospects

AI is revolutionizing cardiac MRI, enhancing every stage
of the imaging process, from acquisition to analysis. Cardiac
MRI is a vital tool for diagnosing and managing cardiovascular
diseases, but its complexity and lengthy acquisition protocols
have historically limited its widespread clinical adoption [156].
Recent  advances  in  AI,  particularly  in  DL  and  ML,  have
streamlined  image  acquisition,  reconstruction,  and  post-
processing,  significantly  reducing  scan  times  and  improving
diagnostic precision [157].

CNNs are  frequently  employed in  cardiac  MRI for  tasks
such  as  image  segmentation  and  motion  tracking.  AI  also
facilitates automated prescription and parameter optimization,
effectively  transforming  MRI  scanners  into  “self-driving”
systems  that  require  minimal  manual  input  [158,  159].  This
shift results in faster scans and reduces patient discomfort by
minimizing breath-hold requirements. DL-based techniques are
also enhancing image reconstruction, removing artifacts from
undersampled data and yielding clearer, higher-quality images
[160, 161].

AI  extends  beyond  efficiency  gains  to  provide  advanced
diagnostic  insights  through  methods  like  radiomics  and  DL
feature extraction. These approaches allow AI models to detect
novel imaging biomarkers that may be imperceptible to human
readers,  improving  prognosis  and  supporting  personalized
treatment strategies [162]. The integration of imaging data with
clinical,  genetic,  and  wearable  device  information  has  the
potential to create comprehensive diagnostic tools for precision
cardiovascular care [163].

However,  challenges  remain,  including  the  need  for
extensive and diverse datasets to develop robust AI models that
can generalize across different patient populations and imaging
systems [164].  Additionally,  concerns about algorithmic bias
and the interpretability of AI models must be addressed before
AI can be fully integrated into routine clinical practice. As AI
continues  to  evolve,  future  innovations  will  likely  focus  on
enhancing model robustness and expanding the role of AI in

personalized medicine [165]. Table 4  provides a summary of
the  latest  AI  innovations  using  MRI  across  various  medical
specialties.

6.3.10.  Clinical  Impact  of  CNNs  and  NLP  in  PACS
Integration

6.3.10.1. Convolutional Neural Networks (CNNs) in Medical
Imaging

Enhanced  Diagnostic  Accuracy:  CNNs  have
demonstrated significant improvements in diagnostic accuracy
for various medical imaging tasks. For instance, they have been
effectively applied in the detection and classification of lung
nodules from chest X-ray images, aiding in early diagnosis and
treatment planning [166].

Workflow  Optimization:  The  application  of  CNNs  in
medical image analysis has streamlined diagnostic processes,
reducing the time required for image interpretation and thereby
improving clinical workflow efficiency [167].

6.3.10.2. Natural Language Processing (NLP) in Radiology
Reporting

Structured  Information  Extraction:  NLP  techniques
have  been  pivotal  in  extracting  structured  information  from
unstructured  radiology  reports,  facilitating  better  data
management and retrieval. This advancement supports clinical
decision-making and enhances patient care [66].

Automated  Report  Generation:  NLP  has  enabled  the
development  of  systems  that  can  automatically  generate
structured radiology reports  from free-text  inputs,  improving
report consistency and reducing the potential for errors [168].

7.  ETHICAL  IMPLICATIONS  AND  PATIENT-
CENTERED INSIGHTS ON AI-PACS

7.1. Ethical Implications

As of late 2023,  the U.S.  Food and Drug Administration
(FDA)  had  approved  over  340  artificial  intelligence  medical
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devices  (AIMDs)  in  medical  imaging  [169].  While  the
advantages  of  AI  integration  in  healthcare  have  been  widely
discussed,  there  are  critical  ethical  risks  that  need
consideration.  These  risks  include  issues  of  confidentiality,
algorithmic  opacity,  clinician  deskilling,  and  fairness  [170].
Mike Stephen et  al.  analyzed the  ethical  challenges  of  AI  in
healthcare  and  proposed  frameworks  for  responsible  AI
implementation  [171].  This  section  explores  the  ethical
implications  of  integrating  AI  with  PACS,  using  the  four
principles  of  medical  ethics:  nonmaleficence,  beneficence,
autonomy,  and  justice.

