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Abstract:

Aim:

This research aims to develop and evaluate a novel health classification and severity detection system based on Vision Transformers (ViTs) for
fetal ultrasound imagery. This contributes to improved precision in fetal health status detection and abnormalities with more accurate results than
other traditional models.

Background:

Amidst the other imperatives of resource-deficient developing nations, mitigating neonatal mortality rates is a challenge that demands precision-
based solutions in the era of artificial intelligence. Though the advent of machine learning models has added an optimal dimension to deal with
emerging complexity in fetal ultrasound imagery, there is a call to address the huge gap in the demanded precision for prediction than the existing
interpretation.

Objective:

This research strives to formulate and access a novel health classification and severity detection system based on the implementation of the Vision
Transformers frameworks. This pioneering investigation represents an unparalleled exploration into the efficacy of ViTs for discerning intricate
patterns within fetal ultrasonographic imagery, facilitating precise categorization of fetal well-being and prognosticating the magnitude of potential
anomalies.

Methodology:

A private and confidential dataset of 500 fetal ultrasound images has been collected from diverse hospitals. Each image has been annotated by
radiologists according to two main labels: the health status of the fetus, which includes healthy, mild, moderate, or severe, and the severity of
abnormalities as a continuous measure. At different levels, the dataset underwent pre-processing via distinct techniques. Then, the composite loss
function Cross-Entropy has been deployed to train the optimized VIT model using the Adam algorithm.

Results:

The classification accuracy of the proposed model is 90% for detecting the severity with an F1-score of 0.87 and MAE of 0.30. The research
ascertained that the model ViT evinced a superlative efficacy for the capturing of fine-grained spatial relations in ultrasound images to produce
revolutionary predictions.

Conclusion:

These results emphasize that ViTs have the potential to revolutionize fetal health monitoring and will contribute significantly to reducing neonatal
mortality  by  supplying  clinicians  with  accurate  and  reliable  predictions  for  early  interventions.  This  work  stands  as  a  yardstick  for  further
diagnostic applications using AI in fetal health care.
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1. INTRODUCTION

1.1.  Fetal  Assessment:  A  Cornerstone  of  Comprehensive
Prenatal Care

Fetal assessment forms one of the cornerstones of modern
prenatal care. The process is essential not only for monitoring
the ongoing health and development of the fetus but also for
safeguarding  the  mother's  well-being.  The  systematic
assessment  of  the  fetus,  apart  from being  regular  in  prenatal
visits,  is  also  multifaceted.  It  enlists  the  various  diagnostic
tools  and  procedures,  which  were  all  designed  to  furnish
comprehensive  insights  into  the  condition  of  the  fetus
throughout the pregnancy. Predominantly, the purpose of fetal
assessment is to follow up on the development of a fetus and,
hence,  delineate  any  complications  at  the  onset.  It  gives  the
healthcare provider an opportunity to take necessary measures
for the improvement of outcomes for both the mother and the
baby. Fetal assessment can be as simple as routine follow-up or
as complex as a  special  test  depending on the risk factors  of
pregnancy and the development of concerns at any time during
the  gestation  period.  Infants  are  assessed  by  ultrasound
imaging,  including  Doppler  studies,  non-invasive  prenatal
testing for genetic anomalies, and monitoring of the fetal heart
rate. These technologies now permit clinicians to see an image
of the fetus, monitor the growth patterns of the fetus, review
the development of the organs, and track blood flow and heart
functioning  [1].  Each  tool  contributes  vital  information  that
fills  in an accurate picture of  the health of  the fetus,  thereby
allowing healthcare professionals to uncover even very serious
problems, such as congenital disabilities, growth restrictions, or
signs of fetal distress. As prenatal care has continued to evolve,
so has the complexity of fetal assessment, hence becoming an
intrinsic  part  of  pregnancy  management,  especially  in  those
that are considered “high-risk.” Examples are if the mother has
pre-existing health problems, such as diabetes or hypertension,
or  if  she  has  had  problems  in  previous  pregnancies;  in  such
cases,  fetal  assessments  are  even  more  critical.  Assessments
offer  a  chance  for  early  identification  and  appropriate
interventions that may prevent or mitigate the problems. Fetal
assessment is not only monitoring the fetus but also gives some
insight  into  clinical  decision-making.  Information  from such
assessments aids in making decisions on timing and mode of
delivery, further testing if necessary, and interventions [2]. The
information  provided  in  high-risk  pregnancies  may  be
lifesaving as such information guides clinicians to act in time
to prevent such severe outcomes for both mother and baby [3].
Besides  its  clinical  value,  fetal  assessment  gives  a  sense  of
assurance to the expecting parents. Being able to see the baby
and receive frequent status reports on the baby's condition can
help  diminish  most  of  the  apprehensions  of  pregnancy.  This
reassurance  is  even  more  valid  in  pregnancies  already
complicated by earlier losses or health issues, where ongoing
monitoring will be of vital emotional support to the parents. In
a nutshell, fetal assessment is dynamic and an integral part of
prenatal care. Finally, it provides healthcare providers with the
tools  and  information  they  need  to  monitor fetal growth for
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early  detection  of  problems,  which  will  inform  clinical
decisions targeted at ensuring the best possible outcomes [4].
The  importance  of  accurate  and  timely  fetal  assessment  will
continue  to  increase  as  prenatal  care  continues  to  advance,
cementing this modality as one of the cornerstones in maternal
and fetal health [5].

1.2. Fetal Health: The Importance of Monitoring

Continuous fetal health monitoring has been advanced as
one of the cornerstones of prenatal care for achieving optimum
pregnancy outcomes. Primarily, fetal health monitoring aims at
the early detection of a possible complication such as IUGR,
congenital anomalies, or any manifestation of fetal distress [6].
Early  detection  is  of  prime  importance  because  appropriate
interventions could be initiated by healthcare providers well in
time,  thereby  reducing  risks  of  maternal  and  neonatal
morbidity  and  mortality.  The  hallmark  of  contemporary
prenatal  care  is  that  it  is  progressively  dependent  on  quality
data for clinical decisions [7]. Therefore, the need for accurate
and  timely  assessment  of  fetal  health  has  been  practically
paralleling the advancement of medical technology. Clinicians
today  may  employ  a  set  of  advanced  diagnostic  modalities,
which  include  high-resolution  ultrasound,  Doppler  studies,
non-invasive prenatal testing, and electronic fetal monitoring.
Each of  these tools  casts  light  on different  aspects  of  health,
and  thus,  all  together,  they  might  give  a  full  picture  of  the
condition of the fetus. High-resolution ultrasound enables the
stunning visualization of fetal anatomy in great detail, whereby
structural  anomalies  can  be  diagnosed  well  in  advance  [8].
Another  modality,  Doppler  ultrasound,  assesses  blood  flow
through  fetal  vessels  and  may  be  indicative  of  any  possible
compromise in fetal oxygenation or circulation. NIPT, on the
other  hand,  offers  a  non-invasive  means  to  screen  for
chromosomal  abnormalities,  offering  a  way  into  important
genetic information without the risks associated with invasive
procedures like amniocentesis [9]. These tools provide current
information that is greatly valued in making clinical decisions.
For instance, when restrictions to fetal growth are detected, the
clinicians  have  to  monitor  the  situation  closely  and  make
appropriate  decisions,  whether  in  the  adjustment  in  maternal
care  or  planning  of  an  early  delivery.  In  this  regard,  timely
interventions such as cesarean delivery may be life-saving for
the  fetus  to  prevent  further  complications,  which  would  put
both  mother  and  baby  in  danger.  Besides,  the  continuous
development  in  technologies  of  fetal  health  monitoring  has
made  personalization  a  core  method  of  prenatal  care  [10].
Clinicians  are  going  to  integrate  various  kinds  of  diagnostic
data to create a personalized plan of care for each pregnancy.
In caring for a high-risk pregnancy, there is little room for error
and  a  great  need  for  precise  monitoring.  As  fetal  health
monitoring  technologies  continue  to  evolve,  their  impact  on
prenatal  care  is  becoming  increasingly  important.  These  are
improvements not only in the accuracy of diagnosis but also in
the  outlook  for  detection  and  management  capability  in
pregnancy.  The  improved  overall  quality  of  this  technology
raises  the  standard  of  maternal  and  neonatal  outcomes  in
various patient populations [11]. In all, continuous monitoring
of fetal health is indefatigably important. Overall care for the
fetus,  early  complication  detection,  and  timely  and  effective
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intervention  are  just  to  name  a  few  reasons  why  continuous
prenatal  care  is  very  important.  As  medical  technology
continues to improve, the ability to monitor fetal health with
increasing precision will further improve pregnancy outcomes
and ensure the well-being of both mother and child [12].

1.3. The Need for Advanced Models in Ultrasound Imaging

Fetal ultrasound imaging is a cornerstone of prenatal care,
providing critical  insights  into  fetal  health  and development.
Despite advancements in machine learning, traditional models
such  as  Convolutional  Neural  Networks  (CNNs)  [13],
Recurrent Neural Networks (RNNs), Support Vector Machines
(SVMs), and Random Forests (RFs) face inherent challenges in
effectively  analyzing  the  complex  spatial  and  contextual
dependencies present in ultrasound images. These challenges
arise from the models' localized feature extraction, handcrafted
feature  dependency,  and  inability  to  analyze  entire  image
contexts  holistically.  Vision  Transformers  (ViTs)  [14],
leveraging self-attention mechanisms, address these limitations
by offering a novel approach to feature representation, enabling
superior diagnostic accuracy and multi-task learning.

1.3.1. Limitations of Traditional Models

1.3.1.1. CNNs

CNNs  excel  at  extracting  local  features  but  struggle  to
capture  long-range  dependencies  critical  for  ultrasound
imaging,  where  anomalies  may  span  distant  regions  of  an
image.  Their  reliance  on  convolutional  filters  makes  them
effective for localized patterns but limited in global contextual
analysis.

1.3.1.2. RNNs

Designed  for  sequential  data,  RNNs  (including  LSTMs)
focus  on  temporal  relationships  rather  than  spatial  ones,
making  them  less  effective  for  image-based  tasks.  Their
computational  complexity  and  vanishing  gradient  problems
further hinder performance, especially with high-dimensional
ultrasound data [15].

1.3.1.3. SVMs and RFs

Classical machine learning models such as SVMs and RFs
rely on handcrafted features, which require domain expertise
and  often  fail  to  generalize  across  diverse  datasets.
Additionally, their scalability is limited, and their performance
deteriorates with complex data such as medical images.

1.3.1.4. GANs

Generative Adversarial Networks (GANs) show promise in
generating  high-quality  synthetic  images  but  lack  the
interpretability and multi-task capabilities needed for clinical
applications. Their training instability and mode collapse issues
limit their practical use.

1.3.2. Vision Transformers: A New Frontier

ViTs  bring  a  revolutionary  shift  by  viewing  images  as
sequences  of  fixed-size  patches,  which  are  processed  using
self-attention  mechanisms.  This  enables  them  to  model  both

local  and  global  dependencies  simultaneously,  making  them
uniquely suited for ultrasound imaging.

1.3.2.1. Global Attention for Complex Patterns

Unlike  CNNs,  ViTs  analyze  the  entire  image  context,
capturing relationships between spatially distant regions. This
is crucial in fetal ultrasound imaging, where subtle anomalies
may not be localized but spread across multiple regions.

