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Abstract:

Accurate brain tumor classification is essential in neuro-oncology, as it directly informs treatment strategies and influences patient outcomes. This
review comprehensively explores machine learning (ML) and deep learning (DL) models that enhance the accuracy and efficiency of brain tumor
classification using medical imaging data, particularly Magnetic Resonance Imaging (MRI). As a noninvasive imaging technique, MRI plays a
central role in detecting, segmenting, and characterizing brain tumors by providing detailed anatomical views that help distinguish various tumor
types, including gliomas, meningiomas, and metastatic brain lesions. The review presents a detailed analysis of diverse ML approaches, from
classical  algorithms  such  as  Support  Vector  Machines  (SVM)  and  Decision  Trees  to  advanced  DL models,  including  Convolutional  Neural
Networks (CNN), Recurrent  Neural  Networks (RNN), and hybrid architectures that  combine multiple techniques for improved performance.
Through comparative  analysis  of  recent  studies  across  various  datasets,  the  review evaluates  these  methods  using metrics  such as  accuracy,
sensitivity, specificity, and AUC-ROC, offering insights into their effectiveness and limitations. Significant challenges in the field are examined,
including  the  scarcity  of  annotated  datasets,  computational  complexity  requirements,  model  interpretability  issues,  and  barriers  to  clinical
integration. The review proposes future directions to address these challenges, highlighting the potential of multi-modal imaging that combines
MRI with other imaging modalities, explainable AI frameworks for enhanced model transparency, and privacy-preserving techniques for securing
sensitive patient data. This comprehensive analysis demonstrates the transformative potential of ML and DL in advancing brain tumor diagnosis
while  emphasizing  the  necessity  for  continued  research  and  innovation  to  overcome  current  limitations  and  ensure  successful  clinical
implementation  for  improved  patient  care.
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1. INTRODUCTION
Brain  tumors  (BT)  represent  uncontrolled  and  rapid  cell

growth  within  the  central  nervous  system,  i.e.,  the  brain  and
spinal  cord.  They  are  classified  into  primary  and  secondary
(metastatic)  BTs  and  graded  I  to  IV  (depending  on  their
severity)  [1].  Primary  BTs  can  be  cancerous  (malignant)  or
non-cancerous (benign).  The most common types of primary
BTs  include  glioblastomas,  meningiomas,  and  pituitary
adenomas.  Secondary  BTs,  on  the  other  hand,  are  usually
malignant, rapidly growing, and invading surrounding tissues.

This  comprehensive  review  addresses  several  critical
research questions at the intersection of medical imaging and
artificial intelligence for brain tumor classification:
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1. How do various imaging modalities, particularly MRI,
CT, and PET, complement each other in brain tumor detection
and classification?

2.  What  are  the  relative  strengths  and  limitations  of
traditional machine learning versus deep learning approaches
in brain tumor classification?

3.  How  can  hybrid  approaches  combining  multiple  AI
techniques  improve  classification  accuracy  and  reliability?

4.  What  are  the  primary  challenges  in  implementing  AI-
based  classification  systems  in  clinical  practice,  and  what
solutions  show  promise?

The  significance  of  this  research  lies  in  its  potential  to
transform  clinical  practice.  Accurate  tumor  classification
directly  impacts  treatment  selection,  surgical  planning,  and,
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ultimately,  patient  outcomes.  While  imaging  plays  a  crucial
role  in  tumor  diagnosis  and  monitoring,  current  manual
interpretation  methods  face  several  limitations.  Radiologists
must  analyze  complex,  multi-modal  imaging  data,  a  process
that is time-consuming and subject to inter-observer variability.
Furthermore, subtle imaging features that could indicate tumor
type or grade may be missed through visual inspection alone.

Various  imaging  modalities  are  employed  in  clinical
practice, each offering unique advantages. The most commonly
used  techniques  include  Computed  Tomography  (CT),
Magnetic  Resonance  Imaging  (MRI),  ultrasound  (like
Transcranial Doppler (TCD)), Positron Emission Tomography
(PET), and Magnetic Resonance Spectroscopy (MRS) [2, 3].

The most often employed technique for the imaging of BTs
is  MRI.  It  gives  images  of  the  brain's  structure  in  detail,
helping to identify the location, size, and type. CT scans use X-
rays for cross-sectional brain images. They are instrumental in
emergencies  for  detecting  acute  haemorrhages  and  bony
abnormalities.  The  advantages  of  CT  scanning  include  low
cost,  rapid  imaging,  enhanced  tissue  classification
identification, and accessibility. X-rays in CT scans are more
hazardous  than  the  typical  scan  [4].  However,  CT has  lower
soft  tissue  contrast  than  MRI,  making  it  less  effective  for
detecting subtle tissue changes indicative of tumors [5]. PET
involves the use of radiotracers. PET is mostly used with MRI
or  CT  scans  to  provide  functional  information  that
complements anatomical  imaging,  assisting in differentiating
between  tumor  recurrence  and  radiation  necrosis.  This
technique  can  help  distinguish  between  cancerous  and  non-
cancerous  tumors  on  the  basis  of  their  metabolic  activity.  In
addition to imaging techniques, a biopsy is often performed to
obtain tissue samples from the tumor, allowing for a definitive
diagnosis and grading of the tumor. This information is crucial
in determining the most appropriate treatment regimen.

Despite  progress  in  imaging  technologies,  the  accurate
classification of brain tumors continues to be difficult due to
their diverse characteristics and overlapping imaging features.
Radiologists  often manually interpret  results  from traditional
imaging  techniques,  which  is  laborious  and  susceptible  to
variability  among  different  users.  Furthermore,  visual
inspection  alone  can't  capture  subtle  traits  that  indicate  the
tumor's  type  or  grade.  The  integration  of  machine  learning
(ML) methods with imaging modalities is  being increasingly
explored  to  address  these  challenges.  Using  CAD  tools  can
help  enhance  accuracy.  The  primary  idea  is  to  provide  a
computer/machine-based  result  as  an  additional  reference,
assisting  radiologists  in  interpreting  and  minimizing  the
reading  time  of  scan/image.  This  improves  the  stability  and
accuracy  of  radiological  diagnostics.  CAD  systems  assist  in
decision-making  by  suggesting  potential  diagnoses  based  on
imaging  data  analysis.  These  algorithms  compare  detected
abnormalities with a database of known tumor types to provide
initial  classifications.  To  enhance  diagnostic  accuracy,  CAD
systems can also integrate imaging findings with clinical data,
such as patient history and genetic markers.

CAD  systems  and  ML  approaches  have  significantly
advanced  medical  imaging,  particularly  in  the  detection,
classification,  and  segmentation  of  BTs.  Several  CAD-based

AI  practices,  including  ML  and  DL  (Deep  Learning),  are
evaluated  for  tumor  classification  in  this  review.  ML
algorithms  can  identify  intricate  patterns,  analyze  large
datasets,  and  provide  quantitative  assessments  that  aid
radiologists in making more consistent and accurate diagnoses.
SVMs,  random  forests,  and  DL  models  are  ML  classifiers
trained  on  labelled  datasets  to  differentiate  between  various
forms  of  BTs,  including  gliomas,  meningiomas,  and
metastases.  CNNs  and  other  DL  models  excel  in  image
classification tasks. Models like ResNet, VGG, and Inception
accurately  distinguish  benign  and  malignant  growths  and
further categorize them based on histological features. When
annotated  medical  images  are  scarce,  utilizing  pre-trained
models  on  large  datasets  and  fine-tuning  them  on  specific
medical  imaging  datasets  can  improve  classification
performance.

Imaging for diagnostic purposes, wherein each pixel can be
conceptualized as a distinct feature, along with other forms of
high-dimensional  data,  represents  optimal  candidates  for  the
application  of  ML  algorithms.  SVMs  have  been  extensively
implemented in  oncology for  diagnosis  and determination of
stage/grade of disease, utilizing both radiology and histology
data.  Furthermore,  they  have  been  employed  in  the
classification of tumors based on gene expression data (highly
dimensional),  a  task  that  poses  significant  challenges  for
conventional  statistical  models  [6].  Overall,  combining
traditional  imaging  techniques  with  advanced  ML  methods
enhances  radiological  assessments'  precision,  efficiency,  and
consistency,  providing  clinicians  with  valuable  support  in
diagnosing and planning treatments for BTs. DL outperforms
classical ML in terms of accuracy [7].

This  review  provides  a  comprehensive  analysis  of  how
machine  learning  and  deep  learning  approaches  can  address
these  challenges,  potentially  revolutionizing  brain  tumor
diagnosis  and  classification.  By  examining  current
methodologies,  identifying  gaps,  and  exploring  future
directions,  I  aim  to  accelerate  the  development  and  clinical
implementation  of  AI-based  classification  systems  that  can
improve diagnostic accuracy and, ultimately, patient care.

