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Abstract:

Background and Objective:

The  incidence  of  Alzheimer’s  disease  is  rising  with  the  increasing  elderly  population  worldwide.  While  no  cure  exists,  early  diagnosis  can
significantly  slow disease  progression.  Computer-aided  diagnostic  systems are  becoming critical  tools  for  assisting  in  the  early  detection  of
Alzheimer’s  disease.  In  this  systematic  review,  we  aim  to  evaluate  recent  advancements  in  computer-aided  decision  support  systems  for
Alzheimer’s disease diagnosis, focusing on data modalities, machine learning methods, and performance metrics.

Methods:

We conducted  a  systematic  review following  the  Preferred  Reporting  Items  for  Systematic  Reviews  and  Meta-Analyses  guidelines.  Studies
published between 2021 and 2024 were retrieved from PubMed, IEEEXplore and Web of Science, using search terms related to Alzheimer’s
disease classification, neuroimaging, machine learning, and diagnostic performance. A total of 39 studies met the inclusion criteria, focusing on the
use  of  Magnetic  Resonance  Imaging,  Positron  Emission  Tomography,  and  biomarkers  for  Alzheimer’s  disease  classification  using  machine
learning models.

Results:

Multimodal approaches, combining Magnetic Resonance Imaging with Positron Emission Tomography and Cognitive assessments, outperformed
single-modality studies in diagnostic accuracy reliability. Convolutional Neural Networks were the most commonly used machine learning models,
followed by hybrid models and Random Forest. The highest accuracy reported for binary classification was 100%, while multi-class classification
achieved up to 99.98%. Techniques like Synthetic Minority Over-sampling Technique and data augmentation were frequently employed to handle
data imbalance, improving model generalizability.

Discussion:

Our review highlights the advantages of using multimodal data in computer-aided decision support systems for more accurate Alzheimer’s disease
diagnosis. However, we also identified several limitations, including data imbalance, small sample sizes, and the lack of external validation in most
studies. Future research should utilize larger, more diverse datasets, include longitudinal data, and validate models in real-world clinical trials.
Additionally, explainability is needed in machine learning models to ensure they are interpretable and reliable in clinical settings.

Conclusion:

While computer-aided decision support systems show significant promise in improving the early diagnosis of Alzheimer’s disease, further work is
needed to enhance their robustness, generalizability, and clinical applicability. By addressing these challenges, computer-aided decision support
systems could play a key role in the early detection of Alzheimer’s disease and potentially reduce health care costs.
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1. INTRODUCTION

Alzheimer’s  disease  (AD)  is  the  most  common  form  of
dementia,  accounting  for  60-80%  of  dementia  cases
worldwide.  It  primarily  affects  memory,  behavior,  and
cognitive abilities. Although it is not a curable disease, early
diagnosis can significantly slow its progression, improving the
quality of life for patients and their families. This makes early
detection crucial in AD management1.

Patients  with  AD  typically  progress  through  different
stages,  starting  from  a  normal  cognitive  state  (NC)  or
cognitively normal (CN) to mild cognitive impairment (MCI)
and,  finally,  Alzheimer’s  disease.  MCI  is  a  critical  stage,  as
some  patients  will  develop  AD  while  others  remain  stable.
Accurately distinguishing between progressive mild cognitive
impairment  (pMCI)  and  stable  mild  cognitive  impairment
(sMCI) is especially important because early intervention at the
MCI stage can delay or prevent the onset of full-blown AD [1].

Detection  of  the  patient  in  the  MCI  stages  before  the
diagnosis of AD is much more important than distinguishing
whether  the  patient  has  AD  or  NC  [2].  Particularly,
distinguishing  between  p-MCI  and  s-MCI  is  critical  for
identifying  patients  at  higher  risk  of  developing  AD  [3].

Various diagnostic techniques are used to detect AD and
its precursors [4], including:

Neuroimaging:  Techniques  like  magnetic  resonance
imaging  (MRI)  and  positron  emission  tomography
(PET)  help  identify  brain  regions  affected  by  AD.
Biomarkers: These include proteins in cerebrospinal
fluid,  clinical  assessments,  vital  signs,  etc.,  that
indicate  the  presence  of  AD.
Genetic Risk Profilers: These help predict AD risk by
analyzing specific genetic markers.