1.3.2.2. End-to-End Feature Learning

ViTs  eliminate  the  need  for  handcrafted  features,
autonomously  learning  robust  representations  that  adapt  to
diverse  imaging  conditions  and  datasets.

1.3.2.3. Multi-Task Learning Capabilities

ViTs  are  highly  flexible,  with  architectures  that  allow
simultaneous  classification  of  fetal  health  and  severity
detection.  Their  dual-head  structure  integrates  these  tasks
seamlessly,  improving  both  accuracy  and  efficiency.

1.3.3.  Advancements  in  Vision  Transformers  for  Medical
Applications

The  transformative  power  of  Vision  Transformers  is
rebuilding  medical  imaging  with  the  solution  to  some of  the
most challenging areas: handling complex visual patterns and
capturing  long-range  dependencies.  In  recent  works,  such  as
“From Simple  to  Complex  Scenes:  Learning  Robust  Feature
Representations for Accurate Human Parsing,” [16] ViTs have
emerged  as  highly  adaptable  in  deciphering  intricate  spatial
relationships. With this capability, ViTs hold great promise for
tasks  ranging from organ segmentation to  anomaly detection
and  the  classification  of  disease.  Unlike  traditional
convolution-based architectures, which largely fail in modeling
global  contexts,  ViT  models  are  excellent  at  dependency
modeling,  even  in  the  whole  image.  Their  unique  ability
unlocks  complex  anatomical  structures  in  a  way  no  other
model  can  while  making  them  better  suited  for  highly
sophisticated  tasks,  such  as  fetal  ultrasound.  The  attention
mechanisms at their core make the ViT clinically relevant to a
larger sense, enabling focused and interpretable results so that
each  prediction  not  only  becomes  correct  but  also  well-
understood-a necessary condition for trusting choice in medical
treatments.  The  adaptability  of  ViTs  goes  beyond  their
technical  capabilities.  The  referenced  study  shows  their
scalability across simple and complex datasets, reflecting the
capability to generalize to diverse medical imaging scenarios.
From  subtle  anomaly  capture  in  small-scale  datasets  to  the
analysis  of  heterogeneous  large-scale  imaging  repositories,
ViTs  offer  unprecedented  flexibility.  By  harnessing  these
developments,  this  work  positions  ViTs  as  a  game-changing
tool for medical applications. Their strong feature extraction,
together  with  generalization  across  different  complexities  of
data,  meets  critical  gaps  in  the  current  methodologies  of
imaging.  Beyond  improving  diagnostic  precision,  ViTs  pave
the way for the next generation of explainable AI in healthcare-
empowering clinicians with tools that are as reliable as they are
innovative.  This  synthesis  of  cutting-edge  research  and  real-
world applicability marks the possible revolution of ViTs in the
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field,  delivering  unparalleled  accuracy  and  efficiency  in
diagnostic  imaging  [17].

1.4.  Novel  Contributions  to  Prenatal  Care  Through
Transformer-Based Analysis

1.4.1.  Development  of  a  Novel  Fetal  Health  Assessment
Framework

This  article  presents  a  novel  framework  for  fetal  health
assessment  that  utilizes  the  Vision  Transformer  (ViT)
architecture  to  classify  fetal  health  status  and  detect  the
severity  of  abnormalities  in  fetal  ultrasound  images.  This
approach  addresses  the  rift  between  the  ongoing  research
practices for providing more accurate and efficient diagnoses in
prenatal  care.  This  study  is  groundbreaking  research  in  the
assessment of fetal health, as such, ViT has been brought into
implementation for the first time in this domain.

1.4.2. Creation of a Confidential and Well-Curated Dataset

The accumulation of ultrasound images of fetal has been a
challenging process,  which contributes  to  the  novelty  of  this
research  work.  A  private  dataset  comprising  500  fetal
ultrasound  images  has  been  gathered  from  varied  hospitals.
Experienced  radiologists  have  annotated  each  image  in  this
dataset. The dataset is highly diverse, ranging across different
gestation ages, fetal positions, and imaging conditions and thus
forms a very strong basis for model training and evaluation.

2. BACKGROUND

2.1. Evolution of Technology in Fetal Assessment

2.1.1.  Early  20th  Century:  The  Beginnings  of  Fetal
Monitoring1900s

The  beginning  of  the  20th  century  marked  a  very
unsophisticated  beginning  of  fetal  assessment;  it  employed
simple auscultation. The heart rate of the fetus was listened to
with  the  aid  of  a  stethoscope  called  a  fetoscope.  This  non-
invasive  method,  though  at  a  nascent  stage,  represented  the
first direct approach to assessing fetal vitality. However, this
modality  was  highly  subjective,  with  limited  accuracy,  and
provided little information about the overall status of the fetus'
health (Frøen et al., 2008).

2.1.2. 1950s: The Advent of Ultrasound Technology

2.1.2.1. 1950s

The first breakthrough became evident in the 1950s with
the  inclusion  of  ultrasound  technology  into  prenatal  care.
Ultrasound  allowed,  for  the  first  time  in  utero,  the
identification  of  the  fetus;  it  carried  on  its  promise  of
unparalleled views and insights into the anatomy and growth of
the  fetus.  Unlike  other  methods,  it  was  non-invasive  and
provided  real-time imaging;  thus,  it  became revolutionary  in
fetal  assessment.  Early  ultrasound images  were  rudimentary,
often grainy, and of low resolution, but this modality laid the
foundation  for  more  sophisticated  imaging  techniques  in  the
decades that followed.

2.1.3.  1960s-1970s:  Doppler  Ultrasound  and
Cardiotocography

2.1.3.1. 1960s

The Doppler ultrasound was developed in the 1960s, and
one can draw on assessment of fetal health by measuring blood
flow in the umbilical cord and fetal vessels. This becomes an
important  source  of  information  about  fetal  well-being,
especially when growth restriction or other complications are
suspected.

2.1.3.2. 1970s

Cardiotocography  first  appeared  in  the  1970s,  being  the
method of continuous monitoring of fetal heart rate and uterine
contractions. Continuous monitoring by CTG became a widely
used tool in labor and delivery wards as a means to recognize
fetal distress during labor and assist decision-making regarding
whether or not cesarean sections are in order.

2.1.4. 1980s: Refinement of Ultrasound Imaging

2.1.4.1. 1980s

During  the  1980s,  ultrasound  technology  underwent
significant  improvements,  yielding  high-resolution  imaging
systems.  Such  improvements  allowed  analysts  to  conduct  a
more  detailed  evaluation  of  the  anatomy  of  the  fetus  while
enabling  analysts  to  trace  congenital  anomalies  and  monitor
fetal  growth  with  great  accuracy.  Biophysical  profiles
introduced a combination of ultrasound with non-stress tests,
hence  developing  a  much-enhanced  assessment  of  the  well-
being of the fetus.

2.1.5. 1990s: Emergence of 3D and 4D Ultrasound

2.1.5.1. 1990s

The big leap forward was in the 1990s when there was the
introduction  of  3D  and  4D  ultrasound  imaging.  Unlike  the
traditional 2D ultrasound, which provides flat images, the 3D
ultrasound  provides  for  the  viewing  of  the  fetus  in  three
dimensions, providing more detailed and life-like images. The
usage  was  quite  specific  in  examining  structural  anomalies,
including cleft lip or skeletal dysplasia.

2.1.5.2. Late 1990s

4D ultrasound extended the imaging of 3D by adding the
element of real-time motion to view the fetus'  moving inside
the  womb by clinicians  and  expectant  parents.  These  further
improvements have greatly enhanced prenatal diagnostics and
opened new avenues for early intervention in cases of detected
anomalies.

2.1.6. 2000s: Introduction of Advanced Prenatal Screening

2.1.6.1. Early 2000s

New  prenatal  screenings  were  established  early  in  the
2000s,  and  among  them,  the  measurement  of  nuchal
translucency  by  means  of  ultrasound  examination  became  a
routine activity within the first trimester of pregnancy as part of
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screening concerning Down syndrome and other chromosomal
disorders.  The  combination  of  biochemical  markers  with
ultrasound parameters allowed more valid estimates of risk and
earlier detection of complications.

2.1.6.2. 2000s

The  echo-Doppler  assessment  of  fetal  blood  flow,  in
particular, was greatly enhanced with the introduction of high-
resolution  Doppler  ultrasound  for  suspected  cases  of  fetal
growth restriction or preeclampsia. It was during this time that
fetal  echocardiography  began  to  play  a  significant  role  in
clinical  practice,  enabling  extensive  study  of  the  fetal  heart
and, thus, congenital cardiac anomalies quite early (Zhang et
al., 2021).

2.1.7.  2010s:  The  Rise  of  Machine  Learning  in  Medical
Imaging

2.1.7.1. 2010s

This is  the area in which,  during the 2010s,  ML and DL
technologies  began  to  be  integrated  into  medical  imaging,
including  fetal  ultrasound.  Early  uses  of  ML  in  the  fetus
focused on basic image segmentation and anomaly detection.
Although  simple  according  to  today's  standards,  these
algorithms formed a nascent era where AI could begin to take
interpretive  burdens  off  clinicians  concerning  complex
imaging.

2.1.7.2. Mid-2010s

This led to a sudden increase in the use of Convolutional
Neural  Networks,  which  drastically  revolutionized  medical
imaging.  The  models  proved  to  be  very  powerful  in  the
analysis of ultrasound images, which provided a high degree of
accuracy based on the detection and classification of the fetus
abnormalities. The CNNs had the capability of processing large
data  volumes,  recognizing  patterns  that  may  be  difficult  for
human eyes to feign and therefore giving the second clinical
opinions useful in practice [18].

2.1.8. Late 2010s: Application of Advanced AI Models

2.1.8.1. 2017

Until  the  year  2017,  Vaswani  et  al.  introduced  the
Transformer model, which marked a great leap in performance.
Self-attention of the Transformer model initially proposed for
natural  language  processing  showed  great  efficiency  in
learning  complex  patterns  in  extensive  datasets.  Soon,  this
efficiency was transferred to medical imaging, including fetal
assessment,  where  capturing  intricate  spatial  relationships
within  ultrasound  images  plays  a  primary  role  [19].

2.1.8.2. The late 2010s

Adoption  of  the  Transformer  model  for  fetal  ultrasound
studies  allowed  for  an  increase  in  the  development  of  more
accurate, dependable AI-driven diagnostic tools. These models
could  thereby  focus  on  the  most  informative  regions  of  an
image to reduce variability and subjectivity inherent in human
interpretation.  This  period  also  saw  the  introduction  of

explainable AI in medical diagnostics, whereby models did not
stop at providing predictions but offered visualizations of their
decision-making  process  that  enhanced  the  transparency  and
trustworthiness of AI in clinical settings [20].

2.1.9. 2020s: The Future of Fetal Assessment

2.1.9.1. 2020s

Beginning  with  the  2020s,  AI  combined  with  advanced
imaging  modalities  continues  to  evolve  toward  a  fully
automated,  intra-examination  fetal  assessment  system
providing consistent, high-quality diagnostic information with
a minimum of human intervention, regardless of the location of
healthcare  services.  Cloud-based  platforms  and  telemedicine
have  expanded  to  enable  remote  fetal  monitoring  and
consultation, so essential in areas of the world where specialists
in prenatal care are sparse [21] as shown in Fig. (1).