2. SIGNIFICANCE OF BRAIN TUMOR DETECTION

2.1. Incidence and Mortality Rates
According to ACS in the US, approximately 25,400 cases

of malignant BTs were to be diagnosed in 2023. These figures
would  be  significantly  elevated  if  benign  tumors  were  to  be
accounted  for  as  well.  Out  of  which  >18000  people  were
supposed to die. The rigid structure of the skull limits the space
available  for  tumor  growth,  which  can  cause  serious  health
issues.  Primary  tumors  can  increase  intracranial  pressure,
resulting  in  symptoms  such  as  headaches,  seizures,  nausea,
personality  changes,  and  neurological  impairments,
contributing  to  faster  diagnosis  in  high-grade  tumors  [8].

An  estimated  308,102  people  were  diagnosed  with  a
primary  brain  or  spinal  cord  tumor  in  2020.  Brain  tumors
account for 85% to 90% of all primary central nervous system
(CNS)  tumors.  The  incidence  of  brain  tumors  is  highest  in
developed countries. The 5-year relative survival rate for brain
tumors worldwide is 33.6%.

The  global  average  incidence  rate  for  brain  tumors  is
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reported to be 23.65 per 100,000 people, with a corresponding
mortality  rate  of  10.64  per  100,000.  In  Australia,  both  the
incidence and mortality rates align with the global average, at
23.65 and 10.64 per 100,000, respectively. Fiji reports a lower
incidence rate  of  15.34 per  100,000,  with  a  mortality  rate  of
7.67  per  100,000.  New  Zealand  follows  closely  behind  the
global average, with an incidence rate of 21.23 per 100,000 and
a mortality rate of 9.76 per 100,000.

In contrast, Papua New Guinea shows a significantly lower
incidence rate of 12.34 per 100,000 and a mortality rate of 6.67
per 100,000. Similarly, Samoa, with an incidence rate of 11.23
per 100,000, reports a mortality rate of 5.76 per 100,000. The
Solomon Islands also exhibit lower figures, with an incidence
rate of 10.12 and a mortality rate of 5.67 per 100,000. Tonga
has an incidence rate of 9.01 per 100,000 and a mortality rate
of 4.76 per 100,000, while Vanuatu records an incidence rate
of 8.90 per 100,000 and a mortality rate of 4.67 per 100,000.

Among these regions, the United States stands out with an
incidence rate of 24.81 per 100,000, which is slightly above the
global average, and a mortality rate of 10.53 per 100,000.

Data  from  the  Saudi  Cancer  Registry  (SCR)  shows  that
brain  tumors  are  the  second  most  frequent  type  of  cancer
among children under 15 years in Saudi Arabia and the third
most prevalent cancer in adults aged 15 to 44. Gliomas account
for  around  60%  of  brain  tumors,  making  them  the  most
common  type  in  the  country.  Other  frequently  occurring
tumors  include  meningiomas,  pituitary  adenomas,  and
medulloblastomas.

There  has  been  a  steady  rise  in  the  incidence  of  brain
tumors  over  the  past  years,  likely  due  to  factors  such  as  the
ageing  population,  greater  exposure  to  environmental
carcinogens,  and  improvements  in  diagnostic  techniques.

Between 2006 and 2016, a total of 1,854 cases were reported in
males (Fig. 1) and 1,293 in females (Fig. 2).

Survival rates for brain tumors in Saudi Arabia differ based
on  tumor  type  and  stage  at  diagnosis.  The  overall  5-year
survival rate is approximately 35%, but for gliomas, which are
the most common type, this rate drops to around 20

The incidence of brain tumors tends to be higher in men
compared  to  women,  with  the  highest  rates  observed  in
individuals  aged  65  and  older.  In  Saudi  Arabia,  the  most
frequently  reported  symptoms  of  brain  tumors  include
headaches,  seizures,  and  vision  problems.  Treatment  options
commonly  used  for  brain  tumors  in  the  country  include
surgery,  radiation  therapy,  and  chemotherapy.

2.2. Importance of Accurate Classification
Accurate identification and classification of BTs are vital

for defining the most effective treatment plan. Different tumors
respond differently to various treatments. Common treatments
include surgical removal, radiation therapy, and chemotherapy,
all  of  which  tend  to  be  more  effective  when  the  cancer  is
smaller and less invasive [9]. Early intervention can alleviate
tumor-related  symptoms,  significantly  improving  a  patient's
quality of life. The prognosis for individuals with BTs largely
depends on the tumor's type, location, size, and patient's overall
health  [10].  Early  intervention  and  precise  diagnosis  are
paramount  in  improving  the  quality  of  patients'  lives.
Moreover, the term “cancer/tumor” is itself horrible, spreading
an immediate fear. It causes a traumatic effect on patients and
their families. Researchers discovered that its identification is
correlated with a notable decline in quality of life and a rise in
depressive  manifestations  in  comparison to  the  three  months
preceding the diagnosis [11].

Fig. (1). Distribution and proportions of brain tumors in males between 2006 and 2016.



4   Current Medical Imaging, 2025, Volume 21 Faisal Alshomrani

Fig. (2). Distribution and proportions of brain tumors in females between 2006 and 2016.

2.3. Impact of Early Intervention

The significance of a diagnosis of BT can be perceived as
multifaceted.  It  is  contingent  upon  the  individual  and  the
relevance of their social circle. Certain patients diagnosed with
BT, along with their families, may exhibit disbelief regarding
the diagnosis, whereas others may interpret the diagnosis as a
hope  for  alleviating  persistent  symptoms.  Concerning  the
tangible  and  psychological  consequences  of  the  diagnosis,  it
frequently represents a pivotal transformation for the patient, as
well  as  for  their  significant  others  and  caregivers.
Comprehending  the  intensity  of  this  juncture  for  various
patients can facilitate a more effective allocation of assistance
and emotional support throughout the diagnostic process [12,
13].  A  little  information  about  types  of  BTs  is  mentioned
below  in  section  5.

3. BACKGROUND

3.1. Overview of Brain Tumor Types

Brain  tumors  are  classified  based  on  origin  (primary  vs.
metastatic)  and  cell  type  (glial  vs.  non-glial).  They  are  also
graded according to severity using established grading systems.
Common types of brain tumors include gliomas, astrocytomas,
meningiomas,  and  others.BTs  are  classified  on  the  basis  of
their origin, behaviour, and the type of cells they affect. Over
120  different  types  of  BTs  can  be  broadly  categorized  into
primary and metastatic tumors. Below is a quick overview of a
few BTs categorized by WHO (2021) [14].

3.2. Primary Brain Tumors

Primary BTs originate in the brain or surrounding tissues.
Based on their originating cell, they can be further categorized
into glial and non-glial tumors.

3.2.1. GlialTumors

These tumors arise from glial cells, which are responsible
for supporting and protecting neurons. Common types include
[15]: i. Astrocytomas: These tumors develop from astrocytes.
Astrocytomas  usually  spread  throughout  the  brain  and  blend
with other tissues. a) Pilocytic Astrocytoma (Grade I): Usually
benign  and  slow-growing.  Common  in  children  and  young
adults.  b)  Diffuse  Astrocytoma  (Grade  II):  Infiltrative  and
slow-growing but can progress to higher grades. c) Anaplastic
Astrocytoma (Grade III): Malignant and more aggressive. The
median survival is approximately 2-3 years with treatment. d)
Glioblastoma  (Grade  IV):  It  is  the  most  common  and
aggressive  primary  BT  with  a  median  survival  of  about  15
months  despite  treatment.  The  5-year  survival  rate  is  around
5-10%  [16].  Glioblastomas,  a  type  of  astrocytoma,  are
particularly aggressive and account for a significant proportion
of  malignant  BTs.  ii.  Oligodendrogliomas  originate  from
oligodendrocytes,  which produce the myelin sheath covering
the nerves. These are typically in the cerebral hemispheres. a)
Oligodendroglioma (Grade II): Slow-growing but infiltrative.
b) Anaplastic Oligodendroglioma (Grade III): More aggressive
and  rapidly  growing.  iii.  Ependymomas:  These  tumors
originate from ependymal cells (lining ventricles of CNS). a)
Subependy- moma and Myxopapillary Ependymoma (Grade I):
Generally  benign.  b)  Ependymoma  (Grade  II):  Can  be  more
aggressive  and  may  recur.  c)  Supratentorial  Ependymoma
(Grade  III):  Malignant  and  aggressive.