Recent  advancements  in  computer-aided  diagnostic
systems (CADs) have greatly enhanced the accuracy and speed
of  AD  diagnosis.  By  combining  neuroimaging  data  with
machine  learning  algorithms,  these  systems  offer  a  powerful
tool for early detection. CAD systems can process large patient
data,  improving  diagnostic  accuracy  beyond  traditional
methods.

Combining  neuroimaging  techniques  with  biomarkers
offers  a  powerful  and  innovative  approach  to  improving  the
accuracy of Alzheimer’s disease diagnosis. Biomarkers, such
as those found in cerebrospinal fluid (CSF), provide protein-
level  insights,  while  neuroimaging  reveals  structural  and
functional  changes  in  the  brain  [5].  By  integrating  these
modalities,  clinicians  can  better  identify  patients  with  mild
cognitive  impairment  (MCI)  who  are  at  higher  risk  of
progressing  to  Alzheimer’s  disease.  This  approach  enables
earlier  and  more  reliable  diagnosis,  setting  this  study  apart
from  traditional  methods  that  rely  on  a  single  diagnostic
modality.

As  of  2015,  an  estimated  46  million  people  worldwide
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were living with Alzheimer’s disease, a number that continues
to  grow  annually  [6].  In  the  United  States  alone,  the  annual
cost of all types of dementia is approximately $200 billion [7a],
a  financial  burden  on  par  with  cancer  and  heart  disease.
Beyond  the  economic  impact,  AD  profoundly  affects  the
quality of life of both patients and their families. Developing
accurate  and  efficient  diagnostic  tools  can  help  reduce  the
overall  financial  costs  and  improve  the  well-being  of  those
affected by this debilitating disease.

According  to  the  most  recent  publication  from the  GBD
2019 Dementia  Forecasting  Collaborators  (2022)  [7b]  which
draws  on  findings  from a  2019  study  and  encompasses  both
current data and future projections about dementia-the global
population  of  individuals  with  dementia,  estimated  at  57.4
million in 2019, is projected to rise to 152.8 million (ranging
between  130.8  and  175.9  million)  by  2050.  This  rise  is
primarily  attributed  to  the  global  aging  population  and
demographic  changes  resulting  from  overall  population
growth.

In  AD  diagnosis,  as  with  many  health  conditions,  the
development  of  reliable  and  accurate  systems  is  crucial  for
lowering  costs  and  enhancing  patient  outcomes.  This  paper
presents  a  systematic  review  of  recent  advancements  in
computer-aided  diagnostic  systems  (CADs)  for  Alzheimer’s
disease.  The  review  focuses  on  the  data  modalities  and
methodologies  employed  in  these  studies,  as  well  as  the
performance  and  generalizability  of  the  systems  reviewed.

This study is organized as follows: Section 2 describes the
methodology used for selecting and analyzing the publications
included  in  this  review.  Section  3  presents  the  results,
categorizing  the  studies  based  on  the  data  modalities,
diagnostic  methods,  and  performance  metrics  employed.
Finally,  Section  4  presents  a  discussion  of  the  findings  and
their implications for future research and clinical application.

2. METHODS
This  systematic  review  was  conducted  following  the

Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) [8] guidelines to ensure transparency and
reliability in selecting and reviewing studies. Additionally, we
added  some  elements  of  the  Standards  for  Reporting
Diagnostic  Accuracy  Studies  (STARD)  [9a]  to  assess  the
diagnostic  accuracy  of  the  included  publications.

2.1. Research Questions and Aims
The objective of this review is to evaluate the performance

of computer-aided diagnostic systems (CADs) for Alzheimer’s
disease. We focused on answering the following key questions:

How  many  studies  have  been  published  in  the  last
three years using medical  imaging data for  binary or
multi-class classification of Alzheimer’s disease?
What  imaging  modalities  (e.g.,  MRI,  PET)  and
machine  learning  algorithms  were  used  in  these
studies?

1 https://www.alz.org/alzheimers-dementia/what-is-alzheimers
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Which  classification  methods  showed  the  highest
accuracy,  precision,  recall,  F1-score,  and  overall
performance  for  Alzheimer’s  diagnosis?
Were there any issues related to data imbalance,  and
what strategies were employed to address them?
How were the datasets divided into training and testing
sets, and were there measures to prevent bias?
Did  studies  report  additional  metrics  such  as  AUC
(Area Under the Curve) or ROC (Receiver Operating
Characteristic) curves alongside accuracy?
How were false positives and false negatives assessed
in these studies?
How generalizable were the models?