2.2. Current Recognition Models in Fetal Assessment

2.2.1. Machine Learning models

2.2.1.1. Support Vector Machines (SVMs)

These act  in  the  classification of  fetal  heart  rate  patterns
and anomaly detection in ultrasound images. However, SVMs
usually  tend to  be computationally  expensive when handling
big datasets; hence, this makes them less effective in carrying
out large-scale assessments. The performance of SVMs tends
to be very sensitive based on the choice of  hyperparameters,
such as kernel type and regularization, which is normally hard
to optimize.  But while more interpretable than deep learning
models, SVMs provide very limited insight into how decisions
are  arrived  at,  again  limiting  acceptance  in  clinical  practice
[22].

2.2.1.2. Random Forests

These are being widely used for predicting gestational age,
classifying fetal  growth patterns,  and identifying risk  factors
for adverse pregnancy outcomes. However, as the number of
contributing trees becomes very large, Random Forests become
difficult  to  interpret;  this  phenomenon  is  coined  “forest
opacity.”  This  lack  of  transparency  complicates  any  insight
from the model predictions for clinicians. Moreover, Random
Forests require a significant amount of data for training,  and
their  performance  can  be  compromised  when  working  with
imbalanced datasets [23].

2.2.1.3. k-Nearest Neighbors (k-NN)

The nearest neighbor model is simple but efficient in the
classification and decision-making of the pattern of fetal heart
rate during labor. On the other hand, k-NN is very sensitive to
the predefined number of neighbors, k, and performance should
degrade  when  large  datasets  are  used  due  to  computational
costs related to finding the nearest neighbors. It also does not
allow k-NN to handle data high-dimensionality unless proper
dimensionality  reduction  techniques  are  applied.  This  is  the
case in fetal assessment, with images containing many features
[24].
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Fig. (1). Evolution fetal assessment.

2.2.1.4. Decision Trees

are  applied  to  predictive  modeling,  like  assessing  the
chance of  preterm birth  or  fetal  growth restriction.  Although
decision trees are valued for  their  interpretability,  one of  the
major  risks  associated  with  using  them  is  overfitting;  this
happens mostly when the tree is deep and has a large number
of  branches.  This  leads  to  models  that  work impressively on
training  data  but  fail  in  test  data.  Besides,  decision  trees  are
sensitive  to  minor  changes  within  one  dataset,  causing
differences in the tree structure hence affecting model stability
[18].

2.2.2. Deep Learning Models

2.2.2.1. Convolutional Neural Networks (CNNs)

Fetal biometric measurements, segmentation of organs, and
anomaly  detection  are  some  of  the  tasks  that  have  been
performed  with  the  help  of  deep  learning  models.  Their
effectiveness  generally  depends  on  large  annotated  datasets,
which  is  not  always  possible  in  the  case  of  every  clinical
condition.  Furthermore,  CNNs  can  easily  be  prone  to
overfitting  with  small  data;  although  performing  extremely
well in training data, they fail with new unseen data. Moreover,
interpretability is a major concern since the “black-box” nature
of  CNN  may  be  a  barrier  for  a  clinician  to  understand  the
model decision-making process, which might reduce trust and
thus adoption in clinical settings.

2.2.2.2. Recurrent Neural Networks (RNNs)

Including  Long  Short-Term  Memory  (LSTM)  networks,
are widely applied in fetal heart rate monitor-based time-series
analysis  for  the  prediction  of  patterns  of  fetal  distress.
However, being at the core of such a platform, RNNs may have
several drawbacks, including long training, while major faults
include a problem known as vanishing gradients, complicating
the  learning  of  long-term  dependencies,  and  their
computational complexity may require important resources in
both  the  training  and  deployment  phases.  Also,  RNNs  are
sensitive to the quality and consistency of  input  data;  hence,
they are error-prone when working with noisy or incomplete
datasets.

2.2.2.3. Autoencoders

Are used for image enhancement and anomaly detection;
issues related to reconstruction accuracy arise. The efficiency
of  autoencoders  depends  on  how  well  they  reconstruct  the
input  data,  which  might  be  difficult  considering  the  highly
complex  or  variable  fetal  images.  Similarly,  other  deep
learning  models  have  very  low  interpretability;  hence,  it  is
difficult to explain why certain features were enhanced or why
specific  anomalies  were  detected.  Furthermore,  the
autoencoder  may  fail  to  generalize  to  a  population  or  other
imaging  modalities  in  which  it  has  not  been  specifically
trained.

2.2.2.4. Generative Adversarial Networks (GANs)

Are applied to generate synthetic fetal ultrasound images



Fetal Diagnostics using Vision Transformer for Enhanced Health Current Medical Imaging, 2025, Volume 21   7

and  improve  the  quality  of  an  image.  However,  they  also
introduce significant training challenges. It is well known that
GANs  are  difficult  to  train  and  require  careful  tuning  and
substantial  computational  resources  for  stable  convergence.
They  are  also  prone  to  mode  collapse  scenarios  where  the
generated images have limited variety, reducing diversity for
effective generalization. Moreover, since GANs will generate
synthetic  images,  tight  control  needs to  be enforced to  make
them  representative  of  real  fetal  ultrasound  images.  Poor-
quality  images  can  only  lead  to  poor  conclusions  [25].

2.2.2.5.  Common  Challenges  in  Machine  Learning  Models
for Fetal Health Assessment

Common challenges to the application of machine learning
models  in  fetal  health  assessment  are  scalability  and
computational  expediency.  Support  Vector  Machines,  K-
Nearest Neighbors, and Decision Trees are some of the models
that  are  problematic  for  large  datasets  and  high-dimensional
data.  Their  performance  also  continues  to  be  plagued  by
sensitivity to hyperparameters and the difficulty of choice of an
optimal set of values-email kernel types in the case of SVMs or
the number of neighbors in the case of KNN. Other limitations
include interpretability,  where most  of  the models,  including
CNNs and RNNs, Autoencoders, and GANs, are “black-box”
systems  and  do  not  make  it  easy  to  discern  the  principles
behind the decision-making process. Models that are prone to
overfitting include Decision Trees, CNNs, and Autoencoders,
especially  on  smaller  datasets.  At  the  same  time,  Random
Forests  are  susceptible  to  issues  of  imbalanced  datasets  and
stability  in  the  outputs.  GANs  also  have  this  latter  problem.
Models  such  as  GANs  and  RNNs  require  very  intensive
computation  and  are  extremely  sensitive,  which  creates
instability and inefficiency; for them to work effectively and
stably,  much  tuning  and  large  amounts  of  data  are  required.
These  shared  challenges  highlight  the  need  for  careful
consideration of model selection and tuning in medical image
classification tasks, as shown in Fig. (2).

2.3. Emergence of Transformer Models in Fetal Assessment

The  development  of  Transformer  models  shows  huge
improvements in the field of medical imaging and assessment
regarding  a  fetus.  Although  Transformer  models  have  been
developed  for  natural  language  processing,  due  to  their
excellent capability in capturing long-range dependencies and
context  relations  in  data,  they  have  found  applications  in
several domains, including medical imaging. Unlike traditional
models  such  as  CNN  and  RNN,  both  of  which  have  their
limitations  on  processing  sequential  and  spatial  data,
transformers are particularly suited for complex tasks in fetal
assessment. Transformers work with a mechanism called self-
attention  that  weights  different  parts  of  the  inputted  data
according  to  their  importance.  This  mechanism  enables
Transformers to capture intricate patterns and relationships that
exist in large datasets, such as those of fetal ultrasound images
[26]. The capability of image processing and analysis with high
accuracy  in  an  efficient  way  has  opened  a  wide  avenue  for
automated fetal  assessment.  It  offers  clinically useful  insight
not available before [27], as shown in Fig. (3).
2.3.1. Advantages of Transformer Models

2.3.1.1. Contextual Understanding

Transformers  are  good  for  modeling  the  contextual
relationships  in  data,  considering  complex  patterns  and
dependencies  in  fetal  images.  This  validates  a  more  realistic
and  reliable  assessment,  particularly  for  tasks  containing  an
understanding of spatial and temporal relationships.

2.3.1.2. Scalability

Large datasets can be used to train transformers, thus being
ideal  for  processing  high-resolution  fetal  ultrasound  images.
Their  architecture  architecture  allows  parallel  processing  of
information, greatly reducing their training times with respect
to sequential models like RNNs.

Fig. (2). Applications of recognition models in fetal health assessment.
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Fig. (3). Timeline of transformer models' emergence in healthcare applications.

Fig. (4). Workflow of fetal assessment using transformer-based architecture.

2.3.1.3. Versatility

Transformers are flexible and can be adapted to a variety
of  tasks  in  fetal  assessment:  image  segmentation,  anomaly
detection,  and  prediction  of  fetal  outcomes.  Their  flexibility
also extends in many ways to their integration within different
clinical  workflows,  enhancing  overall  efficiency  in  prenatal
care.

2.3.1.4. Improved Accuracy

The self-attention mechanism in Transformers allows them
to  concentrate  on  the  most  relevant  parts  of  the  input  data;
hence,  it  reduces  noise  and  improves  the  accuracy  of  the
analysis. This is very important in medical imaging, where the
tiniest detail may define the diagnosis.

2.3.1.5. Reduced Need for Large Training Data

Although  large  datasets  are  advantageous,  Transformers

also perform well with relatively smaller datasets compared to
other models. This makes them applicable in scenarios where
labeled  data  is  scarce  due  to  their  ability  to  learn  complex
representations from a limited amount of data [28].

3. PROPOSED METHODOLOGY

The  mechanisms  in  this  work  are  organized  around  six
broad phases-data collection, data preprocessing, transformer-
based  model  architecture,  loss  function  and  optimization,
training  and  validation-and  finally,  evaluation  metrics.  The
objective is to perform fetal health classification and detect its
severity level using the Vision Transformer Architecture from
2D Fetal Ultrasound Images, as shown in Fig. (4).

3.1. Data Collection

The  basis  of  this  study  is  a  data  collection  phase
comprising a sizeable but reasonably diversified dataset of fetal
ultrasound images copiously with care. A total number of 500
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images have been collected from several hospitals with strict
privacy  and  confidentiality.  Expert  radiologists  carefully
labeled each image with two important labels: one to document
the  status  regarding fetal  health,  thus  classifying each image
into one of the following categories: healthy, mild, moderate,
or  severe,  and  a  second  one  for  the  severity  regarding
abnormalities, which actually provided a continuous measure
of  the  intensity  of  the  detected  issues.  This  dataset
encompasses  a  wide  range  of  demographic  variations,
including various gestational ages, fetal positions, and imaging
conditions.  All  steps  were  followed  with  great  scrutiny  in
accordance  with  ethical  guidelines,  anonymizing  all  patient
data  to  protect  the  privacy  of  participants.  This  dataset  is
complete and balanced, which is important for training a model
on  accurately  predicting  fetal  health  over  a  wide  range  of
clinical  scenarios,  as  shown  in  Fig.  (5).

3.2. Data Preprocessing

Preprocessing is a very important preliminary step in order
to  prepare  the  fetal  ultrasound  images  for  effective  model
training.  Given  the  varied  levels  of  image  quality  and
standardized  input  required  by  the  model,  several  steps  in
preprocessing  can  be  enforced  to  ensure  consistency  and

optimality of the dataset for further stages of analysis: resizing
images,  normalizing  data,  augmenting  data,  and
standardization.