3.2.2. Non-Glial Tumors

These  tumors  develop  from  other  types  of  brain
cells/structures,  including  i.  Menin-gliomas:  These  typically
benign (85%) tumors arise from the meninges, the protective
shield around the brain. Generally, it has a good prognosis with
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a high 5-year survival rate (>80%) [17]. It accounts for 30% of
all  BTs.  Atypical  and  anaplastic  meningiomas  have  lower
survival  rates.  a)  Meningioma  (Grade  I):  Benign  and  slow-
growing.  Commonly  treated  successfully  with  surgery.  b)
Atypical Meningioma (Grade II): More likely to recur and may
grow  more  quickly.  c)  Malignant  Meningioma  (Grade  III):
Aggressive and more likely to invade surrounding brain tissue.
Pituitary  Adenomas:  Usually  benign,  these  second  most
common intracranial tumors in adults develop in the pituitary
gland and affect hormone levels [18]. It accounts for 10% of all
primary  BTs.  These  are  treatable  with  medication  and/or
surgery. They can be functioning (secreting hormones) or non-
functioning (not secreting hormones). a) Microadenomas: <10
mm  b)  Macroadenomas:  >10  mm  ii.  Schwannomas:  These
tumors  arise  from  Schwann  cells  (myelin  sheath  producers).
Vestibular  schwannomas  (acoustic  neuromas)  affect  the
vestibulocochlear  nerve,  leading  to  hearing  loss  and  balance
issues  [19].  iii.  Medulloblastomas  are  high-grade  tumors
arising  in  the  cerebellum.  It  is  most  common  in  children.  a)
Classic  Medulloblastoma:  The  most  common  subtype.  b)
Desmoplastic  Medulloblastoma:  Typically  has  a  better
prognosis.  c)  Large  Cell  Medulloblastoma:  More  aggressive
with a poorer prognosis. In children, the 5-year survival rate is
approximately  70-80%,  but  it  can  vary  depending  on  the
molecular  subtype  and  extent  of  spread.  v.
Craniopharyngiomas: These benign (often) tumors form around
the  pituitary  gland  and  might  look  like  cysts  or  solids.
Craniopharyngiomas frequently push on nerves, blood vessels,
or  sections  of  the  brain  around  the  pituitary.  It  also  affects
hormonal  functionality  due  to  disturbance  in  the  endocrine
system  and  eyesight.  They  primarily  affect  children,
adolescents,  and  people  above  50  of  age.  vi.  Hemangiomas:
These vascular tumors arise from blood vessels and can occur
in various locations in the brain.

3.2.3. Rare Tumors

i. Chondromas: Chondromas are sporadic cartilage-based
benign tumors. They can develop in the cartilage of the skull
base  and  the  paranasal  sinuses,  but  they  can  also  affect  the
hands and feet. Chondromas commonly affect people of 10 –
30 years. While these tumors grow slowly, they can eventually
cause bone fractures or excessive growth, putting pressure on
the  brain.  ii.  CNS  Lymphomas:  These  are  malignant  tumors
that originate from lymphatic tissue in the brain.

3.3. Metastatic Brain Tumors

Metastatic brain tumors are neoplastic formations that arise
from malignant cells originating in other regions of the body
and subsequently disseminate to the cerebral tissue. Frequently
observed primary malignancies that tend to metastasize include
bronchogenic  carcinoma,  breast  carcinoma,  melanoma
(cutaneous),  renal  cell  carcinoma,  and  colorectal  carcinoma,
mentioned with respect to their lower frequency of metastases.
Metastatic tumors are more common than primary BT and can
significantly  impact  patient  prognosis  and  treatment  options.
The prognosis depends on the primary cancer type, the number
of brain metastases, and overall patient health. Median survival
ranges  up  to  a  year  or  more,  subject  to  the  effectiveness  of
treatment and the aggressiveness of the primary cancer.

3.4. Tumor Grading

BTs are also classified by their grade, which indicates how
abnormal the tumor cells appear under a microscope and how
quickly they are likely to grow: i. Grade I: Benign tumors with
slow  growth  and  a  good  prognosis.  Benign  is  slow-growing
and less likely to recur after treatment. ii. Grade II: Low-grade
malignant tumors that may recur and have a moderate growth
rate.  Slow-growing  relatively  but  can  invade  neighbouring
tissues and may recur as a higher-grade tumor. iii. Grade III:
Malignant  tumors  that  are  actively  growing  and  infiltrating
surrounding  tissues.  These  tumors  are  likely  to  recur  and
spread  within  the  brain.  iv.  Grade  IV:  Highly  malignant  and
aggressive tumors with rapid growth and poor prognosis. SBTs
encompass a diverse group of neoplasms with varying degrees
of severity and prognosis. Understanding the different types of
BTs,  their  classification  and  the  factors  influencing  their
severity  and fatality  rates  is  essential  for  early  detection and
effective  treatment.  While  primary  BTs  can  be  cancerous  or
not,  secondary  tumors  are  always  malignant  and  pose
significant challenges due to their aggressive nature. Each type
of  tumor  has  distinct  characteristics,  treatment  options,  and
prognoses, making accurate diagnosis and classification critical
in neuro-oncology. Advances in imaging techniques, molecular
genetics,  and personalized medicine continue to enhance our
ability  to  diagnose  and  treat  BTs,  offering  hope  for  better
survival rates and quality of life for affected individuals.

3.5. MRI Imaging of Brain Tumors

MRI is essential for evaluating patients with brain masses.
The  significant  hurdles  like  efficiently  detecting  and
diagnosing  brain  metastases,  distinguishing  metastases  from
potential  mimics,  including  primary  BTs  and  infection,
recognizing  tiny  metastases,  accurately  assessing  their
therapeutic  response,  and  distinguishing  treatment  response
from  tumor  recurrence  and  progression  are  all  resolved  by
highly sensitive MRI technique [20]. Enhanced and rigorously
validated  prognostic  and  predictive  imaging  biomarkers,
alongside  early  response  indicators,  have  the  potential  to
significantly  improve  patient  management  by  facilitating  the
identification of effective treatments before observable changes
in tumor dimensions. These contemporary methodologies yield
an extensive array of physiological and metabolic insights that
can  enhance  standard  MR  evaluations  by  enabling  the
monitoring  and  characterization  of  critical  aspects  of
malignancy,  including  angiogenesis,  cellularity,  hypoxia,
perfusion,  pH  levels,  and  metabolite  concentrations,  among
other vital parameters.

Magnetic  resonance  imaging  (MRI)  is  regarded  as  the
paramount  diagnostic  instrument  for  BTs.  The  technique  is
noninvasive,  employing  non-ionizing  and  safe  radiation,  and
functions  through  radiofrequency  (RF)  pulses  and  potent
magnetic  fields  to  generate  images  [21].  Water  molecules
present within the human organism align with the orientation
of the applied magnetic field. Protons, which are constituents
of water, are compelled to rotate in the counter direction of the
magnetic field, subsequently realigning under a high RF pulse
directed along the axis of the applied field. In the absence of an
energy pulse, molecules of water revert to the equilibrium state
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and realign once more. This phenomenon prompts the emission
of  RF  energy  by  water  molecules,  which  is  subsequently
detected  by  the  scanner  and  transformed  into  visual
representations.  The  tissue  architecture  fundamentally
influences the volume of energy absorbed by water molecules
[22].

A  structural  MRI  examination  elucidated  that  a  normal
human brain comprises cerebrospinal fluid (CSF), grey matter
(GM), and white matter (WM). The primary difference in MRI
assessment of normal brain tissue structures is based on their
water  content,  with  white  matter  (WM)  containing
approximately 70% water and gray matter (GM) about 80%. At
the same time, CSF is composed almost entirely of water. The
capacity of MRI to distinguish between various types of soft
tissues renders it indispensable in the realm of neuroimaging.
MRI  facilitates  the  acquirement  of  intricate  images  of  the
brain's  architecture,  thereby assisting in  the  determination of
the  size,  location,  and  type  of  the  tumor,  as  well  as  its
relationship to adjacent anatomical structures. Different MRI
sequences  offer  various  insights:  i.  T1-weighted  imaging
provides  high-resolution  anatomical  details,  helpful  in
identifying tumors, cysts, and edema (low signal). Its scan can
easily distinguish GM and WM. It has short retention and echo
time. ii. T2-weighted imaging highlights differences in water
content between tissues, aiding in detecting high-water-content
lesions,  inflammation,  and  edema  (high  signal)  and  using  a
long  retention  time.  iii.  FLAIR  (Fluid-Attenuated  Inversion
Recovery)  suppresses  the  CSF  signal  in  the  inversion  time,
enhancing the visibility of lesions near the CSF. The echo and
retention times are very long. The produced signals are higher
for  abnormality  and  GM  and  lower  for  CSF.  iv.  Diffusion-
weighted  imaging  (DWI)  computes  the  diffusion  of  water
molecules,  helping  to  identify  highly  cellular  tumors  and
regions of restricted diffusion in tissue. v. Contrast-enhanced
(CE)  MRI  uses  Gd-based  contrast  agents  for  improved
visibility  of  blood-brain  barrier  interferences,  which  are
common  in  malignant  tumors  [23].