2.2. Study Search Methodology

A  systematic  search  was  conducted  using  the  PubMed,
IEEEXplore and Web of Science databases. All databases were
queried  using  advanced  search  features,  and  the  final  search
was  performed  on  October  7,  2024.  The  search  query
combined key terms related  to  Alzheimer’s  disease,  imaging
modalities, machine learning, and diagnostic performance. The
full query used is as follows:

(“alzheimer’s  disease”  OR  “ad”)  AND  (“multi-class
classification” OR “binary classifica- tion”) AND (“mri” OR
“pet”  OR  “neuroimaging”)  AND  (“machine  learning”  OR
“deep learn- ing” OR “neural networks”) AND (“accuracy” OR
“precision” OR “sensitivity” OR “specificity” OR “recall” OR
“f1-score”  OR  “auc”  OR  “roc  curve”)  AND  (“data  set”  OR
“data  imbalance”  OR  “bias”  OR  “generalization”  OR
“dataset”)

The search was limited to studies published in English and
conducted on human subjects (or human data). We focused on
studies published in the last three years (since 2021).

2.3. Inclusion and Exclusion Criteria

We  established  our  inclusion  and  exclusion  criteria  to
ensure  the  selection  of  high-quality,  relevant  studies
specifically focused on Alzheimer's disease (AD) classification
using neuroimaging data. Below, we provide a detailed outline
of  these  criteria  along  with  brief  justifications.  (Inclusion-
Exclusion  explanation)

2.3.1. Inclusion Criteria

Studies  were  screened  based  on  the  following  inclusion
criteria:

The  publication  must  be  a  research  article.  Research
articles are better suited to providing the essential data
required  for  methodological  comparisons  and
performance  evaluations.
The study must focus on the diagnosis of Alzheimer’s
disease  (AD),  mild  cognitive  impairment  (MCI),
cognitively  normal  (CN),  or  other  related  dementia
stages  (e.g.,  mild,  moderate,  non-demented).  Our
review specifically focuses on AD and its precursor or
related stages to ensure consistency and comparability
across studies.

At least one imaging modality, such as MRI or PET,
must  be used for  classification.  Our goal  is  to assess
computer-aided  diagnostic  systems  that  utilize
neuroimaging data, a key component in AD diagnosis.
The  study  must  report  accuracy  and  at  least  one
additional  metric,  such  as  sensitivity,  specificity,  or
AUC.  Relying  on  a  single  performance  metric  (e.g.,
accuracy)  may  be  misleading  to  provide  a
comprehensive  assessment  of  model  performance,
particularly  in  the  presence  of  imbalanced  datasets.
The work must be published within the last three years
(since  2021).  We  aim  to  capture  the  latest
advancements in machine learning and neuroimaging
techniques for AD.
Only human data was considered (no animal studies).
To  ensure  clinical  applicability  and  align  with  the
STARD  guidelines,  we  exclude  studies  involving
animal  models,  focusing  only  on  human  diagnostic
accuracy assessments.

2.3.2. Exclusion Criteria

Studies  were  screened  based  on  the  following  exclusion
criteria:

Studies focusing on diseases other than AD or without
neuroimaging data. The scope is limited to Alzheimer's
disease  diagnosis  and  imaging-based  approaches
directly  related  to  it.
Studies that report fewer than two performance metrics
(e.g.,  accuracy  along  with  sensitivity,  specificity,  or
AUC) are  excluded.  A comprehensive  assessment  of
classification performance necessitates a multi-metric
evaluation.
Studies  that  lack  sufficient  methodological  details,
such  as  unclear  data  preprocessing  or  missing
information  on  training  and  test  splits,  are  excluded.
Methodological transparency is essential for ensuring
reproducibility and assessing the reliability of reported
results.
Review articles, conference abstracts, and other non-
peer-reviewed  content  are  excluded  from
consideration.  Peer-reviewed  research  articles  are
better suited for providing validated scientific findings
appropriate for systematic review.