3.2.1. Image Resizing

The  first  preprocessing  step  involves  resizing  each  fetal
ultrasound image to a uniform dimension, represented as (H,
W). The importance of this resizing is that the original pictures
differ in resolution owing to the different equipment used and
settings  of  the  ultrasound  machines  from  one  institute  to
another. Resizing pictures to one dimension ensures all inputs
going into the ViT model are of the same size, where the input
image is divided into smaller, non-overlapping patches before
being processed. Resizing the images to a consistent dimension
ensures that each input to the ViT has the same size, which is
essential for creating patches of a fixed size. Mathematically,
this process is represented as shown in Eq 1:

I’=Resize (I, (H, W) (1)

Where I is the original image, and I’ is the resized image.
Here,  H  and  W  are  carefully  chosen  to  ensure  that  when  the
image  is  divided  into  patches  of  size  (P×P),  the  number  of
patches is consistent across all images, as shown in Fig. (6).

Fig. (5). Sample grid from collected 2d ultrasound images.

Fig. (6). Comparison of original and resized ultrasound images (224x224).
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3.2.2. Normalization

The second preprocessing in line is normalization, done on
the  resized  fetal  ultrasound  images.  This  operation  rescales
pixel  values  to  fall  into  a  standardized  range  normally;  that
range  would  be  within  [0,  1].  This  is  particularly  important
when working with the Vision Transformer model because to
achieve the best learning of the model,  the input data should
have a consistent intensity distribution. The main reasons for
having  some  differences  in  intensities  are  different  lighting
conditions,  settings  of  ultrasound  machines,  and  other
environmental factors. Uniform processing of the input data is
very  important  for  the  model  in  performing  the  feature
extraction  process.  Normalization  does  this  by  bringing  the
pixel  values  within  each  image  to  a  common  range.  This  is
achieved  by  subtracting  the  minimum pixel  value  from each
pixel  in  the  image  and  then  dividing  by  the  range  of  pixel
values  (i.e.,  the  difference  between  the  maximum  and
minimum  pixel  values).  Mathematically,  this  process  is
expressed  as  in  Eq  2:

(2)

Where I’norm represents the normalized image

I’ is the resized image

min(I′) and max(I′) are the minimum and maximum pixel
values in

the image respectively as shown in Fig. (7).

3.2.3. Data Augmentation

Data augmentation is one of the most important techniques
to increase diversity within a dataset; the technique applies a
set of transformations to the existing images. This will have a
great impact on medical imaging since gathering diverse data is
a  challenge.  By  generating  new  variations  of  the  existing
images,  data  augmentation  prevents  overfitting  of  the  model
and thus enhances its generalization capability for new unseen
data, as shown in Table 1.

Fig. (7). Comparison of resized and normalized ultrasound images for analysis.

Table 1. Image augmentation techniques applied during model training.

Augmentation
Step

Transformation
Applied

Example
Parameters

Input
Image

Size (H,
W)

Output
Image Size

(H, W)
Description Visual Representation

Original Image - - (256,
256) (256, 256)

Original input image
before any

augmentation is
applied.

Random Rotation Rotation by a random
angle θ θ=20∘ (256,

256) (256, 256)

The image rotated by
20 degrees. The image

remains in the same
resolution.

𝑰′𝒏𝒐𝒓𝒎 =
𝑰′−𝐦𝐢 𝐧(𝑰′)

𝐦𝐚 𝐱(𝑰′)−𝐦𝐢 𝐧(𝑰′)
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Augmentation
Step

Transformation
Applied

Example
Parameters

Input
Image

Size (H,
W)

Output
Image Size

(H, W)
Description Visual Representation

Random
Horizontal Flip

Horizontal flip with
probability p p=0.5 (256,

256) (256, 256)
Image flipped

horizontally with 50%
probability.

Random Zoom Zoom by a factor z z=1.1 (256,
256)

(282, 282)
(cropped
back to

256x256)

Image zoomed in by
10%, potentially

requiring cropping
back to the original

size.

Random Shift Shift image by Δx and
Δy pixels

Δx=10,
Δy=−5

(256,
256) (256, 256)

The image shifted 10
pixels to the right and 5

pixels up.

Brightness
Adjustment

Adjust brightness by
factor β β=1.2 (256,

256) (256, 256) Brightness increased by
20%.

Contrast
Adjustment

Adjust the contrast by
factor γ γ=1.5 (256,

256) (256, 256) Contrast enhanced by
50%.

 

Given a normalized image I’norm, data augmentation applies
a series of transformations to create an augmented image I’aug ​
as shown in Eq 3:

I’aug​=Augment (I’norm​) (3)

Different augmentation techniques are applied, as shown in
Table 1.

4. TRANSFORMER BASED ARCHITECTURE

The  proposed  architecture  incorporates  the  Transformer-

based  model  for  better  representation  and  interpretation  of
complex patterns present in fetal ultrasound images. Advanced
mechanisms have been embedded within the architecture, such
as patch-based embedding, enhanced positional encoding, self-
attention,  cross-attention,  and  dual  output  heads  meant  for
accomplishing  high  accuracy  and  efficiency  of  classification
tasks related to fetal health and detection of its severity [29].

4.1. Introduction to ViT - Vision Transformers

The Transformer architecture finds a new application from

(Table 1) contd.....
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the domain of natural language processing to that of computer
vision. After the conventional CNNs, relying on convolutional
layers  for  processing  units  for  image  data,  ViTs  consider
images as sequences of patches and process these with the self-
attention  mechanism  developed  in  Transformers.  This
furnishes  the  model  with  truly  global  context  and  intricate
patterns  in  the  image  data  much  more  powerfully  than  the
traditional  methods do,  allowing the ViTs to be better  suited
for tasks involving very fine-grained visual analysis,  such as
assessment of fetal health [27].

4.2. Components of the Transformer-Based Model

4.2.1. Patch-Based Embedding

In the first step of the architecture, the pre-processed and
augmented ultrasound images are divided into non-overlapping
patches of size P×P. Each patch is treated as a separate token,
similar to how words are treated in NLP Transformers, and is
embedded  into  a  higher-dimensional  space  through  a  linear
transformation. This process can be mathematically formulated
as follows, shown in Eqs 4 and 5:

I’patch ​=Patchify(I’aug​,P) (4)
E=Linear (I’patch​) (5)

I’aug ​ is the augmented image.

Patchify(I’aug,P)divides the image into patches of size P×P

I’patch  represents  the  set  of  patches  extracted  from  the
image.

Linear (I’patch) is a learnable linear transformation that maps
each  patch  into  a  higher-dimensional  embedding  space,  E,
where EϵRN×D. Here, N is the number of patches, and D is the
dimension of the embedding.

This  approach  allows  the  model  to  process  localized
features within each patch while maintaining the computational
efficiency  necessary  for  handling  high-resolution  images,  as
shown in Table 2.

4.2.2. Enhanced Positional Embedding

Because  transformers  lack  a  natural  understanding  of
space,  which  is  essential  for  image-related  tasks,  positional
encodings are added to the patch embeddings to address this
issue.  This  will  give  the  Transformer  information  on  which
position a patch represents in the original image so that spatial
relationships among patches will be preserved. The positional
encoding is defined as in Eq 6:

Epos​=E+PositionalEncoding(E) (6)

Where:

Epos​ is the positionally encoded embedding.

PositionalEncoding  (E)  generates  positional  encodings
using sine and cosine functions of different frequencies, which
are then added to the patch embeddings E.

The  positional  encoding  allows  the  Transformer  to
maintain  an  understanding  of  the  spatial  structure  of  the
ultrasound image, which is  essential  for accurate fetal  health
assessment, as depicted in Fig. (8).

Table 2. Output for patch-based embedding.
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Fig. (8). Positional encoding visualization for Y-axis and X-axis transformations.

4.2.3. Self-Attention Mechanism

The  self-attention  mechanism  is  the  core  of  the
Transformer  architecture.  It  allows  this  model  to  weigh  the
importance of every patch compared to others. In other words,
it captures contextual relationships in an input image. The self-
attention  mechanism  will  compute  attention  scores  between
different patches defined as below in Eq 7:

(7)

Where:

Q=EposWQ ​ represents the query matrix.

K=EposWK represents the key matrix.

V=EposWV represents the value matrix.

WQ, WK, WV​ are learnable weight matrices.

dk is the dimension of the key vectors.

The self-attention mechanism calculates the weighted sum
of the value vector V, determining the weights by measuring
the similarity  between query Q and key K vectors.  This  will
help  the  model  to  make  predictions  based  on  the  most
informative  patches,  which  in  turn  will  capture  complex
patterns  and  contextual  information  from  the  ultrasound
images,  as  shown  in  Fig.  (9).

4.2.4. Cross-Attention Mechanism

To integrate multi-scale information, the model employs a
cross-attention mechanism, which allows for the consideration
of interactions between different layers and scales of the image.
The cross-attention mechanism is mathematically similar to the
self-attention mechanism, but it operates across different layers
or scales of the model, as defined below in Eq 8:

(8)

In this case, the query Q is obtained from one layer, while
the key K and value V are obtained from another layer. This
allows  the  model  to  aggregate  information  across  different
levels  of  abstraction,  enhancing  its  feature  extraction
capabilities,  as  shown  in  Fig.  (10).

4.2.5. Dual Output Heads

The final  output  of  the  Transformer  is  processed  by  two
distinct  heads:  one  for  classification  and  one  for  severity
detection  as  shown  in  Fig.  (11).  This  dual-head  approach
allows  the  model  to  perform  both  tasks  simultaneously,
leveraging the rich features  learned by the Transformer.  The
classification head outputs probabilities for the different fetal
health  status  categories,  while  the  severity  detection  head
outputs  a  continuous  score  representing  the  severity  level  as
depicted in Eqs 9 and 10.

Fig. (9). Heatmap representation of the self-attention mechanism activation.

Attention (Q, K, V) =softmax(
𝑸𝒌𝑻

√𝒅𝒌
) 𝒗          CrossAttention(Q, K,V)=softmax(

𝑸𝒌𝑻

√𝒅𝒌
) 𝒗    
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Fig. (10). Heatmap visualization of cross-attention weights between query and key patches.

Fig. (11). Transformer-based architecture for fetal health classification and severity detection.

Classification Head:

Probclass ​=softmax(Wclass ​•TransformerOutput+bclass ​), Where (9)

Wclass ​  and  bclass  are  the  weight  matrix  and  bias  for  the
classification  head.

TransformerOutput is the final output of the Transformer
model.

Severity Detection Head:

SeverityScore=Wseverity​•TransformerOutput+bseverity ​ (10)

Wseverity ​  and bseverity  ​  are the weight matrix and bias for the
severity detection head.

The  dual  output  heads  are  designed  to  capture  intricate
patterns  and  contextual  information,  enabling  the  model  to
effectively  assess  fetal  health  and  detect  the  severity  of  any
abnormalities.

Let's take an example calculation for the dual output heads
in a Transformer model using simple numbers to demonstrate
the process.

Transformer  Output:  We  assume  the  output  of  the
Transformer  model  (TransformerOutput)  is  a  vector  with  3
elements: [2.0, -1.5, 0.5].

Classification Head:

Weights  Wclass ​:  Assume  a  weight  matrix  with  3  output
classes and 3 input features, e.g.
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Biases  bclass:  Assume  a  bias  vector  for  the  classification
head, e.g., [0.1, −0.2,0.3]

Severity Detection Head:

Weights  Wseverity ​:  Assume  a  weight  vector  with  3  input
features, e.g., [0.4, −0.5,0.6]

Bias bseverity ​: Assume a bias for the severity detection head,
e.g., 0.2.