7.2. Ethical Implications

7.2.1. Nonmaleficence and Beneficence

The ethical principles of nonmaleficence (avoiding harm)
and  beneficence  (promoting  well-being)  require  that  AI
medical  devices  (AIMDs)  provide  clear  benefits  without
causing  harm.  Developers  and  regulators  must  ensure  that
claims  about  AIMD  performance  are  well-founded,  and
clinicians must prioritize patient safety when using these tools
[172].

Three  main  considerations  have  been  identified  for
clinician  responsibility.  First,  AIMD systems should  only  be
used for their intended purposes, especially in disease detection
and diagnosis. Improper use could obscure critical features in
medical  images  or  provide  overly  simplistic  binary  outputs,
potentially  misleading  clinicians.  Second,  clinicians  need  to
understand  the  characteristics  of  the  populations  on  which
AIMD systems were validated, as accuracy may vary if patient
demographics  differ  significantly  from  the  training  data.
Finally,  clinicians  must  be  cautious  of  automation  bias-
uncritical acceptance of AI-generated outputs-which can lead
to errors in diagnosis and treatment [169].

Maximizing  patient  benefits  while  minimizing  harm
requires careful consideration of the trade-offs between false
positives and false negatives. Clinicians and patients must be
aware  of  potential  errors  to  make  informed  decisions,
balancing  longevity  with  quality  of  life.  AIMDs  should  not
make  rigid  decisions  on  these  trade-offs  but  instead  allow
flexibility based on individual patient preferences [173, 174].
Additionally, regulatory processes must account for variations
in  clinical  settings.  AIMDs  developed  in  high-income
environments  may  underperform  in  low-resource  settings,
affecting  diagnostic  accuracy.  Continuous  monitoring  of
AIMD  performance  after  software  updates  or  changes  in
patient  populations  is  essential  to  maintain  reliability  [175].

7.2.2. Patient Autonomy

Respecting  patient  autonomy  involves  ensuring  that
patients  are  fully  informed  about  the  risks,  limitations,  and
benefits of AIMD interventions. Clinicians must communicate
key parameters, such as diagnostic accuracy (e.g., false positive
and negative rates), to help patients understand the balance of
risks and benefits [176].

A  significant  challenge  with  AIMDs  is  their  lack  of
explainability  [177].  Many  clinicians  may  find  it  difficult  to
fully  understand  the  mechanisms  of  complex  AI  systems,

making it  challenging to convey this information to patients.
Additionally,  to  prevent  proprietary  data  issues,  certain
decision-making  patterns  within  AIMDs  may  lack
transparency,  further  complicating  patient  education  [178].

7.2.3. Justice

There  are  growing  concerns  about  biases  in  machine
learning  algorithms  related  to  race,  sex,  and  socioeconomic
status  [175].  It  is  crucial  that  clinicians  and  administrators
ensure procedural fairness, treating patients equally regardless
of  characteristics  like  race,  age,  gender,  or  religion.  In  some
cases,  protected  characteristics  (e.g.,  race  or  gender)  may
influence medical decisions, but their inclusion must be clearly
justified to avoid perpetuating biases [169].

To  address  distributive  fairness,  developers  have
implemented  strategies  during  data  collection  and  model
training  to  minimize  bias.  However,  these  efforts  alone  may
not eliminate disparities in access to AI technologies or the risk
of  exacerbating  structural  inequalities  within  the  healthcare
system [169].

7.3. Patient-Centered Perspectives

Patient-centered  care  (PCC)  emphasizes  addressing
individual  healthcare  needs  and  empowering  patients  to
actively participate in their care [179]. Effective PCC involves
respecting patient preferences, values, and needs and fostering
shared  decision-making  between  patients  and  healthcare
providers [180]. Clear communication is crucial for enabling
patients  and their  families  to make informed decisions about
their treatment options [181].

In the context of AI integration with PACS, the first step in
ensuring PCC is to address the issue of explainability. Beyond
technical  details,  explainability  helps  resolve  potential
discrepancies  between  AI  outputs  and  clinical  judgments,
which  may  arise  due  to  biases  or  errors  in  the  AI  system.
However,  the  complexity  of  AI  models  often  makes  it
challenging  for  clinicians  to  fully  grasp  and  explain  their
decision-making  processes  to  patients.  Multidisciplinary
collaboration involving data scientists and clinical experts can
help bridge this gap and enhance understanding [182].