The  studies  were  screened  in  two  phases:  (1)  title  and
abstract  screening  and  (2)  full-text  screening.  At  the
corresponding  stage,  those  not  meeting  the  specified  criteria
were excluded.

2.4. Data Extraction, Synthesis, and Quality Assessment

Following the selection of the final set of studies based on
the aforementioned criteria,  we proceeded with  detailed data
extraction and quality assessment.

2.4.1. Quality Assessment of Included Studies

To  assess  the  methodological  quality  of  each  included
study,  we  evaluated  the  following  key  domains:
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Study  Design:  Do  the  studies  examine  whether  they
employed a  cross-sectional  or  longitudinal  approach,
integrated control groups, and maintained transparency
in  participant  inclusion?  These  topics  have  been
discussed  in  the  context  of  all  studies.
Sample  Size  and  Diversity:  The  studies  detailed  the
overall number of participants or images and described
the distribution across diagnostic categories (e.g., AD
vs.  CN).  Demographic  data  were  not  reported
individually  for  each  study  since  the  age  ranges  and
gender distributions were largely the same across most
of the studies.
Machine Learning Validation/Generalization Strategy:
The  included  studies  were  analyzed  in  terms  of  the
validation approach used (e.g., k-fold cross-validation,
external  validation,  or  train-test  split),  the  measures
implemented  to  prevent  data  leakage,  and  the  use  of
hyperparameter tuning.
Performance  Reporting:  It  was  examined  whether
multiple evaluation metrics (e.g., accuracy, precision,
recall, F1 score, AUC) were reported.
Risk  of  Bias:  Factors  that  could  contribute  to
overfitting  or  biased  outcomes-such  as  small  sample
sizes,  single-center  datasets,  or  insufficient
explanations of data processing-were addressed across
all studies.

Although  we  did  not  fully  adopt  a  single  standardized
scale, we tabulated the studies by applying these criteria. The
(Table 1) included each study’s explainability, generalizability,
database  used,  sample  size  used,  and  performance  metrics.
From  this,  conclusions  were  drawn  and  all  studies  were
interpreted  according  to  these  criteria.

2.4.2. Data Extraction and Synthesis

For each included study, we extracted the following data:

Study Details: Year of publication, authors, and study
design.
Data Modalities:  Type of imaging used (MRI, PET,
etc.) or other data types such as cognitive scores.
Machine  Learning  (Classification)  Methods:
Classification  algorithms  used  (e.g.,  CNN,  Random
Forest).
Performance  Metrics:  Accuracy,  sensitivity,
specificity,  precision,  recall,  F1-score,  AUC,  and/or
ROC curves.
Data  Handling:  How  datasets  were  split
(training/testing),  and  whether  methods  like  cross-
validation or oversampling were used to address data
imbalance.

We synthesized the results  by categorizing studies based
on  imaging  modality  and  machine  learning  algorithms,
allowing for a comparative analysis of their performance across
reported metrics. Additionally, we determined whether studies
included  external  validation  sets  or  relied  solely  on  internal
cross-validation.

2.4.2.1. Dataset Descriptions

Given  the  widespread  use  of  publicly  available
neuroimaging databases, we documented the datasets utilized
in each study (e.g., ADNI (https://adni.loni.usc.edu/), Kaggle
(https://www.kaggle.com/),  OASIS (https://sites.wustl.edu/oas
isbrains/)),  along  with  relevant  details  such  as  sample  size,
patient demographics, and dataset-specific inclusion criteria.

ADNI (Alzheimer’s Disease Neuroimaging Initiative):
A  widely  used  dataset  containing  longitudinal  MRI
and PET scans from individuals  diagnosed with AD,
MCI, or CN. ADNI is often leveraged for its extensive
sample  size  (ranging  from  hundreds  to  thousands  of
scans) and demographic representation.
Kaggle:  Includes  various  smaller  MRI-based  AD
datasets, frequently used for benchmarking purposes.
Many  Kaggle  datasets  contain  only  a  few  hundred
images, often requiring augmentation or oversampling
to address data limitations.
OASIS  (Open  Access  Series  of  Imaging  Studies):
Offers both cross-sectional and longitudinal MRI data
focused on healthy aging and dementia. Sample sizes
vary  (typically  a  few  hundred  subjects),  with
demographic  details  such  as  age  range  and  sex
distribution  commonly  available.