4.2.5.1. Classification Head Calculation

The  classification  head  computes  the  logits  (before
applying softmax) by multiplying the TransformerOutput with
the weight matrix Wclass ​ and adding the bias vector bclass ​:

Logits=Wclass•TransformerOutput+bclass (11)

Substituting the given values:

Calculating the matrix multiplication:

This simplifies to:

Next,  apply  the  softmax  function  to  convert  logits  to
probabilities:

Probclass ​=softmax (Logits) (12)

The softmax function is given by:

Calculating:

So, the probabilities are:

So,  the  classification  head's  output  probabilities  are
approximately  [0.273,  0.021,  0.706].

4.2.5.2. Severity Detection Head Calculation
The severity detection head computes a single continuous

severity score by multiplying the Transformer Output with the
weight vector Wseverity and adding the bias bseverity as shown in Eq
13​:

SeverityScore=Wseverity ​•TransformerOutput+bseverity (13)

Substituting the values:

Calculating the dot product:

So, the severity score output by the severity detection
head is 2.05.

Classification Head Output:  Probabilities  for  each health
status category: [0.273, 0.021, 0.706]. This indicates that the
model  assigns  a  27.3%  probability  to  the  first  class,  a  2.1%
probability to the second class, and a 70.6% probability to the
third class.

Severity  Detection  Head  Output:  A  continuous  severity
score of 2.05.

This  example  illustrates  how  the  dual  output  heads  of  a
Transformer-based  model  can  simultaneously  provide  a
probabilistic  classification  of  fetal  health  status  and  a
continuous severity score based on the features learned by the
model.

4.2.6. Loss Function and Optimization
A  composite  loss  function  is  constructed  to  guide  the

training  of  the  Transformer  model,  combining  cross-entropy
loss  for  classification  and  mean  squared  error  (MSE)  for
severity  detection.  The  total  loss  is  defined  as
Ltotal=Lclass+λL severity,  where  λ  is  a  hyperparameter  that
balances  the  contributions  of  the  classification  and  severity
losses.  The  classification  loss  Lclass ​  uses  cross-entropy  to
measure  the  difference  between  predicted  class  probabilities
and true  class  labels,  while  the  severity  detection loss  Lseverity

uses MSE to quantify the error in predicting the severity score.
The  Adam  optimizer  is  employed  to  update  the  model
parameters  θ  with  a  learning  rate  η0​  and  weight  decay  γ  to
prevent  overfitting.  The  parameter  update  rule  is  given  by

,  ensuring  that  the  model  learns
effectively from the training data while maintaining the ability
to generalize to new data, as shown in Table 3.

0.2 −0.3 0.5
−0.6 0.1 0.4
0.7 −0.2 0.3

 

                                     Logits= (
0.2 −0.3 0.5

−0.6 0.1 0.4
0.7 −0.2 0.3

) . (
2.0

−1.5
0.5

)  + (
0.1

−0.2
0.3

) 

Logits= (
(0.2 ∗ 2.0) + (−0.3 ∗ −1.5) + (0.5 ∗ 0.5)
(0.6 ∗ 2.0) + (0.1 ∗ −1.5) + (0.4 ∗ 0.5)
(0.7 ∗ 2.0) + (−0.2 ∗ −1.5) + (0.3 ∗ 0.5)

) + (
0.1

−0.2
0.3

) 

Logits = (
0.4 + 0.45 + 0.25

−1.2 − −0.15 + 0.2
1.4 + 0.3 + 0.15

) + (
0.1

−0.2
0.3

) 

Logits=(
1.1

−1.15
1.85

) + (
0.1

−0.2
0.3

) 

Logits=(
1.2

−1.35
2.15

) 

Probclass(i)=
𝒆𝒙𝒑(𝑳𝒐𝒈𝒊𝒕𝒔(𝒊))

∑ 𝐞𝐱𝐩 (𝑳𝒐𝒈𝒊𝒕𝒔(𝒋))𝟑
𝒋=𝟏

 

Denominator=exp (1.2) +exp (−1.35) +exp (2.15) 

Denominator=e1.2+e−1.35+e2.15≈3.32+0.26+8.58=12.16 

Probclass(1) =  
𝑒𝑥𝑝(1.2)

12.16
 ≈ 

3.32

12.16
 ≈ 0.273 

Probclass(2) =  
𝑒𝑥𝑝(−1.35)

12.16
 ≈ 

0.26

12.16
 ≈ 0.021 

Probclass(3) =  
𝑒𝑥𝑝(2.15)

12.16
 ≈ 

8.58

12.16
 ≈ 0.706 

SeverityScore = (0.4 −0.5 0.6) . (
2.0

−1.5
0.5

) + 0.2 

SeverityScore= (0.4×2.0) +(−0.5×−1.5) +(0.6×0.5) +0.2 

SeverityScore=0.8+0.75+0.3+0.2=2.05 

θ(t+1)=θ(t)−η0(
𝜕𝐿𝑡𝑜𝑡𝑎𝑙

𝜕θ
+ γθ(t))
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Table 3. Mathematical formulations for total loss, classification, and severity loss.

Component Mathematical Formulation Visualizations
Total Loss Ltotal Ltotal​=Lclass ​+λLseverity

Classification
Loss Lclass

Severity Loss
Lseverity

Lclass= 
−1

𝑛
∑ ∑ 𝑌𝑖𝐶

𝑐=1
𝑁
𝑖=1 ,clog(𝑃𝑟𝑜𝑏 𝑐𝑙𝑎𝑠𝑠(𝑖, 𝑐) ) 

Lseverity=
1

𝑛
∑ (𝑦i

𝑁
𝑖=1 ,severity-SeverityScore(i))2 
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Component Mathematical Formulation Visualizations
Parameter

Update Rule

 

4.2.7. Training and Validation

The  model  is  then  trained  with  pre-processed  and
augmented data in Phase 5, for which the main objective is the
minimization of the composite loss function that includes both
classification loss and severity detection loss. The parameters
will  be  iteratively  optimized  by  the  Adam  optimizer  while
monitoring the performance on the validation set to generalize
to  unseen  data.  The  training  process  aims  to  minimize  the
composite loss Ltotal = Lclass + λLseverity, combining cross-

entropy  loss  for  classification  and  mean  squared  error  for
severity detection. Early stopping is used to prevent overfitting
by halting training if validation loss doesn’t improve after a set
number of epochs. The model is trained over multiple epochs,
with regular validation to assess performance on unseen data.
Metrics  like  accuracy,  precision,  recall,  F1-score,  MAE,  and
RMSE are used to evaluate the model. The model with the best
validation performance is selected as the final model, ensuring
it generalizes well to new data, as shown in Table 4.

Table 4. Performance metrics comparison between training and validation sets.

Metric Training Set
Value

Validation Set
Value

Visualization

Total Loss 0.35 0.45

θ (t+1) = θ(t) - η0 (
𝜕𝐿𝑡𝑜𝑡𝑎𝑙

𝜕𝜃
  +  𝛾𝜃(𝑡)) 

(Table 3) contd.....
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Metric Training Set
Value

Validation Set
Value

Visualization

Classification Accuracy 92% 89%

Precision 0.91 0.88

Recall 0.90 0.87

F1-Score 0.905 0.875

Mean Absolute Error
(MAE)

0.25 0.30

Root Mean Squared Error
(RMSE)

0.35 0.40

5. RESULTS

5.1. Attention Map Overlay

The image here represents the attention map laid over the
original image, likely part of some visualization to determine
which regions of the image the model pays the most attention

to with respect to its decision-making processes. This will be
the  color  coding  for  such  an  attention  map,  with  a  gradient
scale  showing  the  range  from  low  to  high  attention
level/importance assessed by the model between different parts
of the image. Areas with warmer colors closer to red indicate
higher  attention,  whereas  cooler  colors  closer  to  blue  reflect
lower  attention.  From  this  attention  map  overlay,  it  would

(Table 4) contd.....
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appear  that  the  model's  attention  is  spread  over  the  image
almost  uniformly.  That  would seem to  indicate  that  much of
any particular region of the image is not strongly favored over
the  others  by  this  model  in  making  its  predictions,  either
because  the  model  is  considering  a  wide  range  of  features
across the image or because it is failing to focus its attention on
the  most  relevant  areas  and  hence  might  make  less  accurate
predictions. In practice, models like Transformers rely a lot on
attention mechanisms; therefore, it would be expected to find
purer  attention  map  portions  where  individual  and  relevant
features  are  focused  on  in  tasks  such  as  image  classification
and  segmentation.  The  uniform  distribution  of  such  output
would  suggest  further  research  in  the  matter.  This  could  be
further  tuned-innervated  by  either  incorporating  more
improvement  in  model  training  or  even  the  design  of  more
mechanisms  of  attention  to  draw  out  and  highlight  the
important  features  across  the  images.  This  analysis  would
suggest  that  the  model  is  working  but  that  there  could  be
further improvements in the way it pays attention to different
parts of the image, with a likely gain both in the interpretability
and in the predictiveness, as shown in Fig. (12).

5.2. Advanced Metrics for Attention Map Evaluation

In  addition  to  standard  metrics  like  IoU  and  DSC,  we
introduced  innovative  approaches  to  evaluate  the  spatial  and
functional alignment of attention maps with expert annotations.
Metrics such as Center of Gravity (CoG) Shift, Attention Focus
Ratio  (AFR),  Weighted  Relevance  Score  (WRS),  Attention
Energy  Distribution  (AED),  and  Overlap  Dynamics  Metric
(ODM) provide a deeper understanding of the attention maps'
behavior.  For  severe  cases,  the  attention  maps  achieved  the
lowest CoG Shift  (2.5 pixels),  reflecting precise centering of
attention on annotated regions. The AFR values increased with
severity,  reaching  78%  for  severe  cases,  indicating  that  the
model  focused  more  efficiently  on  relevant  areas  for
pronounced  anomalies.  Similarly,  the  WRS  demonstrated
higher  relevance  scores  for  severe  cases  (0.89),  emphasizing

the  model’s  ability  to  prioritize  critical  regions.  The  AED
values, which quantify attention waste, decreased with severity,
highlighting  the  model's  improved  focus  on  clinically
significant areas. The Overlap Dynamics Metric (ODM) further
validated  the  model's  consistency  across  sequential  frames,
with  severe  cases  maintaining  an  average  IoU  of  80%  over
time.  These  metrics  collectively  underscore  the  model’s
reliability and robustness in generating clinically interpretable
attention maps, as shown in Table 5.

1.  Center of  Gravity (CoG) Shift:  Measures the spatial
bias by calculating the Euclidean distance between the centers
of  the  predicted  attention  region  and  the  expert-annotated
region,  as  shown  in  Eq  14.

(14)

2.  Attention  Focus  Ratio  (AFR):  Quantifies  the
percentage  of  the  attention  map  area  overlapping  with  the
annotated  region,  as  shown  in  Eq  15.

(15)

3.  Weighted  Relevance  Score  (WRS):  Evaluates  the
attention intensity, giving higher importance to areas closer to
the center of the expert-annotated region, as shown in Eq 16.

(16)

4. Attention Energy Distribution (AED) : Measures how
much  of  the  attention  energy  is  focused  outside  the  relevant
annotated region, as shown in Eq 17.