The  next  step  is  aligning  AI-integrated  PACS  decisions
with patient and family preferences, a key component of shared
decision-making. Evidence-based tools have been developed to
facilitate shared decision-making by presenting key facts about
the  patient’s  condition,  risks,  and  potential  outcomes.  These
tools enable patients  and clinicians to collaboratively choose
the  option  that  best  aligns  with  the  patient’s  goals  and
expectations  [183,  184].

Explainable  AI  systems  can  support  PCC  by  making
patients  feel  more  informed  and  engaged  in  their  care.  By
improving  patients’  understanding  of  risks,  these  systems
encourage  active  participation  in  shared  decision-making,
ultimately enhancing patient satisfaction and outcomes [182].

Addressing  the  ethical  challenges  of  AI  integration  in
PACS  requires  careful  planning,  transparency,  and  a
commitment  to  patient-centered  benefits.  By  establishing
strong  regulatory  frameworks  and  prioritizing  patient



18   Current Medical Imaging, 2025, Volume 21 Pérez-Sanpablo et al.

autonomy, justice,  and beneficence,  healthcare providers can
harness  the  potential  of  AI  to  enhance  clinical  practice  and
improve patient outcomes.

8. FUTURE PERSPECTIVES: EMERGING TRENDS IN
AI AND PACS

The future of PACS is set to incorporate more advanced AI
integrations, significantly enhancing capabilities in predictive
analytics  and  personalized  medicine.  As  AI  technology
continues to evolve, PACS is expected to become increasingly
intelligent,  offering  greater  support  for  clinical  decision-
making  and  improving  patient  outcomes.  The  ongoing
development  of  international  standards,  such as  DICOM and
Fast Healthcare Interoperability Resources (FHIR), will further
enhance  the  interoperability  of  PACS  with  other  healthcare
systems  globally,  facilitating  seamless  data  sharing  and
integration  [6].

The  integration  of  AI  in  medical  imaging  represents  a
transformative  shift  in  diagnostic  processes,  providing
substantial  benefits  in  accuracy,  efficiency,  and  patient  care.
The future  of  AI  in  medical  imaging is  poised for  continued
growth and innovation,  with  AI-driven tools  becoming more
sophisticated.  These  advancements  are  expected  to  enhance
diagnostic  support,  reduce  radiologists'  workloads,  and
contribute  to  the  advancement  of  personalized  medicine,
ultimately  improving  patient  outcomes  [18].

8.1. Emerging Technologies

Several emerging technologies are anticipated to shape the
future  landscape  of  PACS  and  AI  integration.  Notable
advancements  in  deep  learning  algorithms  are  expected  to
enhance  the  precision  of  image  analysis,  while  natural
language processing (NLP) will  play a key role in extracting
clinical insights from radiology reports. NLP models, such as
Bidirectional  Encoder  Representations  from  Transformers
(BERT),  have  already  demonstrated  success  in  interpreting
complex medical language, paving the way for more effective
decision-support tools [57].

Augmented reality (AR) and virtual reality (VR) are poised
to become valuable tools for radiologists, offering immersive
visualization experiences for complex medical images. These
technologies  could  enhance  surgical  planning  and  provide
better  anatomical  understanding,  particularly  in  training  and
education  scenarios  [11].  Edge  computing  is  also  gaining
traction in healthcare, allowing for faster data processing at the
site of data generation, such as within a PACS. This reduces
latency  and  enables  real-time  AI-driven  analysis.  When
combined with cloud computing, edge computing will enhance
data accessibility,  storage,  and sharing, ultimately improving
the efficiency and scalability of PACS systems [11].

8.2. Predictions and Expectations for PACS and AI

Looking  ahead,  AI-powered  PACS  are  expected  to
incorporate more advanced predictive analytics tools capable
of anticipating disease progression and assisting clinicians in
making  informed  treatment  decisions.  These  systems  will
likely  support  integrated  multi-modal  imaging,  allowing
simultaneous analysis of different imaging modalities-such as

MRI,  CT,  and  ultrasound-providing  a  more  comprehensive
diagnostic perspective [5].

AI will also play a critical role in workflow optimization
by  automating  routine  tasks,  including  image  annotation,
triage, and report generation. This automation will help reduce
radiologists'  workload,  expedite  the  diagnostic  process,  and
enhance overall healthcare efficiency, leading to better patient
outcomes [5].