2.4.3. Handling of Class Imbalance

Given  that  class  imbalance  is  a  common  challenge  in
Alzheimer’s  disease  classification  (e.g.,  fewer  AD  cases
compared to CN, or vice versa), we systematically documented
how each study handled this issue. The identified approaches
included:

Oversampling  Techniques  (e.g.,  SMOTE  [9b],
ADASYN  [9c]):  Studies  that  generated  synthetic
samples  for  the  minority  class  to  enhance  training
balance.
Data  Augmentation:  Particularly  in  MRI-based
analyses, some studies applied transformations such as
rotations,  flips,  or  other  geometric  modifications  to
augment the dataset. If the method is not specifically
stated,  studies  reported  as  data  augmentation  have
performed  oversampling  or  undersampling.
Class  Weighting:  Adjusting  loss  functions  to  assign
higher  penalties  for  misclassifications  in  minority
classes,  improving  model  sensitivity.
No Specific Handling (Not mentioned): Some studies
did  not  report  any  method  for  addressing  class
imbalance, potentially affecting the generalizability of
their findings.

Most studies reported their performance results using these
methods.  In  some  cases,  since  the  dataset  was  selected  as
balanced, classification studies were conducted without using
any additional methods. However, some studies, due to using
very  little  data  for  classification,  require  further  clarification
regarding issues of bias and generalizability.

https://adni.loni.usc.edu/
https://www.kaggle.com/
https://sites.wustl.edu/oasisbrains/
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Table 1. A summary of articles included in the study.

Article Dataset Imbalanced
Data Solution/G
eneralizability

Divided Meth-
ods

Modality Classification
Type

Classes Classification
Methods

Accuracy Specificity Sensitivity/Recall F1 Score Precision Area Under
the

Curve (AUC)

Explainable
Artificial

Intelligence (XAI)
Agarwal et al. [10] ADNI and IXI

(Information
eXtraction from

Images)
AD (n = 245), CN

(n = 245), and sMCI
(n = 229)

No need data is
balanced

Stratified 5-fold
cross-validation T1 MRI Binary

Classification
AD vs. CN;

sMCI vs. AD

DenseNet264 (Best
Model for AD vs.
CN), EfficientNet
(B0, B1, B2, B3),

DenseNet201 (Best
Model for AD vs.
sMCI), DenseNet

(121,169)

AD vs. CN:
99.55%; sMCI vs.

AD: 82.06%
---

AD vs. CN:
99.55%; sMCI vs.

AD: 82.06%

AD vs. CN:
99.55%; sMCI

vs.
AD: 81.84%

AD vs. CN:
99.56%; sMCI vs.

AD: 83.70%

AD vs. CN:
99.55%;
sMCI vs.

AD: 82.06%

Not mentioned

Biswas and Gini
J [11]. ADNI and OASIS

(ADNI: 899,
OASIS: 322)

Not mentioned
(no info about
distribution of

classes)

75% training,
25% testing 3D MRI Multi-class

Classification

Normal vs.
Mild AD vs. Severe

AD

Random Forest
(Best Model for

OASIS), Gradient
Boost (Best Model

for ADNI), Decision
Tree, KNN

99% (RF), 92%
(GB)

96% (RF),
52%(GB) 88% (RF), 83%(GB) 78% (RF), 65%

(GB)
96% (RF), 83%

(GB) - Not mentioned

Qin et al. [12] ADNI
(AD: 98, CN: 114)
and Local Dataset

(aMCI: 43,
sMCI: 46,
oMCI: 5)

Adjusting class-
specific

regularization
parameters

80% Training
(10% Validation)

and 20% Test
T1 sMRI Binary

Classification
AD vs. CN;

aMCI vs. sMCI 3D HA-ResUNet
AD vs. CN:

92.68%; aMCI vs.
sMCI: 100%

AD vs. CN:
95.45%; aMCI vs.

sMCI: 100%

AD vs. CN:
89.47%; aMCI vs.

sMCI: 100%

AD vs. CN:
91.89%; aMCI

vs.
sMCI: 100%

AD vs. CN:
94.44%; aMCI

vs.
sMCI: 100%

-

Gradient-weighted
Class Activation
Mapping (Grad-

CAM)

El-Sappagh et al.
[13].