(17)

5.  Overlap  Dynamics  Metric  (ODM):  Tracks  the
consistency of attention alignment across sequential frames or
test cases, as shown in Eq 18.

(18)

Fig. (12). Attention map overlay on the input image for analysis.

CoG Shift = √(𝒙𝒑𝒓𝒆𝒅 − 𝒙𝒕𝒓𝒖𝒆)
𝟐

+ (𝒚𝒑𝒓𝒆𝒅 − 𝒚𝒕𝒓𝒖𝒆)
𝟐
    

 

AFR=
𝑨𝒓𝒆𝒂 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑨𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏 𝑴𝒂𝒑

WRS=∑ 𝔀𝒊𝒊∈𝑨 . 𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚𝒊, 𝒘𝒉𝒆𝒓𝒆 𝔀𝒊𝜶
𝟏

𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒕𝒐 𝑪𝒆𝒏𝒕𝒆𝒓
       

AED = 
 ∑ 𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚𝒊𝒊∈𝑨

∑ 𝑰𝒏𝒕𝒆𝒏𝒔𝒊𝒕𝒚𝒊𝒊

ODM=
1

𝑇
∑ 𝐼𝑜𝑈(𝑡)𝑇

𝑡=1      
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The optimization of attention maps resulted in consistent
improvements across all metrics (IoU, DSC, precision, recall,
and F1-score) for each severity class Table 6. Mild cases saw
the  most  significant  gains,  with  IoU increasing  by  7.7% and
F1-score by 6.5%, indicating a better focus on subtle features.
Moderate  cases  demonstrated  enhanced  recall  (+7.8%),
reflecting improved capture of relevant regions. Severe cases,
already  performing  well,  showed  smaller  yet  meaningful
improvements,  with  precision  rising  by  4.7%,  reducing  false
positives.  Overall,  the  optimization  enhanced  the  model’s
ability  to  localize  and  interpret  relevant  regions,  making
predictions  more  reliable  and  clinically  meaningful.  These
results underscore the importance of attention map refinement
in boosting performance and interpretability, as shown in Table
7.

5.3.  Ablation Studies:  Understanding Component Contri-
butions

Ablation studies were conducted to assess the importance
of various components of the Transformer model, such as the
positional  encoding,  self-attention  layers,  and  the  dual-head
output structure. By systematically removing or altering these

components,  we  evaluated  their  impact  on  overall  model
performance.  The  bar  chart  below  shows  the  outcome  of  an
ablation  study  carried  out  on  the  Transformer  model  to
examine  the  contribution  made  by  different  components  in
terms of accuracy-bottom green bars and total loss-purple bars.
It compares the performance of the full model with that of the
variants in which the following crucial components have either
been removed or modified: positional encoding, self-attention
layers, and output with two heads. The chart indeed shows that
the full model, with all components, has the highest accuracy
and, at the same time, the least total loss. Removing positional
encoding has slightly reduced the accuracy and increased the
total  loss,  which  means  positional  encoding  is  important  in
terms of the ability of the model to learn spatial relations in the
data. With the removal of self-attention layers, the huge decline
in accuracy and a higher value for the loss of the total hinted at
how  sensitive  the  model  performance  was  to  self-attention.
Lastly,  while  the  model  output  is  limited  to  a  head  only,  its
accuracy  stays  comparable  to  that  of  a  model  without
positional encoding, while the total loss is a lot higher than in a
full model, demonstrating how dual-head output plays its role
of  balancing  multi-classification  and  severity  detection
effectively  as  depicted  in  Fig.  (13  and  Table  8).

Table 5. Quantitative Results for Attention Map Analysis Across Severity Classes

Severity Class CoG Shift (pixels) AFR (%) WRS (Normalized) AED (%) ODM (%)
Mild 4.2 65 0.72 20 68

Moderate 3.8 72 0.81 15 75
Severe 2.5 78 0.89 10 80

Table 6. Performance comparison before and after attention map optimization .

          Severity Class           Metric           Before Optimization           After Optimization           Improvement (%)
          Mild           IoU (%)           65           70           +7.7

          DSC (%)           78           82           +5.1
          Precision (%)           80           85           +6.3

          Recall (%)           75           80           +6.7
          F1-Score (%)           77           82           +6.5

          Moderate           IoU (%)           68           72           +5.9
          DSC (%)           80           84           +5.0

          Precision (%)           83           87           +4.8
          Recall (%)           77           83           +7.8

          F1-Score (%)           80           85           +6.3
          Severe           IoU (%)           72           75           +4.2

          DSC (%)           83           86           +3.6
          Precision (%)           85           89           +4.7

          Recall (%)           81           85           +4.9
          F1-Score (%)           83           87           +4.8

Table 7. Ablation study results showing accuracy and total loss comparison.

Component Accuracy Total Loss
Full model 0.89 0.35

No positional encoding 0.84 0.40
No self-attention 0.81 0.42
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Component Accuracy Total Loss
Dual head output 0.83 0.39

Fig. (13). Ablation study comparing the accuracy and total loss across model components.

5.4. Advanced Error Analysis for Severity Detection

In  addition  to  reporting  mean  absolute  error  (MAE)  and
root  mean  squared  error  (RMSE),  we  conducted  a  residual
analysis  to  understand where  the  model's  predictions  deviate
most  significantly  from  actual  severity  scores,  as  shown  in
Table 8. This analysis is crucial for identifying specific cases
where the model's predictions may require further refinement.
This density plot compares the distribution of residuals, namely

differences  between  predicted  and  actual  values,  before  and
after  augmentation.  The  blue  curve  is  wider,  and  its  peak  is
lower because residuals before augmentation are more spread
out.  While  the  orange  curve  is  narrower  and  sharply  peaked
around  zero,  it  thus  suggests  that  after  augmentation,  the
model's predictions have become more accurate and consistent.
This  result  underlines  how  effective  data  augmentation  is  in
keeping  the  prediction  error  small  and,  hence,  bettering  the
overall reliability of the model, as represented in Fig. (14).

Fig. (14). Residual distribution comparison before and after data augmentation.

Table 8. Comparison of MAE and RMSE for training and validation sets.

          Metric           Training Set Value           Validation Set Value
          MAE           0.25           0.30

          RMSE           0.35           0.40

Full Model No Positional Encoding Self-Attention Single Head Output 
Model Components 

(Table 7) contd.....
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5.5. Hyperparameter Tuning: Influence of Learning Rate
on Convergence

Hyperparameter  tuning  has  a  primary  role  to  perform  in
model performance optimization. Here, in this implementation,
we are experimenting with different  learning rates  to see the
impact  they  have  on  the  convergence  speed  and  final
performance of the model. The line plot illustrates the relation
between the learning rate and the number of epochs that get the
model  to  converge.  It  shows  a  significant  decrement  in  the
number  of  epochs  taken  by  the  model  to  converge  when  the
learning rate increases. Precisely, while the learning rate is low
-10  -3,  the  model  converges  in  about  30  epochs;  when  the
learning  rate  is  increased  -10  -2,  it  takes  roughly  10  epochs
before  convergence.  This  proves  that  with  an  increased
learning rate, the rate of convergence becomes quicker and thus
reduces the training time. However, it's essential to balance this
with the risk of overshooting the optimal solution, which can
happen with excessively high learning rates, as shown in Fig.
(15 and Table 9).

5.6. Classification Report

The classification report provides a detailed evaluation of
the  model's  performance  across  three  classes,  with  overall
metrics  summarized  in  the  last  column.  The  model  achieved
high  precision  across  all  classes,  particularly  in  Class  1  and
Class 2, both with perfect precision scores of 1.00. Recall was
highest for Class 0 and Class 2, both at 1.00, but was lower for
Class  1  at  0.67,  indicating  some  difficulty  in  correctly
identifying  all  instances  of  Class  1.  The  F1  score,  which
balances precision and recall, was highest for Class 2 at 1.00,
followed by Class 0 at 0.86 and Class 1 at 0.80. Overall,  the
model  demonstrates  strong  performance,  with  a  weighted
precision of 0.93, a weighted recall of 0.90, and a weighted F1
score of 0.90. The accuracy across all classes is 0.90, indicating
that 90% of the predictions were correct. The macro average,
which  considers  each  class  equally,  reflects  a  balanced
performance with a score of 0.90. Cohen's Kappa score of 0.83
suggests  a  substantial  agreement  between  the  predicted  and
actual  labels,  adjusting  for  chance,  further  affirming  the
model's  reliability,  as  shown  in  Table  10.

Table 9. Learning rate versus epochs to model convergence comparison.

          Learning Rate           Epochs to Convergence
          0.01           10
          0.005           15
          0.001           20
          0.0005           30

Fig. (15). Relationship between learning rate and convergence speed in training.
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Table 10. Precision, recall, F1-score, and overall classification metrics comparison.

          Metric           Class 0           Class 1           Class 2           Overall
          Precision           0.75           1.00           1.00           0.93 (Weighted)
          Recall           1.00           0.67           1.00           0.90 (Weighted)
          F1-Score           0.86           0.80           1.00           0.90 (Weighted)
          Support           3           3           4           10
          Accuracy           -           -           -           0.90
          Macro Average           0.92           0.89           0.89           0.90 (Average)
          Cohen's Kappa           -           -           -           0.83

5.7.  Analysis  of  Model  Comparison  for  Fetal  Health
Assessment

The bar graph demonstrates the performance of different
machine  learning  and  deep  learning  models  about  three
important  metrics:  accuracy,  interpretability,  and  scalability.

5.7.1. Accuracy

The highest, which is 90% by ViT, outperforms traditional
machine learning models, which stand at SVM with 78%, and
Random Forest at 80%. Deep learning models are CNNs and
RNNs. Although their performance is good, it does not reach
that of ViT. The reason could be that ViT processes the image
as a sequence of patches, leveraging self-attention mechanisms
in a way that makes the fine patterns graspable and increases
its performance in fetal health classification.

5.7.2. Interpretability

While  machine  learning  models,  such  as  Decision  Trees
and  k-NN,  are  much  more  interpretable  since  their  internal
structure is simpler and their decision-making processes much

more transparent, the deep learning models that include CNNs
and  RNNs  tend  to  lag  in  this  respect  because  they  act  like
“black-box”  models.  While  the  performance  of  the  ViT  was
somewhat better compared with other deep learning models, it
also lags far behind traditional models on this metric.

5.7.3. Scalability

Deep learning models are much ahead when dealing with
large  datasets  compared  to  traditional  machine  learning
models. Once again, ViT leads the way with a scalability score
of 85%, ably supported by its efficient architecture that allows
for parallel processing of large datasets. Most of the models,
including SVM and k-NN, are not scalable due to the fact that
the associated computational cost is high during the handling
of large-scale data.

Among all these, Vision Transformers would be an ideal
model for fetal health assessment since they have achieved an
optimal balance between high accuracy and scalability, turning
them  the  most  ideal  in  clinical  settings  with  large  datasets
where high precision is critical. Traditional models may be of
value where interpretability is more key, as shown in Fig. (16).