Future  AI  systems  are  expected  to  become  more
transparent,  featuring  explainable  AI  models  that  provide
clinicians with insights into the reasoning behind AI-generated
diagnoses.  This  transparency  is  vital  for  building  trust  in  AI
tools  and  ensuring  their  widespread  acceptance  in  clinical
practice. Explainable AI will also help address concerns related
to  algorithmic  bias  and  improve  the  interpretability  of  AI-
driven decisions [166].

The  future  of  PACS  and  AI  integration  is  marked  by
increasing  sophistication  and  innovation.  As  AI  technology
advances,  it  will  further  enhance  PACS  capabilities,  driving
improvements  in  diagnostic  accuracy,  clinical  decision-
making, and patient care. By leveraging emerging technologies
and aligning with evolving international standards, healthcare
providers will be better equipped to meet the growing demands
of  modern  medical  practice  [10].  Table  4  summarizes  the
recent  AI  innovations  using  MRI  across  various  medical
specialties,  highlighting  the  key  areas  of  impact  and  future
potential.

8.2.1. Broader Implications of AI Integration

The  integration  of  artificial  intelligence  (AI)  in  PACS
demonstrates  not  only advancements  in  medical  imaging but
also  significant  implications  for  the  broader  healthcare
ecosystem.  These  findings  emphasize  the  versatility  and
scalability  of  AI  technologies  in  the  following  areas:

8.2.1.1. Personalized Medicine

The  ability  of  AI  to  analyze  and  integrate  large-scale
imaging  data  with  electronic  health  records  (EHRs)  sets  the
stage  for  precision  diagnostics  and  treatment  planning.  For
instance, predictive analytics derived from AI-enhanced PACS
could inform individualized treatment regimens by correlating
imaging biomarkers with patient-specific clinical data.

8.2.1.2. Healthcare Interoperability

By  addressing  challenges  in  data  standardization  and
system integration within PACS, AI advancements contribute
to broader interoperability efforts in healthcare. Seamless data
exchange across diverse healthcare platforms could facilitate
multidisciplinary  collaboration,  enhancing  overall  care
coordination.

8.2.1.3. Medical Education and Training

The  automation  of  image  interpretation  and  analysis
creates opportunities for AI-powered learning platforms. These
tools could provide medical trainees with real-time feedback,
simulated  case  scenarios,  and  curated  learning  materials,
accelerating  the  development  of  diagnostic  expertise.
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8.2.1.4. Resource Optimization in Low-Income Settings

AI-driven  PACS  innovations,  such  as  cloud-based
accessibility  and  automated  diagnostics,  can  significantly
improve  healthcare  delivery  in  resource-limited  settings.  By
reducing reliance on on-site expertise and infrastructure, these
technologies  enable equitable  access  to  high-quality  imaging
services worldwide.

These broader implications underscore the transformative
potential  of  AI  integration,  paving  the  way  for  a  more
interconnected,  efficient,  and  patient-centered  healthcare
system.

8.2.2. Recommendations for Stakeholders

To fully harness the potential of AI integration into PACS,
collaborative  efforts  among  stakeholders  in  healthcare  are
critical.  The  following  specific  actions  are  recommended:

Policymakers:

Develop and implement standardized frameworks for
AI  validation  and  regulatory  compliance,  ensuring
patient  safety  and  data  security.
Promote  funding  initiatives  to  support  research  and
development  of  AI  technologies  tailored  to  medical
imaging.
Establish guidelines for the ethical use of AI, focusing
on  data  privacy,  algorithmic  fairness,  and
transparency.

Healthcare Institutions:

Invest  in  IT  infrastructure  upgrades,  including  cloud
computing and interoperability solutions, to support AI
integration with PACS.
Provide training programs for radiologists, technicians,
and healthcare providers to improve their proficiency
in AI-enabled tools.
Establish multidisciplinary AI task forces to evaluate
and oversee the implementation of AI solutions within
the clinical workflow.

Industry Partners:

Collaborate with healthcare providers to co-develop AI
tools that address specific clinical challenges, ensuring
relevance and usability.
Prioritize  the  design  of  scalable,  interoperable  AI
solutions  that  adhere  to  global  standards  such  as
DICOM  and  HL7.
Provide post-deployment support,  including software
updates  and  performance  monitoring,  to  ensure
consistent  functionality.