ADNI
(CN: 294,

sMCI: 254,
pMCI: 232, AD:

268)

SMOTE 10-fold-cross
validation

Cognitive scores,
MRI, PET,

Genetics, Medical
history (Lab tests,

demographics)

Binary and Multi-
class Classification

sMCI vs.
pMCI; CN

vs. MCI vs. AD

Random Forest
(RF)

sMCI vs. pMCI:
87.76%; CN vs.

MCI vs. AD:
93.95%

--- sMCI vs. pMCI:
87.50%

sMCI vs. pMCI:
87.75%; CN vs.

MCI vs. AD:
93.94%

sMCI vs. pMCI:
87.50%

sMCI vs.
pMCI:
0.953

SHapley Additive
exPlanations

(SHAP)

Loddo, Buttau,
and Di Ru- berto

[14]

ADNI MRI (NC:
213, sMCI: 90,

pMCI: 126, AD:
130), ADNI-2 fMRI

(NC: 433, EMCI:
431, LMCI: 354,

MCI: 50, SMC: 68,
AD: 198) OASIS
(CN: 1742, mild

dementia: 137, very
mild dementia: 340,
moderate dementia:

10),
Kaggle (2560

healthy subjects,
very mild dementia:

1792, mild
dementia: 717,

moderate dementia:
52)

Data
augmentation

80% training,
10% validation,
and 10% testing
for MRI; 30%
training, 20%

validation, and 50%
testing for fMRI

MRI and fMRI Binary and Multi-
class Classification

AD vs. Normal
Control (NC); NC

vs.
Very Mild

Dementia vs. Mild
Dementia vs.

Moderate Dementia
(OASIS, Kaggle);

NC vs. MCI vs. AD
(ADNI)

Deep-ensemble
method combining
features from CNN

architectures
(AlexNet,

ResNet-50,
ResNet-101,
GoogLeNet,

Inception-ResNet-
v2)

NC vs. AD: 98.51%
(OASIS), 96.57%
(Kaggle), 99.74%
(ADNI); NC vs.

MCI vs. AD:
99.22% (ADNI);
NC vs. very mild

AD vs. mild AD vs.
moderate AD:

98.24% (OASIS),
97.71% (Kaggle)

NC vs. AD:
98.42% (OASIS),
99.28% (Kaggle),
99.89% (ADNI);

NC vs. MCI vs. AD:
99.20% (ADNI);
NC vs. very mild

AD vs. mild AD vs.
moderate AD:

97.31% (OASIS),
98.22% (Kaggle)

NC vs. AD:
97.57% (OASIS),
96.57% (Kaggle),

99.36% (ADNI); NC
vs. MCI vs. AD:

97.53% (ADNI); NC
vs. very mild AD vs.

mild AD vs.
moderate AD:

93.05% (OASIS),
96.67% (Kaggle)

NC vs. AD:
97.85% (OASIS),
96.57% (Kaggle),
99.35% (ADNI)

- - Not mentioned
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Article Dataset Imbalanced
Data Solution/G
eneralizability

Divided Meth-
ods

Modality Classification
Type

Classes Classification
Methods

Accuracy Specificity Sensitivity/Recall F1 Score Precision Area Under
the

Curve (AUC)

Explainable
Artificial

Intelligence (XAI)
Alhudhaif and Po-

lat [15] Kaggle (CN: 3200,
Very Mild

Dementia: 2240,
Mild Dementia:
1039, Moderate
Dementia: 64)

Data
augmentation

and Fusion loss
function

combining
Generalized Dice
Loss (GDL) and
Focal Loss (FL)

80% training,
20% testing

and 5-fold cross-
validation

T1 MRI Binary and Multi-
class Classification

No Dementia
vs. Demented (AD);

No Dementia vs.
Very Mild

Dementia vs. Mild
Dementia vs.

Moderate Dementia

Residual Block
Fully Connected
Deep Convolu-
tional Neural

Network (DCNN)

No Dementia vs.
Demented (AD):

97.3%; No
Dementia vs. Very
Mild Dementia vs.
Mild Dementia vs.

Mod- erate
Dementia: 98.2%

No Dementia vs.
Demented (AD):

98.8%; No
Dementia vs. Very
Mild Dementia vs.

Mild De- mentia vs.
Moderate Dementia:

98.9%

No Dementia vs.
Demented (AD):

97.5%; No Dementia
vs. Very Mild

Dementia vs. Mild
Dementia vs.