Fig. (16). Comparison of fetal health assessment models on accuracy, interpretability, and scalability.
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5.8. Model Performance with Data Augmentation

Data augmentation was employed to address the limitation
of  a  small  dataset,  increasing  the  total  number  of  training
images from 500 to 2500. Augmentation techniques, including
rotations,  flips,  brightness  adjustments,  noise  injection,  and
zooming,  were  applied  to  simulate  real-world  variability  in
fetal  ultrasound  imaging.  These  transformations  not  only
improved  the  diversity  of  the  dataset  but  also  enhanced  the
model's  generalization  and  robustness.  Representative
examples  of  augmented  images  are  provided  in  Table  1.  As
shown in Table 11, data augmentation positively impacted all
key performance metrics.  Accuracy,  the most  critical  metric,
increased from 0.88 to 0.90, reflecting the model’s improved
ability  to  classify  fetal  anomalies.  Similarly,  precision  rose
from  0.85  to  0.88,  and  recall  improved  from  0.84  to  0.87,
showcasing  the  model's  enhanced  ability  to  balance  false
positives  and  false  negatives.

The F1-score, a metric that combines precision and recall,
also increased from 0.85 to 0.88, emphasizing the robustness of
the  model  in  predicting  both  positive  and  negative  cases
effectively.  In  addition  to  classification  improvements,  data
augmentation enhanced the model's performance on continuous
variables, as evidenced by the decrease in mean absolute error
(MAE)  from  0.22  to  0.20.  This  reduction  indicates  better
predictions for severity levels. Furthermore, data augmentation
reduced the training time required from 10 epochs to 8 epochs,
likely  because  the  increased  diversity  of  the  augmented  data
allowed  the  model  to  converge  faster.  Validation  loss  also
decreased  from 0.15  to  0.12,  signifying  better  generalization
and reduced overfitting. Validation accuracy followed a similar
trend,  increasing  from  0.88  to  0.90,  further  emphasizing  the
model’s  robustness  with  augmented  data.  These  findings
underscore the critical role of data augmentation in enhancing

the  performance  and  efficiency  of  the  training  process.  By
introducing  diversity  and  reducing  overfitting,  augmentation
significantly improved the model’s reliability and applicability
to  real-world  scenarios.  In  this  respect,  data  augmentation
remains an indispensable tool for advancing machine learning
models in medical imaging tasks, as shown in Table 11.

5.9. Confidence Intervals and Effect Sizes: Measuring the
Strength of Model Enhancements

This  section  presents  an  in-depth  analysis  of  the
performance  improvement  obtained  by  applying  data
augmentation  with  statistical  measures,  such  as  confidence
intervals and effect size. These metrics will enable us to reach
both  the  reliability  of  performance  improvements  and  the
practical  significance.The  following  table  provides  the
summary  of  95%  confidence  intervals  taken  with  regard  to
model accuracy both on the original and augmented datasets.
These  confidence  intervals  help  us  conceptualize  the  range
within  which  the  true  model  accuracy  may  actually  lie  with
95% certainty, as shown in Table 12.

5.10. Analysis

The confidence intervals for these metrics are higher when
augmented data is  utilized.  For example,  the accuracy of  the
model with original data lies in the range between 86.18% and
89.02%, while for augmented data, the rate increases and lies
between  89.18%  and  92.02%.  A  smaller  width  in  the
augmented data intervals means better stability and reliability
in those results. Cohen's d represents the effect size, otherwise
called the practical importance of the difference in performance
between the original and augmented data sets. The larger the
effect size, usually greater than 0.5, the statistically significant
difference  becomes  practically  important,  as  shown in  Table
13.

Table 11. Performance comparison between original and augmented data sets.

          Metrics           Original Data (500 Images)           Augmented Data (2500 Images)
          Accuracy           0.88           0.90
          Precision           0.85           0.88

          Recall           0.84           0.87
          F1-Score           0.85           0.88

          MAE           0.22           0.2
          Training Time (Epochs)           10.0           8.0

          Validation Loss           0.15           0.12
          Validation Accuracy           0.88           0.90

Table 12. Confidence Intervals for Performance Metrics

          Metric           Original Data (95% CI)           Augmented Data (95% CI)
          Accuracy           86.18% – 89.02%           89.18% – 92.02%
          Precision           84.00% – 86.00%           87.00% – 89.00%

          Recall           83.00% – 85.00%           86.00% – 88.00%
          F1-Score           84.00% – 86.00%           87.00% – 89.00%

          MAE           0.21 – 0.23           0.19 – 0.21
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Table 13. Effect Sizes (Cohen’s d) for Performance Improvements

          Metric           Effect Size (Cohen's d)           Interpretation
          Accuracy           2.63           Large
          Precision           2.40           Large

          Recall           2.31           Large
          F1-Score           2.50           Large

          MAE           1.45           Large

Table 14. Quantifying the Impact of Data Augmentation on Model Performance Using Cohen’s d

Metric Before Augmentation After Augmentation Percentage Change Cohen's d
Mean Accuracy 87.6% 90.8% +3.65% 3.37

Standard Deviation 1.1% 0.8% -27.3%

Table 15. Impact of Weighting Parameter (λ) on Classification and Severity Detection Accuracy

          λ           Classification Accuracy (%)           Severity Detection
Accuracy (%)           Classification Change (%)           Severity Change (%)

          0.1           85.2           91.6           0%           0%
          0.3           88.4           89.2           +3.76%           -2.62%
          0.5           91.0           85.8           +6.81%           -6.34%
          0.7           92.2           82.4           +8.22%           -10.04%
          0.9           93.1           78.2           +9.28%           -14.63%

5.11. Analysis
All performance metrics yield a Cohen's d well over 0.8,

which  suggests  that  the  improvements  gained  through  data
augmentation  are  highly  practically  significant.  Among such
improvements,  accuracy has  a  very  large  effect  size  of  2.63,
confirming that data augmentation significantly improves the
performance of the model.

5.11.1. Analysis
Data augmentation was found to have a significant positive

impact  on  model  performance.  Using  Cohen’s  d  to  quantify
this  effect,  a  large  effect  size  of  3.37  was  observed,
highlighting  a  meaningful  improvement  in  accuracy  (from
87.6% to 90.8%) and a reduction in variability. These results
demonstrate that data augmentation enhances the diversity and
quality of training data, ultimately leading to more reliable and
generalizable  predictions.  The  calculated  Cohen’s  d  =  3.37
signifies  a  very  large  effect  size,  reflecting  the  substantial
impact  of  augmentation  on  model  performance.  This  aligns
with  the  practical  observation  that  diverse  augmented  data
improves  feature  generalization  and  model  robustness,  as
shown  in  Table  14  .

5.11.2. Evaluating the Impact of Weighting Parameter (λ) on
Task Performance

The  weighting  parameter  (λ)  plays  a  pivotal  role  in
balancing  classification  accuracy  and  severity  detection
accuracy in multi-task learning models. Adjusting λ influences
the  prioritization  of  classification  loss  and severity  detection
loss,  resulting  in  trade-offs  that  impact  overall  performance.
This study evaluates the effect of varying λ on these metrics,
providing insights into optimal parameter settings.

The weighting parameter (λ) governs the balance between

classification  accuracy  and  severity  detection  accuracy,
resulting  in  observable  trade-offs  as  its  value  changes.
Increasing λ prioritizes classification accuracy at the expense
of  severity  detection  accuracy.  At  λ=0.9,  classification
accuracy  reaches  its  peak  at  93.1%,  while  severity  detection
accuracy  declines  to  78.2%,  reflecting  a  clear  shift  in  focus
towards the classification task. Conversely, at a lower λ value
of 0.1, severity detection accuracy is maximized at 91.6%, with
classification  accuracy  at  85.2%.  Balanced  performance  is
achieved at  λ=0.5,  where the model demonstrates a trade-off
that  favors  neither  task  disproportionately.  In  this  setting,
classification accuracy reaches 91.0%, and severity detection
accuracy  is  85.8%,  making  it  an  optimal  compromise  for
applications  where  both  objectives  are  equally  critical.  The
results further reveal a consistent improvement in classification
accuracy  as  λ  increases,  with  a  9.28%  gain  from  85.2%  to
93.1% across the tested range. Conversely, severity detection
accuracy shows a steady decline with increasing λ, dropping by
14.63% from 91.6% to 78.2%. These findings underscore the
importance  of  selecting  an  appropriate  λ  value  based  on  the
specific  priorities  of  the  application,  whether  it  demands
precise anomaly classification, accurate severity detection, or a
balance of both, as shown in Table 15 .

6. DISCUSSION
The paper proposed a new framework using ViTs for fetal

health  classification  and  severity  detection  from  ultrasound
images,  ensuring  promising  results  in  both  accuracy  and
practical application. Using the Vision Transformer model for
the classification proved the accuracy of 90%, with an F1-score
of  0.87,  while  proving to  be quite  efficient  in  discriminating
between fine spatial  relationships in  fetal  ultrasound images.
The  successful  application  of  ViTs  in  this  domain  marks  a
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significant  stride  from the  traditional  models  simultaneously
developed, such as CNNs and RNNs. This is arguably due to
its  ability  to  learn  intricate  features  of  ultrasound  images  by
treating  the  images  as  a  sequence  of  patches,  leveraging  the
self-attention mechanism for models pre-trained on contextual
relationship maintenance. Moreover, most of the deep learning
models require many convolutional layers, while ViTs tend to
be  more  holistic  in  their  approach,  compartmentalizing  the
most relevant regions of interest in the input data to generate
more  accurate  predictions.  Data  augmentation  was  also  of
much importance for enhancing model performance and thus
promoting  better  generalization  across  diverse  conditions  of
fetal  ultrasound.  Techniques  such  as  random rotation,  zoom,
and horizontal flipping enhance the diversity of the dataset and
help  prevent  overfitting,  enabling  the  model  to  have  more
precise  predictions  on  unseen  data.  The  ablation  study
underlined  further  the  main  components,  such  as  positional
encoding  and  self-attention,  which  were  so  determinant  in
guaranteeing  the  high  precision  and  stability  in  the  model's
predictions.  High-quality  training  data  for  the  model  were
ensured  with  the  use  of  a  confidential  and  curated  dataset
comprising  500  ultrasound  images  annotated  by  expert
radiologists. This helps in achieving better predictive capability
from the model for fetal health status as well as abnormalities'
severity. In this regard, an achieved MAE of 0.30 for detecting
abnormalities' severity establishes a high degree of correlation
between  model  predictions  and  expert  assessments,  hence  a
very  useful  clinical  tool.  While  these  results  represent
important steps forward, there are still some challenges ahead.
The uniform attention in the model's attention maps indicates
further scope for focusing more on the most clinically relevant
features of the images. This may lead to future work in refining
the attention mechanisms, enhancing both the interpretability
and  predictive  performance  of  the  model.  Other  ways  that
might help in improving the robustness and applicability of the
model  involve  increasing  the  dataset,  as  well  as  the  use  of
multi-modal data such as maternal health metrics or Doppler
ultrasound.  The  present  study,  therefore,  underlines  the
possibility  that  Vision  Transformers  may  revolutionize  the
monitoring of fetal health and become a powerfully enabling
tool for clinicians in the early and precise assessment of fetal
well-being. Diagnostically, the proposed framework advances
the precision of diagnosis and paves the way for further strides
toward automated assessment of fetal health, which would lead
to better outcomes in antenatal care. The medical field has seen
a sea of change in recent years, with rapid developments in the
area  of  technology  continuously  reshaping  the  face  of
healthcare practices. Of all these revolutionary breakthroughs,
probably the most striking is the introduction of IoMT, which
is a form of IoT applied to integrate devices, data, and analytics
seamlessly  within  medical  practice.  In  the  context  of  fetal
ultrasound imagery, IoT has emerged as a critical enabler that
drives improvement in diagnostic accuracy, accessibility, and
patient  outcomes.  IoT-enabled  ultrasound  systems  facilitate
real-time  data  transmission,  thus  enabling  the  sharing  of
imaging  data  with  specialists  and  cloud-based  platforms
instantaneously  to  ensure  timely  decision-making  even  in
remote  and  underserved  areas.  Moreover,  IoT  enhances  the
capability  of  AI-driven  models  like  Vision  Transformers  by