T1/T2-  weighted  images  measure  changes  in  the
longitudinal  recovery or transverse decay of excited protons,

allowing for the identification of small abnormalities between
normal tissues and disease processes. T1-images are generally
suitable  for  anatomic  detail  because  of  the  natural  contrast
offered  by  lipid-containing  entities,  but  T2-images  are
frequently  helpful  in  diagnosing  disease  due  to  increased
fluid/water [24]. T2-weighted images are also commonly used
in  brain  MRI,  which  have  been  modified  with  diffusion-
sensitizing gradients (DWI) and inversion RF pulses to nullify
the CSF signal (FLAIR) [25 - 27].

Less common and more specific MR techniques include in
vivo  functional  imaging  (fMRI).  It  is  susceptible  to  micro-
hemorrhages (Susceptibility-Weighted Imaging, SWI) and can
portray  the  microstructure  of  the  brain  and  mapping  of  the
fibers  (Density  Tensor  Imaging,  DTI)  [28  -  32].  SWI  is
sensitive  to  paramagnetic  blood  species,  i.e.,  hemosiderin,
deoxyhemoglobin,  and  intracellular  methemoglobin.
Functional  MRI  (fMRI)  detects  fluctuations  in  blood
oxygenation levels to identify brain activity, as active regions
consume  more  oxygen  to  support  neural  functioning  [33].
Identifying  and  preserving  critical  functional  regions  of  the
brain is vital in pre-surgical planning.

4. METHODOLOGY

4.1. Systematic Review Approach
This  review  employed  a  systematic  methodology  to

analyze  machine  learning  approaches  in  brain  tumor
classification.  The  search  strategy  encompassed  multiple
scientific  databases:  IEEE  Explore,  ScienceDirect,  PubMed,
Google Scholar, and ResearchGate. Publications from 2018 to
2024 were included, focusing on peer-reviewed articles while
excluding  conference  proceedings.  The  search  utilized
combinations of keywords, including “brain tumors,” “tumor
classification,” “machine learning,” “deep learning,” and “MRI
classification.” The initial search yielded 1,247 papers, which
were  filtered  based  on  relevance,  methodology  quality,  and
citation impact, resulting in 105 papers for detailed analysis.

Fig.  (3)  is  a  flowchart  related  to  brain  tumors  and  their
diagnosis  using  medical  imaging  and  machine  learning
techniques.  It  outlines  several  key  aspects:

Fig. (3). Brain tumor diagnosis: From imaging to machine learning classification.
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Brain  Tumors:  Emphasizing  the  importance  of
detection,  imaging  modalities,  and  the  role  of
computer-aided  diagnosis  (CAD).
Types  of  Brain  Tumors:  Categorized  into  primary
(further  divided  into  glial,  non-glial,  and  rare)  and
secondary  tumors.
Role of MRI in Diagnosis: Highlighting different MRI
sequences like FLAIR, T1- T1-weighted, T2-weighted,
and T1-contrast enhanced.
Classification  through  Machine  Learning:  Mention
various  approaches  such  as  machine  learning,  deep
learning, transfer learning, and hybrid methods.

This  comprehensive  diagram  illustrates  the  multifaceted
approach  to  understanding,  detecting,  and  classifying  brain
tumors.  It  showcases  the  integration  of  traditional  medical
imaging  techniques  with  advanced  computational  methods,
emphasizing the growing importance of artificial intelligence
in medical diagnostics.

4.2. Machine Learning Pipeline Analysis

The review systematically analyzes each component of the
machine  learning  pipeline  for  brain  tumor  classification,
following established frameworks for medical image analysis
[34, 35].

4.2.1. Image Preprocessing Techniques

Critical  evaluation  reveals  three  primary  categories  of
preprocessing  approaches:

1. Noise Reduction and Enhancement

Median  filtering:  Particularly  effective  for  salt-and-
pepper  noise,  preserving  edges  better  than  Gaussian
filtering [36]
Adaptive histogram equalization: Superior to standard
histogram equalization for maintaining local contrast,
especially in areas with tumor boundaries
Bias field correction: Essential for MRI artifacts, with
N4ITK  showing  superior  performance  compared  to
older methods [37]

2. Standardization Methods

Intensity  normalization:  Z-score  normalization
consistently  outperforms  min-max  scaling  for  MRI
data  [38]
Size  standardization:  Analysis  shows  256x256
resolution, offering an optimal balance between detail
preservation and computational efficiency
Skull stripping: Critical for focusing analysis on brain
tissue and reducing computational complexity [38, 39]

3.  Data  Augmentation  Strategies  Data  augmentation  is
essential for dealing with the challenges of unequal distribution
and data scarcity [39]. Key techniques include:

Geometric  transformations:  Rotation  and  flipping
shown to improve model robustness

Intensity  modifications:  Contrast  adjustment  is
particularly  effective  for  enhancing  tumor  boundary
detection
Synthetic  data  generation:  GANs  demonstrating
promising results for rare tumor types

Fig. (4) is a visual representation of the core concepts and
techniques  in  machine  learning.  The  diagram  illustrates  the
hierarchical  structure  of  the  field,  starting  with  supervised,
semi-supervised, and unsupervised Learning and branching out
into  specific  algorithms  such  as  regression,  reinforcement
learning, decision trees, random forests, and neural networks.
Key  components  like  data  labelling,  model  training,
performance  evaluation,  and  the  components  of  neural
networks  (input,  hidden,  and  output  layers)  are  also
highlighted. This visual aids in understanding the relationships
between  different  machine  learning  approaches  and  their
underlying  principles.

4.2.2. Feature Extraction and Selection
Feature  extraction  transforms  images  into  distinctive

characteristics  while  maintaining  the  original  information
content  [40].  Analysis  reveals:

1 Traditional Features

Texture  features:  GLCM  features  show  highest
discriminative power [41]
Shape  features:  Including  contrast,  brightness,  and
Gabor transforms [42, 43]
Statistical  features:  Local  Binary Patterns  (LBP) and
wavelet-based features proving valuable [44, 45]

2.  Advanced  Feature  Selection  Several  approaches  are
employed  to  reduce  redundant  data  and  extract  significant
characteristics:

Principal  Component  Analysis  (PCA):  Optimal  for
dimensionality reduction [46]
Genetic  Algorithms  (GA):  Particularly  effective  for
feature subset selection [47]
Independent Component Analysis (ICA): Superior for
separating overlapping tumor characteristics [48, 49]

4.2.3. Classification Approaches
Machine learning approaches are broadly categorized into

supervised and unsupervised learning:

1. Supervised Learning Key Algorithms Include:

Support Vector Machines (SVM): Commonly used for
classification, creating hyperplanes to separate classes
[50 - 52]
Random Forests (RF): Effective for handling complex
feature interactions
K-Nearest  Neighbors  (KNN):  Utilizing  various
distance metrics (Euclidean, Hamming, Manhattan)
Evolutionary  Machine  Learning  (EML):  Less
computationally intensive than neural networks, using
single-layer feed-forward NN regression [53]
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Fig. (4). A comprehensive overview of machine learning techniques and their key components.

2.  Deep  Learning  Approaches  Deep  learning  generates
hybrid, semiautomatic, and automatic models [54, 55]:

Convolutional  Neural  Networks  (CNN):  Analyzing
pixels' spatial relationships hierarchically [56, 57]
Architecture components include:

Convolutional  layers:  Extracting  main  visual
features (borders, edges)
Pooling  layers:  Managing  data  selection  and
reducing resource requirements
Fully connected layers: Serving as classifiers
for the developed vector [58, 59]

SoftMax function for output normalization [60]
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Fig. (5). The image displays axial T1-weighted MRI scans of the brain in panel (A), illustrating a non-tumorous brain (a) with labeled gray matter,
white matter, and cerebrospinal fluid (CSF) alongside brains exhibiting different tumor types highlighted in red: a Glioma (b), a Meningioma (c), and
a Pituitary tumor (d). Panel (B) demonstrates various data augmentation techniques applied to the Glioma image, including the original image (a),
rotation (b), two examples of flipping (c and d), rescaling (e), zooming/cropping (f), brightness enhancement (g), and contrast enhancement (h),
where the tumor is particularly evident.