Educators and Academic Institutions:

Integrate  AI  training  into  medical  and  radiology
curricula,  focusing  on  the  practical  applications  and
limitations of AI in clinical practice.
Foster  interdisciplinary  collaborations  between

computer  science  and  healthcare  professionals  to
develop  innovative  AI  solutions.
Encourage  academic  research  on  the  ethical,  social,
and economic implications of AI adoption in medical
imaging.

Global Organizations and Nonprofits:

Advocate  for  equitable  access  to  AI  technologies,
particularly  in  low-resource  settings,  by  facilitating
knowledge sharing and partnerships.
Support  initiatives  that  develop  cost-effective  AI
solutions tailored to underserved populations.

These  actions  collectively  address  technical,  operational,
and  ethical  barriers,  paving  the  way  for  the  successful
integration  of  AI-powered  PACS  into  healthcare  systems
worldwide.

8.2.3. Developing Training Programs for Radiologists

The successful integration of AI tools into PACS systems
requires  radiologists  to  adapt  to  new  workflows  and  acquire
skills for leveraging AI effectively. Training programs tailored
to this purpose are essential to ensure that radiologists remain
central  to  the  diagnostic  process  while  maximizing  the
potential  of  AI-driven  tools.

Key Objectives of the Training Programs:

Enhance radiologists' understanding of AI algorithms,
their capabilities, and limitations.
Teach  radiologists  how  to  interpret  AI-generated
outputs,  including  confidence  metrics  and  error
analysis,  to  maintain  clinical  decision-making
accuracy.
Familiarize  trainees  with  the  ethical  and  regulatory
implications  of  AI  use,  including  data  privacy,
algorithmic  bias,  and  accountability.
Build  confidence  in  utilizing  AI-powered  tools  for
tasks  such  as  automated  reporting,  image
segmentation,  and  predictive  analytics.

Suggested Training Modules:

1. Foundations of AI in Radiology:

o Introduction to machine learning, deep learning, and their
applications in PACS.

o Overview of common AI models and their use in medical
imaging.

2. Practical Applications and Hands-On Training:

o  Using  AI-powered  PACS  for  specific  tasks,  including
automated workflows and diagnostic assistance.

o  Case  studies  and  simulation  exercises  to  demonstrate
real-world applications.

3. Understanding Limitations and Bias:

o  Recognizing  AI’s  limitations  in  complex  cases  or  rare
conditions.
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o  Addressing  algorithmic  bias  and  ensuring  diversity  in
data interpretation.

4. Ethics and Accountability in AI:

o  Navigating  regulatory  compliance,  data  security,  and
patient confidentiality.

o Understanding the role of radiologists in overseeing AI-
generated recommendations.

5. Continuous Learning and Updates:

o  Periodic  refreshers  on  advancements  in  AI  technology
and PACS systems.

o  Interactive  workshops  and  webinars  with  industry
experts.

Proposed Implementation Strategies:

Collaboration  between  radiology  societies,  academic
institutions,  and  AI  developers  to  design  and
standardize  curricula.
Incorporating these programs into radiology residency
training  and  continuing  medical  education  (CME)
initiatives.
Offering  certifications  through  professional
organizations,  such  as  the  Radiological  Society  of
North  America  (RSNA),  to  ensure  skill
standardization.

These  training  programs  will  enable  radiologists  to
effectively  integrate  AI  tools  into  their  workflows,  ensuring
improved  diagnostic  accuracy,  patient  outcomes,  and  overall
efficiency in clinical practice.

CONCLUSION

This narrative review synthesized current knowledge on AI
integration  into  PACS,  marking  a  transformative  leap  in
medical  imaging  and  enhancing  diagnostic  capabilities,
workflow efficiency, and patient care. AI technologies such as
deep  learning,  natural  language  processing,  and  federated
learning have advanced image analysis, automated reporting,
and  data  privacy,  addressing  longstanding  challenges  in
radiology.  However,  regulatory  compliance,  data
standardization, and interoperability remain critical barriers to
effective adoption.

Ongoing  innovation  and  collaboration  among  clinicians,
researchers, and industry stakeholders are essential to harness
the  full  potential  of  AI-enhanced  PACS,  paving  the  way  for
more accurate, efficient, and personalized diagnostic imaging
in healthcare.
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