continuously  feeding  streams  of  imaging  data  for  accurate
anomaly  detection  and  the  assessment  of  severity.  IoT  also
promotes  remote  monitoring  whereby  clinicians  can  monitor
fetal  growth  and  development  without  necessarily  having  to
require frequent visits, improving not only patient convenience
but  also  collaborative  care  as  specialists  can  provide  second
opinions  on  connected  platforms.  Moreover,  IoT  makes  the
handling of data a lot easier and much more secure, storing all
diagnostic  information  in  a  centralized  system  for  better
analytics  and  research  opportunities.  This  is  where  its  most
significant  impact  is  noticed:  in  bridging  gaps  in  healthcare,
portable  IoT-enabled  ultrasound  devices  extend  advanced
diagnostic  capabilities  to  rural  and  resource-poor  areas.  By
integrating  the  power  of  connectivity,  data  analytics,  and
machine learning, IoT is transforming fetal ultrasound imaging
into  an  efficient,  easily  accessible,  and  accurate  diagnostic
modality. These advances serve as an indicator of how IoMT
might be transformative to prenatal care in pursuit of improved
maternal  and  fetal  health  outcomes,  according  to  recent
research  [30].

6.1.  Performance  Comparison  of  Models  for  Fetal
Ultrasound Imaging

The table provides a comparative analysis of performance
metrics, including accuracy, precision, recall, and F1-score, for
various  models  applied  in  fetal  ultrasound  imaging.  The
majority of models achieved accuracy in the range of 75% to
89%, with Liang et al.  (2019) and Qu et al.  (2020) reporting
the  highest  accuracy  within  this  group  at  89%.  However,
models such as Lee et al. (2021) and Baumgarmer et al. (2017)
showed  lower  accuracy,  at  75%  and  77%,  respectively,
indicating  limitations  in  their  classification  performance.  In
contrast, the proposed model achieved the highest accuracy of
91%,  highlighting  a  notable  improvement  over  existing
methods. Precision and recall metrics, where reported, further
reveal  the  relative  strengths  and  weaknesses  of  the  models.
Meng  et  al.  (2020)  achieved  moderate  precision  and  recall
values of  78% and 77%, respectively,  while Pu et  al.  (2021)
reported balanced precision and recall of 85%. The proposed
model outperformed these studies with a precision of 93% and
recall of 90%, reflecting its ability to reduce false positives and
false  negatives  effectively,  thereby  enhancing  diagnostic
reliability. The F1-score, an indicator of the balance between
precision and recall, ranged from 64% in Chen et al. (2017) to
85% in multiple studies such as Gao et al. (2020) and Dou et
al. (2019). Notably, the proposed model achieved an F1 score
of  90%,  emphasizing  its  robust  and  consistent  performance
across  metrics.  Overall,  while  some  models  demonstrated
strong performance in individual metrics, the proposed model
consistently outperformed across all parameters, showcasing its
effectiveness  and  reliability  in  fetal  ultrasound  classification
tasks, as shown in Table 16 . The experimental results clearly
demonstrate  the  transformative  potential  of  ViTs  in  fetal
ultrasound  imaging.  ViTs  outperformed  CNNs  and  RNNs  in
every  evaluated  metric,  achieving  a  9% higher  accuracy  and
significantly  lower  MAE.  The  superior  performance  stems
from the self-attention mechanism's ability to model complex
patterns across the entire image, enabling precise classification
and anomaly detection.
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Table 16. State-of-the-art comparison of model performance metrics across various studies and the proposed model.

Paper (Year)/Refs. Accuracy (%) Precision (%) Recall (%) F1-Score
Meng et al.(2020) [31] 81 78 77 77

Montero et al.(2021) [32] 81 - - 80
Chen et al.(2017) [33] 87 71 64 64

Pu et al.(2021) [34] 85 85 85 85
Lee et al.(2021) [35] 75 73 73 72

Dong et al.(2019) [36] - - - -
Lin et al.(2018) [13] 79 85 - -

Baumgarmer et al.(2017) [37] 77 90 90 -
Yaqub et al.(2017) [38] 85 - - -

Schlemper et al.(2019) [39] 89 83 80 81
Burgos-Artizzu et al.(2020) [40] 88 86 85 85

Sundaresan et al.(2017) [41] 84 80 79 79
Tan et al.(2019) [42] 88 87 86 85
Cai et al.(2020) [43] 88 85 83 84
Qu et al.(2020) [44] 89 86 85 85
Dou et al.(2019) [45] 88 86 85 85

Liang et al.(2019) [46] 89 87 86 85
Gao et al.(2020) [47] 88 86 85 85

Komatsu et al.(2021) [48] 85 84 83 83
Zhang et al.(2021) [49] 89 85 85 84

Proposed Model 91 93 90 90

6.1.1. Improved Interpretability

ViTs' attention maps visualize regions of focus, providing
insights into the model's decision-making process. This feature
not only enhances trust in the model's predictions but also aids
clinicians in understanding critical regions for diagnosis.

6.1.2. Scalability and Efficiency

ViTs  exhibit  scalability  to  high-dimensional  data  and
parallel processing capabilities, making them suitable for large-
scale clinical applications.

CONCLUSION

The paper proposes a new approach by using the state-of-
the-art  Vision  Transformers  model,  which  was  originally
developed for natural language processing but lately has been
widely  used  for  computer  vision  tasks  to  classify  the  health
condition  of  the  fetus  and  to  identify  the  severity  of
abnormalities.  Its  approach  is  different  in  that  images  are
treated  as  an  aggregation  of  their  patches,  each  being
independently  processed  with  self-attention  mechanisms
similar  to  the  way  models  keep  track  of  contextualized
relations  between  words  in  a  sentence.  This  is  particularly
useful in fetal ultrasound image analysis, as minute details are
necessary for correct health assessments and the detection of
abnormalities.  One  of  the  salient  strong  features  of  the
proposed  framework  comprises  the  use  of  a  rich  set  of
preprocessing  techniques  that  enhance  the  model's
performance.  These  involve  resizing  ultrasound  images  to  a
standard  dimension  to  provide  uniformity  and  reduce
computational  complexity,  and  normalization,  which  scales
pixel  values  to  a  common range  so  that  the  model  can  learn
more  effectively.  Besides,  rotation,  flip,  and  zoom  data
augmentation  techniques  increase  positive  examples  by

creating modified images of those already in the dataset, which
would  help  to  avoid  overfitting  the  model  and  improve  its
generalization in different clinical settings. Such generalization
is extremely crucial in the medical domain because one wants
the model performance to be consistent across different types
of  patients  and  different  medical  institutions.  These  yield
stunning  performances,  where  the  model  performs  a
classification accuracy of 90%, emphasizing the efficiency of
the  model  in  classifying  a  normal  versus  abnormal  fetus.  It
performs  the  classification  task  along  with  predicting  the
severity of abnormalities detected through regression analysis,
with a mean absolute error of 0.30. The very small error rate is
indicative,  meaning  that  the  model's  predictions  of  severity
strongly support expert assessments, hence, it can be an even
more  useful  tool  for  clinicians  who  will  eventually  have  to
assess the gravity of a fetal condition. Another relevant aspect
of this article pertains to ethics in data collection and privacy.
The research ensures that all ultrasound images are collected in
pursuance  of  ethical  standards  and  data  anonymization  to
protect  patient  identity.  This  is  further  attended  to  by  the
consideration  of  ethics  in  terms  of  privacy,  as  these  are  of
prime  importance  in  clinical  applications  for  confidentiality
with regard to the patient. The proposed system, while taking
due care of these considerations, not only gives high accuracy
and reliable predictions but also fulfills those prerequisites that
can see it through for real-world adaption at medical sites. In
this respect, the new framework using the Vision Transformer
architecture  marks  a  tremendous  stride  in  the  field  of  foetal
health assessment. It classifies the status of fetal health and the
severity of abnormality and generalizes well to a new clinical
setup;  its  performance  in  these  aspects  brings  an  extremely
promising tool  toward improvements in prenatal  diagnostics.
Ethical considerations and robust performance metrics put this
framework  in  good  positioning  in  terms  of  viability  into
clinical  practice,  which  can  improve  early  detection  and
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Key  Achievements  of  the  Proposed  Vision  Transformer
Framework for Fetal Health Assessment:

Innovative Use of Vision Transformer Model: The[1]
pioneers proposed a new direction in the research field
by  applying  the  Vision  Transformer  to  classify  and
detect the severity of fetal ultrasound images using the
self-attention mechanism of the model, which can help
in  improved  detection  of  complex  patterns  in  those
images.  This  fresh  approach  allows  highly  informed
classification with an accuracy of 90% and predictable
severity  of  abnormalities  that  can be used to  support
expert clinical decisions.
Enhanced  Generalization  Through  Data[2]
Augmentation:  The  most  impactful  augmentations
were  rotation,  flipping,  and  zoom  of  images,  which
increased  the  performance  of  this  model.  MAE
reduced  to  0.30.  It  also  generalizes  better  across  a
range of clinical settings; therefore, the model is more
robust  over  a  wide  variety  of  fetal  ultrasound
conditions,  which  has  enhanced  its  practical
applicability.
Ethical  Data  Collection  and  Privacy[3]
Considerations:  The  study  emphasizes  that  data
collection should be ethical, with the anonymization of
a  carefully  curated  dataset  of  500  fetal  ultrasound
images  collected  from  different  hospitals.  This  will
ensure  that  the  privacy  standards  are  met  and  the
proposed system can be easily deployed in real-world
clinical usage, ensuring patient confidentiality.

Future Scope

Integration  with  Real-Time  Clinical  Systems:[1]
Future  studies  may  aim  at  integrating  this  Vision
Transformer-based model into clinical systems in real-
time, for continuous monitoring and assessment during
routine ultrasound scans. This will provide clinicians
with immediate feedback to make better decisions in
life-and-death situations.
Expanding the Dataset: Future research can also be[2]
devoted to enlarging the dataset by including a wider
variety of fetal ultrasound images, capturing even more
variations in fetal health conditions, gestational ages,
and  ultrasound  equipment  that  may  potentially
strengthen  the  generalization  ability  of  the  model.
Multi-Modality  Learning:  The  inclusion  of[3]
additional  data  modalities,  Doppler  ultrasound,  or
maternal  health  information  may  provide  a  more
comprehensive overview of the state of the fetus. This
may  be  further  enhanced  through  a  multi-modal
learning  approach  that  can  further  enhance  the
accuracy  of  the  model  by  making  more  detailed
observations  of  fetal  well-being.
Exploration  of  Other  Transformer  Architectures:[4]
Further  investigation  into  other  transformer-based
architectures  or  hybrid  models  could  be  explored  to
determine whether different configurations could yield
better  results  in  specific  aspects  of  fetal  health

assessment,  such  as  early  detection  of  rare  fetal
conditions.
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