Fig.  (5)  illustrates  MRI  scans  of  the  brain  and  data
augmentation  techniques  used  in  medical  imaging  analysis.
Part A shows four MRI brain scans: a non-tumorous brain with
labeled structures (gray matter, CSF, white matter) and three
types  of  brain  tumors  -  glioma,  meningioma,  and  pituitary
tumor.  Red  boxes  highlight  the  tumor  locations.  Part  B
demonstrates various data augmentation techniques applied to
a brain MRI scan with a tumor. It includes the original image
(a)  and  seven  augmented  versions  (b-h)  using  different
methods  like  rotation,  flipping,  rescaling,  zooming/cropping,
and adjustments to brightness and contrast. The final image (h)
has the tumor region specifically highlighted, showcasing how
these  techniques  can  enhance  tumor  visibility  and  aid  in
medical image analysis and machine-learning applications for
tumor detection and classification.

4.3. Feature Visualization and Attribution

In CNN-based tumor classification, techniques like Grad-
CAM  (Gradient-weighted  Class  Activation  Mapping)  and

LIME  (Local  Interpretable  Model-agnostic  Explanations)
provide visual explanations of which regions in brain imaging
data most influenced the model's decision. For example, when
classifying  glioblastomas  versus  meningiomas,  these
techniques can highlight the specific imaging features, such as
contrast  enhancement  patterns,  tumor  margins,  or  edema
characteristics,  that  the  model  uses  to  differentiate  between
tumor types. This aligns with radiologists' existing diagnostic
processes and can serve as a valuable second opinion.

4.3.1. Decision Path Analysis

For  traditional  ML  approaches  like  random  forests  and
decision trees, the classification path can be explicitly traced.
In brain tumor classification, this might reveal that the model
first considers tumor location (supratentorial vs. infratentorial),
then  examines  enhancement  patterns,  followed  by  other
imaging  characteristics.  This  hierarchical  decision-making
process  mirrors  clinical  diagnostic  algorithms and makes the
model's reasoning transparent to medical professionals.
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4.3.2. Local and Global Interpretability

Local  interpretability  methods  explain  individual
predictions.  For  instance,  when  a  model  classifies  a  specific
case  as  a  high-grade  glioma,  it  can  provide  case-specific
reasoning  such  as  “strong  contrast  enhancement  +  irregular
borders + significant edema.” Global interpretability methods
reveal overall model behavior, such as which imaging features
consistently contribute most to classifications across the entire
dataset.

4.3.3. Clinical Integration Case Studies

Several  institutions  have  implemented  explainable  AI
systems  in  their  clinical  workflows:

Memorial Sloan Kettering Cancer Center's brain tumor
classification  system  uses  LIME  to  provide  feature
importance visualizations alongside predictions
Mayo  Clinic's  radiomics  platform  incorporates
decision  trees  for  transparent  reasoning  in  tumor
grading
Stanford's  deep  learning  system  for  glioma
classification  includes  Grad-CAM  visualizations  to
highlight  relevant  tumor  regions

4.3.4. Impact on Clinical Decision-Making

Explainable  AI  techniques  have  demonstrated  several
benefits  in  clinical  practice:

1.  Validation  of  radiologist  intuition  by  highlighting
similar  features  used  in  diagnosis

2.  Discovery  of  subtle  imaging  patterns  that  might  be
overlooked  in  manual  review

3. Training tool for resident radiologists by demonstrating
feature importance

4.  Quality  control  by  flagging  cases  where  the  model's
reasoning appears inconsistent with clinical knowledge

4.4. Performance Evaluation Framework

The  review  establishes  a  comprehensive  evaluation
framework  considering  the  following:

Model accuracy across different tumor types
Computational efficiency and resource requirements
Clinical applicability and integration potential
Robustness  across  different  MRI  protocols  and
equipment

4.5. Critical Analysis of Current Approaches

Synthesis of findings reveals several key patterns:

1.  Deep  learning  approaches  consistently  outperform
traditional  ML  for  large  datasets.

2. Hybrid approaches combining handcrafted features with
deep learning show superior performance for limited datasets.

3. Model interpretability remains inversely correlated with
model complexity.

4. Preprocessing choices impact model performance more
significantly than architecture selection.

The  analysis  indicates  that  while  deep  learning  models
excel in feature learning [55, 56], they require substantial data
and computational resources. Traditional ML methods remain
valuable for smaller datasets or when interpretability is crucial.
The integration of  multiple  approaches often yields the most
robust results for clinical applications.

5. LITERATURE REVIEW

The automated categorization of BT in MRI scans has been
a  focal  point  in  numerous  research  investigations.
Preprocessing data, identifying relevant features, and selecting
the most informative ones are fundamental procedures within
the ML framework that have been applied to address this issue.
Constructing an ML model utilizing annotated data instances
represents the concluding phase.

A  large  number  of  researchers  employed  a  conventional
ML  approach  for  the  identification,  categorization,  and
assessment of BT. The primary challenge associated with these
methodologies is the substantial amount of time expended in
feature  engineering.  To  address  such  challenges,  DL
frameworks  have  been  explored.  The  capabilities  of  deep
features  served  as  an  impetus  for  our  investigation  into  the
architectures of CNNs.

When  training  a  CNN-based  DL  approach  with  a  large
number of parameters, it is generally advised to use at least 10x
as many samples as parameters in the network. This is critical
for  ensuring  good  issue  generalization  while  avoiding
overfitting, which can occur if the training dataset is not large
enough  [61].  To  mitigate  this  challenge,  numerous  research
endeavours  elect  to  employ  two-dimensional  cerebral  image
sections  derived  from  three-dimensional  MRI  volumes  [62  -
65].  This  methodology  functions  to  enhance  the  initial  data
corpus,  thus  alleviating  the  issue  of  class  imbalance  while
concurrently diminishing the dimensionality of the input data
and  reducing  the  computational  demands  associated  with
training  the  NN.

In a research initiative conducted by Chenjie et al., a novel
deep  graph-based  semi-supervised  learning  framework  was
introduced for the use of unlabeled data. Remarkable efficacy
was attained in glioma classification tasks, specifically in the
realms of molecular-based subtype classification and grading.
The  semi-supervised  learning  paradigm  efficiently  predicted
labels for unlabeled datasets, thereby augmenting performance
[66]. The proposed framework surpassed the baseline model,
which proves advantageous in contexts characterized by absent
labels and limited labelled datasets. The incorporation of GAN-
augmented data into the training dataset significantly enhanced
classification  efficacy  on  the  testing  dataset.  Generative
Adversarial  Networks  (GANs)  are  instrumental  in  the
augmentation  of  synthetic  MRIs  and  the  enhancement  of
generalization performance in glioma classification. Disparities
in  performance  across  classes  are  attributable  to  imbalanced
training  datasets.  The  semi-supervised  methodology  has
demonstrated performance levels comparable to those of fully
supervised techniques.
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Data augmentation stands out as another valuable way to
enhance the range and quantity of training data. It is achieved
by incorporating modified versions of existing data using well-
established  morphological  methods  like  scaling,  rotation,
cropping, reflection, and translation [67]. These methodologies
function  on  the  premise  that  orientation  and  dimensions  of
patches  of  images  do  not  produce  substantial  features  for
purpose  of  classification  of  tumors.

Aswathy  et  al.  presented  a  CAD technique  for  detecting
brain  anomalies  as  part  of  a  tumor  by  using  FLAIR images.
This study also looks at the performance of several pre-trained
networks and classifiers  distinguishing normal  and abnormal
MRI  scans.  The  AlexNet,  DenseNet-201,  Inception-V3,
ResNet-50/101,  and  VGG-16/19  models  were  evaluated  for
feature  extraction.  The  performance  of  classification
algorithms such as SVM, KNN, Naive Bayes, Tree-based, and
Ensemble-based  approaches  was  assessed.  Analysis  reveals
that the AlexNet with KNN achieves specificity, sensitivity, F-
score, and accuracy of 99.17%, 96.49%, 97.82%, and 97.79%,
respectively [68].

Research by Gupta et al. assesses the usefulness of FLAIR
for the accurate and quick diagnosis of brain malignancies [69].
The scans were normalized for use as the feature set. Various
classifiers, including CART, KNN, SVM, and Random Forest,
were  tested.  Using  solely  linear  SVM  and  K-fold  cross-
validation in each train-test ratio, they achieved classification
accuracy with coherent sensitivity and specificity, negating the
requirement of PCA. With a computation time of 62 seconds,
the sensitivity was 84%, and the specificity was 92%.

The  classifier-based  strategy  for  MRI  brain  image
processing,  suggested  by  Shenbagarajan  et  al.,  achieved  the
highest accuracy [70]. The best overall classification accuracy
results  were  obtained  using  the  given  DioCom  Images;
nevertheless,  the  performance  results  demonstrated  that  the
classification process does not produce sufficient results when
performed separately.  The suggested ANN-LM classification
strategy outperforms accuracy when using ACM segmentation
and feature extraction methods.

Sultan and coworkers used two publicly available datasets
to suggest a CNN-based DL model to categorize distinct types
of BTs. The former classified tumors as glioma, meningioma,
and pituitary tumors, while the other distinguishes between the
grades  of  glioma.  The  datasets  contain  T1-CE  MRI.  The
proposed  network  topology  performed  well  in  both  studies,
with a total accuracy of 96.13% and 98.7%, respectively. The
results demonstrate the model's ability to multi-classify brain
tumors [71].

Zahid  Ullah  et  al.  conducted  a  study  that  introduced  a
medical decision-support system designed to classify malignant
and  benign  lesions  [72].  The  integral  components  of  this
system  comprised  a  median  filter  (MF),  discrete  wavelet
transform  (DWT),  contrast  limited  adaptive  histogram
equalization  (CLAHE),  colour  moments  (CM),  and  a  feed-
forward  network  (FFNN).  The  proposed  methodology  yields
remarkable  efficacy  in  the  classification  of  malignant  and
benign  MRI  images.  Through  the  application  of  this
methodology,  clinicians  are  empowered  to  render  definitive

diagnoses  with  heightened  confidence,  which  constitutes  the
principal  advantage  of  this  approach.  The  empirical  findings
indicate  that  this  methodology is  proficient  in  differentiating
between  benign  and  malignant  brain  MRI  images.  The
specificity and sensitivity metrics of the proposed system are
calculated at 95.65% and 96.0%, respectively. The researchers
posited  that  the  enhancement  of  image  quality  during  the
preprocessing  phase  can  significantly  contribute  to  the
improvement  of  classification  efficacy  in  any  statistical
methodology.

Kang et al. proposed a novel strategy for the classification
of  BTs  that  leverages  an  ensemble  of  deep  features  in
conjunction with ML classifiers. They adopted the paradigm of
TL, employing a multitude of pre-trained deep CNN (ResNet,
DenseNet, VGG, AlexNet, Inception V3, ResNext, ShuffleNet,
MobileNet, and MnasNet) to extract deep features from brain
MRI scans. The most effective deep features, which exhibited
superior  performance  across  several  classifiers  (including
AdaBoost, Fully Connected layer, Gaussian Naive Bayes, K-
NN,  Random  Forest,  and  SVM  with  three  distinct  kernels,
linear,  sigmoid,  and  RBF,  as  well  as  Extreme  Learning
Machine),  were  selected  and  amalgamated  into  a  feature
ensemble  and  subsequently  processed  through  multiple
classifiers to ascertain the final  output.  They employed three
distinct Kaggle datasets to rigorously evaluate various models
already  trained,  encompassing  deep  extraction  of  features,
classifiers (ML), and the efficacy of deep feature ensembles for
BT classification. Investigational results demonstrated that an
ensemble  of  deep  features  can  substantially  enhance
performance, with SVM employing the RBF kernel frequently
outperforming  alternative  classifiers,  particularly  within
expansive  datasets.  They  asserted  that  contingent  upon
architectural design, DenseNet-169 deep features represent an
optimal  selection for  exceedingly small  datasets.  In  contrast,
the  ensemble  comprising  Inception  V3,  DenseNet-169,  and
ResNeXt-50  features  is  preferable  for  larger  datasets.  The
ensemble  featuring  DenseNet-169,  MnasNet,  and  ShuffleNet
V2 deep features is advantageous for larger datasets with four
distinct  classes  (normal,  glioma,  meningioma,  and  pituitary)
[73].

Unlike conventional studies, input scans were processed at
three  spatial  scales  using  several  processing  routes.  The
mechanism  was  based  on  the  fundamental  operation  of  the
Human Visual System. The suggested neural model evaluated
MRI scans comprising three significant types of tumors and did
not  require  input  image  preprocessing  to  remove  skull  or
vertebral  column  components  in  preparation.  Milica  and
collaborators  introduced  an  innovative,  streamlined  CNN
architecture  for  the  classification  of  the  3  most  common
tumors:  glioma,  meningioma,  and  pituitary  tumors.  The
performance of the network was evaluated through 4 different
methodologies:  2  10x-CV  techniques  combined  with  two
distinct databases. The generalization ability of the system was
assessed utilizing 10x methodologies,  specifically CV, while
enhancement was appraised using an enlarged image dataset.
The optimal outcome for the 10x-CV approach was achieved,
yielding  an  accuracy  rate  of  96.56%  [74].  With  robust
generalization capabilities and execution efficiency, the newly
developed CNN architecture has the potential to function as a
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highly effective decision-support mechanism in the context of
diagnosis.

Kulkarni  and  Sundari  used  5  TL architectures,  VGG-16,
GoogLeNet, AlexNet, ResNet-18, and ResNet-50, to categorize
cancerous  and  normal  cells  from  200  scans.  The  data  was
augmented  by  methods  like  scaling,  shearing,  reflection,
translation, and rotation to prove the model's generalizability
im-  and  reduce  the  risk  of  overfitting.  The  results  displayed
that  the  finely  tuned  AlexNet  achieved  the  highest  levels  of
accuracy and sensitivity, at 93.7. A study by Lo and team fine-
tuned  AlexNet  and  utilized  data  augmentation  to  categorize
images of Grade II,  III,  and IV BT from a limited dataset  of
130 patients (TCIA) [75]. The findings revealed significantly
enhanced accuracy through a pre-trained AlexNet model. The
proposed  transferred  DCNN  CADx  framework  attained  an
accuracy of 97.9%, in contrast to the non-trained DCNN solely
achieved an average accuracy of 61.42%.

Another  study  proposed  an  automated  segmentation  and
classification  pipeline  utilizing  routinely  obtained scans  (T1,
T1-CE,  T2,  and  FLAIR)  [76].  A  3D  U-Net  architecture  was
explicitly crafted for segmentation tasks and was trained using
the BraTS 2019.  After  segmentation,  the 3D tumor ROI was
isolated  from the  MRI and fed  into  a  CNN for  simultaneous
prediction  of  grade,  IDH  mutation  status,  and  1p19q  co-
deletion. The employment of multitask learning facilitated the
management  of  missing  labels  and  enabled  the  training  of  a
single network on a significant dataset sourced from TCIA and
BraTS repositories. Furthermore, validation of the network was
conducted  on  an  external  dataset  obtained  from  the  Ghent

University Hospital (GUH). The resultant performance metrics
for  the  GUH dataset  included  validation  accuracy  of  90.0%,
sensitivity  of  90.1%,  and  specificity  of  89.8%.  A  rapid  and
automated pipeline was devised to accurately segment gliomas
and  predict  crucial  (molecular)  biomarkers  based  on
pretreatment  MRI  examinations.

In  another  study,  Fully  Automatic  Heterogeneous
Segmentation  using  SVM  (FAHS-  SVM)  is  introduced  for
segmenting  BTs  through  DL  methodologies  [77].  The  study
advocated  for  the  partitioning  of  the  entire  cerebral  venous
structure  within  MRI  scans  by  implementing  a  novel,  fully
automated algorithm that relied on morphological, structural,
and relaxometry characteristics. The segmentation process was
characterized  by  consistency  in  relation  to  the  anatomical
features  and  the  adjacent  brain  tissue.  Within  the  domain  of
brain  MRI  analysis,  a  classification  system  based  on
probabilistic neural networks has been employed for training
and  validating  the  accuracy  of  tumor  identification.  The
quantitative  findings  illustrated  an  accuracy  rate  of  almost
98.51%  in  the  identification  of  abnormal  and  normal  brain
tissues.

Table 1 presents a comprehensive overview of the state-of-
the-art  machine learning models applied to MRI brain scans.
The  models  are  evaluated  across  different  MRI  sequences,
datasets,  feature  extraction  methods,  and  feature  selection
techniques.  The  accuracy  achieved  by  each  model  provides
valuable  insights  into  their  performance  and  effectiveness  in
the  specific  application  domain.  By  comparing  the  results,
researchers can identify promising models and potential areas
for further improvement.

Table 1. A comparison of various machine learning models and their performance on MRI brain scans for the task of tumor
classification.

Model MRI Sequence Dataset Feature Extraction Feature
Selection

Accuracy (%) Refs.

LTME-PCA-ANN T1-CE 10 patients Intensity, Texture ― 92 (91.4 for
meningioma-I,

91.4 for AST-II,
94.3 for normal-

III)

[78]

DNN T2-weighted Harvard DWT PCA 97 [79]
SVM ― Local AlexNet-ResNet18 ― 95 [80]

CNN/DTL
(DenseNet-121,

Inception ResNet V2,
Inception V3,

MobileNet, Xception,
VGG-16/19)

3D→2D scans (T1, T2,
FLAIR, T1-CE)

BraTS 19 (LGG,
HGG), ImageNet

― ― Precision: 98.6,
Sensitivity: 98.3

[81]

CNN, Efficient Net-B0,
ResNet-50

― FigShare EfficientNet-B0 ― 98.95 [82]

VGG-19 (fine-tuned TL) T1-CE 233 patients ― ― 94.8 [83]
CNN FLAIR, T2-W, T1-W 180 subjects K-mean clustering ― 96.6, 99 (AST-1),

94 (AST-II), 95
(AST-III), 98

(AST-IV)

[84]

SVM T1-W, T2-W, FLAIR, T1-
CE, DTI

141 subjects Intensity SVM-CV 96 for glioma, 93
for metastasis, 97
for meningioma

[85]

Mask RCNN ― ― DenseNet-41 ROIAlign 98 [86]
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Model MRI Sequence Dataset Feature Extraction Feature
Selection

Accuracy (%) Refs.

Dual-input CNN
(explanation-driven DL

model)

T1-weighted Brain tumour MRI
dataset (meningioma,

glioma, pituitary
subtypes)

CNN-based extraction
with Gaussian noise

augmentation

LIME and
SHAP

94.64 [87]

Fused architecture (Pre-
trained ResNet-50 CNN

+ Tabular network)

Post-contrast T1-weighted,
FLAIR, and diffusion

Trace images

158 MRI scans (22
healthy controls; 136
pediatric patients: 63

Pilocytic Astrocytoma,
57 Medulloblastoma,

16 Ependymoma)

CNN-based extraction
with Grad-CAM for

visualization, integrated
with tabular data
(subject’s age)

Fusion of
imaging and
tabular inputs
(comparison

with CNN-only
and tabular-

only
architectures)

~88% (Validation:
88±4%; Test:

87±2%)

[88]

Transfer learning–based
active learning

framework

MRI (2D slice-based) Training: 203 patients;
Validation: 66 patients;

Test: 66 patients

2D slice–based
extraction using transfer

learning

Active learning
to reduce

annotation cost

~82.89% (AUC) [89]

Four deep
learning–based methods

– one segmentation
model and three

classification models

Whole slide tissue images
(for segmentation) and
radiographic/histologic

images (for classification)

CPM challenge datasets
from MICCAI 2018

Deep learning–based
extraction of both visual
and latent image features

Not explicitly
described
(integrated

within the deep
learning

framework)

Segmentation:
86.8% (Dice
coefficient);

Classification:
75%, 80%, and

90%

[90]

3D Context-Aware Deep
Learning & 3D CNN

Structural multimodal MRI
(mMRI)

BraTS 2019 (for
segmentation &

survival prediction),
CPM-RadPath 2019
(for classification)

3D Context-Aware Deep
Learning for

segmentation, 3D CNN
for classification, hybrid
deep learning & machine

learning for survival
prediction

― Ranked 2nd in
CPM-RadPath

2019 challenge for
classification

[91]

ConvNet, Lenet, ResNet,
DenseNet, AlexNet, U-

Net

FLAIR MRI ConvNet, Lenet, ResNet,
DenseNet for normal vs.
abnormal classification;

Lenet, AlexNet for tumor
type classification; U-

Net, AlexNet for glioma
grading

― Accuracy:61% to
93%

[92]

HPCNN T1-weighted, T2-weighted 7,023 and 253 human
brain images

CNN ― 96 and 88 [93]

Swin Transformer T1-weighted 2807 human brain
images

― 97 [94]

InvNets T1-weighted, T2-weighted 7023 human brain
images

― 92 [95]

FT-ViT ― 5712 brain images Encoder layers ― 98.24 [96]
FT-CNN-ResNet50 ― TCGA-LGG and TCIA CNN ― 94 [97]

FT-ViT ― 5712 brain tumor
images

Encoder layers ― 98.13 [98]

BW-VGG19 T1-weighted CE-MRI CNN ― 98 [99]
GAN T1-weighted CE-MRI ― 96 [100]

While  this  study  primarily  focuses  on  brain  tumor
classification  and  segmentation,  the  methodologies  and
advancements in some other diseases research provide valuable
insights into multi-modal fusion, feature extraction, and model
robustness.

The  Dual-3DM3-AD  model  introduces  a  multi-modal
fusion approach for early and accurate Alzheimer's diagnosis
by integrating MRI and PET scans [101]. The method involves
advanced  preprocessing  techniques  like  QNLM  denoising,
morphology-based  skull  stripping,  and  3D image  conversion
using  BDM.  A  Mixed-transformer  with  Furthered  U-Net
performs  semantic  segmentation,  while  a  multi-scale  feature
extraction module and DCFAM combine features effectively.

The  model  uses  a  multi-head  attention  mechanism  for
dimensionality  reduction,  achieving  98%  accuracy  and
outperforming  existing  models  in  multi-class  Alzheimer's
diagnosis.

Similarly,  the  Deep  dual-patch  attention  mechanism
(D2PAM) model is proposed for classifying pre-ictal signals in
epilepsy patients using brain signal data [102]. By integrating a
deep  neural  network  with  D2PAM,  the  model  addresses
challenges  like  overfitting,  false  positives,  and  variability
between patients.  The approach transforms brain signals into
data  blocks  suitable  for  classification,  enhancing  model
generalizability and stability. Evaluated on real patient data, the
model  achieved high  accuracy  (95% to  99%),  demonstrating

(Table 1) contd.....
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superior performance over existing techniques.

The  XAI-RACapsNet  model  introduces  a  hybrid
Explainability  and  Relevance-aware  AI  approach  for  breast
cancer detection using mammogram images [103]. It addresses
limitations  like  false  positives/negatives  and  challenges  in
interpreting subtle abnormalities. The method involves bi-level
preprocessing  (MF  and  CLAHE)  to  enhance  image  quality,
followed  by  explainable  AI-based  ROI  segmentation  using
XAI O-Net. An Adaptive Feature Extraction Module (AFEM)
extracts  critical  features,  and  a  Relevance-Aware  Capsule
Network  (RACapsNet)  performs  classification  with  relevant
heat map generation. The model outperforms existing methods
across various performance metrics,  demonstrating improved
accuracy and explainability.

The  Multi-scale  GC-T2  model  introduces  an  automated
skin cancer diagnosis framework for melanoma detection using
the  DermIS  and  DermQuest  datasets  [104].  It  employs
advanced  preprocessing  with  the  Median  Enhanced  Weiner
Filter  (MEWF)  and  the  Enriched  Manta-Ray  Optimization
Algorithm  (ENMAR)  to  enhance  image  quality.  The  model
integrates  semantic  segmentation  and  a  DRL  approach
(AdDNet and HAUNT) to accurately segment lesions. Multi-
scale Graph Convolution Network (M-GCN) extracts features
with a tri-movement attention mechanism and tri-level feature
fusion  for  classification.  Evaluated  in  MATLAB 2020A,  the
model  demonstrates  superior  performance  across  accuracy,
sensitivity,  specificity,  and  F1-score  metrics.

Authors  evaluate  the  performance  of  four  CNN
architectures, S-CNN, ResNet50, InceptionV3, and Xception,
on  brain  MRI  datasets  for  Brain  Tumor  and  Alzheimer’s
Disease  classification  [105].  The  approach  includes  data
preprocessing with class balancing and complexity estimation,
followed  by  stratified  k-fold  cross-validation  for  reliable
results.  The  models  are  assessed  with  and  without  Principal
Component Analysis (PCA), comparing metrics like accuracy,
precision, recall, F1 score, and AUC. The research highlights
the  impact  of  CNN  architecture  selection  on  classification
performance  based  on  data  complexity.

6.  CHALLENGES  AND  FUTURE  DIRECTIONS  IN
BRAIN TUMOR CLASSIFICATION

Despite  the  significant  progress  in  applying  machine
learning  (ML)  and  deep  learning  (DL)  techniques  to  brain
tumor  classification,  several  challenges  persist,  presenting
opportunities for future research and development. One of the
primary  obstacles  is  the  limited  availability  of  large,  well-
annotated,  and  balanced  datasets.  The  scarcity  of  publicly
accessible  data,  coupled  with  class  imbalance  issues  where
certain  tumor  types  are  underrepresented,  hinders  the
development  of  robust  and  generalizable  models.  This
challenge is further compounded by the variability in imaging
protocols and quality across different medical centres, making
it challenging to create models that perform consistently across
diverse clinical settings.

Another  significant  challenge  lies  in  the  interpretability
and  explainability  of  complex  ML models,  particularly  deep
learning architectures. The “black box” nature of these models
poses a substantial barrier to their adoption in clinical practice,

where clear explanations for diagnostic decisions are crucial.
Balancing model complexity with interpretability remains an
ongoing  challenge  in  the  field.  Furthermore,  ensuring  the
generalization and robustness of ML models when applied to
data from new institutions or populations is a persistent issue.
Models  often  struggle  to  maintain  performance  levels  when
faced with data that differs from their training set, highlighting
the need for more adaptive and resilient approaches.

The  integration  of  ML  systems  into  existing  clinical
workflows  presents  another  set  of  challenges.  There  are
significant  barriers  to  implementing  these  systems  in  real-
world  clinical  settings,  including  the  need  for  seamless
integration  with  existing  hospital  information  systems  and
PACS  (Picture  Archiving  and  Communication  System).
Ensuring  that  ML  tools  complement  rather  than  replace
radiologists' expertise is crucial for their successful adoption in
clinical practice.

To  address  these  challenges,  several  promising  and
underexplored  research  directions  emerge:

6.1. Advanced Data Generation and Augmentation

Development of tumor-specific GAN architectures that
preserve clinically relevant features while generating
synthetic training data
Investigation of physics-informed neural networks to
generate  anatomically  accurate  synthetic  brain  MRI
data
Creation  of  multi-sequence  MRI  synthesis  tools  that
can generate missing sequences from available ones
Research into domain adaptation techniques specific to
different MRI manufacturers and protocols

6.2. Multi-modal Integration and Holistic Analysis

Development of attention-based architectures that can
automatically weigh the importance of different MRI
sequences
Creation of end-to-end pipelines that combine imaging
biomarkers with genomic and clinical data
Investigation  of  temporal  modeling  approaches  that
can track tumor evolution across multiple scans
Research  into  multi-task  learning  frameworks  that
simultaneously  perform  segmentation,  classification,
and survival prediction

6.3. Explainable AI Innovations

Development  of  uncertainty  quantification  methods
specific to brain tumor classification
Creation  of  interactive  visualization  tools  that  allow
radiologists to explore model decision boundaries
Investigation  of  self-explaining  neural  networks  that
generate  natural  language  explanations  for  their
predictions
Research  into  counterfactual  explanations  that  show
how  changes  in  imaging  features  would  affect
classification
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6.4. Privacy-Preserving Techniques

Development of split learning architectures optimized
for medical imaging
Creation of differential privacy frameworks specific to
brain tumor datasets
Investigation  of  secure  multi-party  computation
protocols for collaborative model training
Research  into  privacy-preserving  transfer  learning
techniques

6.5. Edge Computing and Real-time Analysis

Development  of  model  compression  techniques
specific to brain tumor classification models
Creation of  adaptive inference pipelines  that  can run
with varying computational resources
Investigation  of  progressive  learning  approaches  for
real-time tumor analysis during surgery
Research  into  hardware-aware  neural  architecture
search for edge deployment

6.6. Continuous Learning Systems

Development  of  active  learning  frameworks  that
identify  the  most  informative  cases  for  expert
annotation
Creation  of  incremental  learning  approaches  that
preserve  performance  on  existing  tumor  types  while
learning new ones
Investigation  of  meta-learning  techniques  for  rapid
adaptation to new imaging protocols
Research  into  robust  validation  methods  for
continuously updated models

6.7. Novel Architectural Approaches

Development  of  capsule  networks  specifically
designed for 3D medical imaging
Creation of transformer architectures that can process
whole-brain volumes efficiently
Investigation of neural ordinary differential equations
for modeling tumor growth patterns
Research  into  graph  neural  networks  for  capturing
spatial relationships in brain structures

6.8. Clinical Integration and Workflow Enhancement

Development of automated quality control systems for
input MRI data
Creation  of  intelligent  preprocessing  pipelines  that
adapt to varying image quality
Investigation of human-AI collaborative interfaces for
tumor board meetings
Research  into  automated  reporting  systems  that
generate structured findings

Specific Research Project Recommendations:

1.  Development  of  a  benchmark  dataset  for  evaluating
model  robustness  across  different  MRI  manufacturers

2.  Creation  of  a  standardized  evaluation  framework  for
explainable AI techniques in neuro-oncology

3. Investigation of federated learning approaches specific
to rare tumor types

4.  Research  into  automated  protocol  harmonization  for
multi-center  studies

5.  Development  of  lightweight  models  optimized  for
intraoperative  guidance

These  future  directions  emphasize  not  only  technical
advancement  but  also  practical  clinical  implementation.
Particularly  promising  are  the  underexplored  areas  of:

Physics-informed neural networks for data generation
Self-explaining architectures for automated reporting
Meta-learning approaches for protocol adaptation
Graph  neural  networks  for  spatial  relationship
modeling

Success in these areas could significantly advance the field
beyond  current  capabilities,  leading  to  more  robust,
interpretable, and clinically applicable systems for brain tumor
classification.

CONCLUSION

The  application  of  machine  learning  and  deep  learning
techniques in brain tumor classification has shown remarkable
progress in recent years. Through this comprehensive review, I
have made several key contributions to the field:

Systematic  Analysis  of  ML/DL  Evolution:  Our[1]
review  provides  the  first  systematic  analysis  of  how
brain  tumor  classification  techniques  have  evolved
from traditional machine learning to current state-of-
the-art deep learning approaches. I uniquely highlight
the transition from hand-crafted features to automated
feature  extraction,  demonstrating  how  this  shift  has
improved  classification  accuracy  across  different
tumor  types.
Multi-modal  Integration  Framework:  I  have[2]
developed a novel framework for understanding how
different imaging modalities complement each other in
tumor  classification.  Our  analysis  reveals  that
combining MRI sequences with other modalities like
CT and PET can provide complementary information
that  significantly  improves  classification  accuracy,
particularly  for  complex  cases.
Comprehensive Evaluation of Model Architectures:[3]
Our review offers the most up-to-date comparison of
various model architectures, from traditional SVMs to
advanced  CNNs.  Uniquely,  I  have  identified  that
hybrid  approaches  combining  deep  learning  with
traditional machine learning techniques often achieve
better  results  than  pure  deep  learning  models,
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especially  when  dealing  with  limited  datasets.
Clinical  Integration  Roadmap:  I  have  developed  a[4]
novel roadmap for clinical integration of ML systems,
addressing  practical  challenges  such  as  workflow
integration,  model  interpretability,  and  real-time
processing  requirements.  This  roadmap  provides
concrete  steps  for  healthcare  institutions  looking  to
implement these technologies.

The  literature  reveals  a  clear  trend  towards  increasingly
complex  and  robust  models,  with  deep  learning  approaches,
particularly  Convolutional  Neural  Networks  (CNNs),
demonstrating  superior  performance  in  many  cases.  These
advanced techniques have shown the ability to automatically
extract  relevant  features  from  medical  images,  potentially
capturing  subtle  patterns  that  might  elude  human  observers.

However,  significant  challenges  remain.  The  limited
availability  of  large,  diverse,  and  well-annotated  datasets
continues  to  be  a  major  obstacle,  particularly  for  rare  tumor
types. The “black box” nature of many advanced models raises
concerns  about  interpretability  and  explainability,  which  are
crucial in medical applications. Furthermore, the integration of
these  ML  systems  into  clinical  workflows  and  their
generalization across different patient populations and imaging
protocols present ongoing challenges.

Despite  these  hurdles,  the  future  of  ML  in  brain  tumor
classification appears promising. Emerging directions such as
multi-modal approaches, federated Learning, and explainable
AI  offer  potential  solutions  to  current  limitations.  The
development  of  more  sophisticated  data  augmentation
techniques  and  the  integration  of  non-imaging  data  (such  as
genetic information) may help to address data scarcity issues.
Meanwhile, advances in model interpretability could increase
trust and adoption among clinicians.

This analysis has revealed several novel insights:

The superiority of ensemble approaches that combine
multiple  architectural  elements  over  single-model
solutions
The  critical  role  of  data  preprocessing  and
augmentation in achieving robust performance
The unexpected effectiveness of transfer learning from
non-medical domains when properly fine-tuned
The  emergence  of  self-supervised  learning  as  a
promising direction for addressing data scarcity

As the field progresses, it is crucial to maintain a balance
between technological advancement and clinical applicability.
Our review suggests three key areas for immediate focus:

Development  of  standardized  evaluation  frameworks[1]
for  comparing  model  performance  across  different
institutions
Creation of privacy-preserving techniques that enable[2]
multi-institutional collaboration
Integration  of  explainable  AI  techniques  that  align[3]
with clinical decision-making processes

In  conclusion,  while  machine  learning  techniques  have
already  demonstrated  significant  potential  in  brain  tumor
classification, this review has mapped out the current landscape
and  identified  promising  future  directions.  By  synthesizing
current knowledge and highlighting critical gaps, I  provide a
foundation for researchers and clinicians to advance the field
further. The systematic integration of these technologies into
clinical practice could revolutionize neuro-oncology, leading to
improved  treatment  planning,  better  patient  outcomes,  and  a
new era of precision medicine in brain tumor management.
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