Moderate Dementia:
98.2%

- - - Not mentioned

Awarayi et al. [16]

ADNI (AD: 1581,
MCI: 1310, CN:

1591)

Data
Augmentation

10-fold-cross
validation MRI Binary and Multi-

class Classification

AD vs. MCI
vs. NC; AD

vs. NC; AD vs.
MCI; MCI

vs. NC

Custom CNN
architecture with

four convolutional
layers and two
hidden layers

AD vs. MCI vs.
NC: 93.45%; AD vs.
MCI: 94.92%; AD
vs. NC: 94.39%;

MCI vs. NC:
95.62%

---

AD vs. MCI vs.
NC: 93.24%; AD
vs. MCI: 94.92%;

AD vs. NC: 94.39%;
MCI vs.

NC: 95.62%

-

AD vs. MCI vs.
NC: 93.70%; AD
vs. MCI: 94.92%;

AD vs. NC:
94.39%; MCI vs.

NC: 95.62%

AD vs. MCI
vs.

NC: 0.99; AD
vs. MCI:

0.98; AD vs.
NC: 0.99;

MCI vs. NC:
0.99

Not mentioned

AbdulAzeem,
Bahgat and Badawy

[17] ADNI (No detail) Data
Augmentation

95% Training
(90% Training

10% Validation),
5% Testing

MRI Binary and Multi-
class Classification

AD vs. CN;
AD vs. MCI vs. CN

CNN-based
architecture with

three convolutional
layers

AD vs. CN: 100%;
AD vs. MCI vs. CN:

99.98%
-

AD vs. CN:
100%; AD vs. MCI

vs. CN: 99.98%
-

AD vs. CN:
100%; AD vs.
MCI vs. CN:

99.98%

AD vs. CN:
1.00 Not mentioned

Ismail, PP and
Ali [18]

ADNI (AD: 511,
MCI: 571, CN:535)

Data
Augmentation,
Multi-Objective

Grasshopper
Optimization

Algorithm
(MOGOA)

70% Training
and 30% Testing
and 10-fold cross-

validation

MRI and PET Binary and Multi-
class Classification

AD vs. NC;
MCI vs. NC; AD vs.

MCI;
AD vs. MCI vs. NC.

Ensemble deep
learning framework
(MultiAz- Net) with

AlexNet,
InceptionV3, and

ResNet-18 via SVM

AD vs. NC: 94.4%;
MCI vs. NC:

93.2%; AD vs.
MCI: 90.00%; AD
vs. MCI vs. NC:

92.3%

AD vs. NC:
94.0%; MCI vs.
NC: 89.2%; AD
vs. MCI: 93.3%

AD vs. NC:
95.0%; MCI vs.

NC: 96.00%; AD
vs. MCI: 89.2%

- - - Not mentioned

Goyal, Rani and
Singh [19]

ADNI (AD: 1980,
MCI: 2010, CN:

1990)

Generative
Adversarial
Networks
(GANs)

70% training,
10% validation,
and 20% testing

2D MRI Binary and Multi-
class Classification

AD vs. CN;
AD vs. MCI; CN vs.

MCI;
AD vs. MCI vs. CN

Transfer learning
from AlexNet and a

combination of
Long Short-Term
Memory (LSTM)

networks

AD vs. CN:
98.13%; AD vs.

MCI: 99.38%; CN
vs. MCI: 99.37%;

AD vs. MCI vs. CN:
96.83%

-

AD vs. CN:
98.13%; AD vs.
MCI: 99.38%;
CN vs. MCI:

99.37%; AD vs.
MCI vs. CN: 96.85%

AD vs. CN:
98.13%; AD vs.
MCI: 99.38%;
CN vs. MCI:

99.37%; AD vs.
MCI vs. CN:

96.83%

AD vs. CN:
98.15%; AD vs.
MCI: 99.39%;
CN vs. MCI:

99.37%; AD vs.
MCI vs. CN:

96.87%

AD vs. CN:
0.98;

AD vs. MCI:
0.99; CN vs.
MCI: 0.99;
AD vs. MCI

vs. CN: >0.95

Not mentioned

Kaya and Çetin-
Kaya [20]

Kaggle (Mild
Demented: 869,

Moderate
Demented: 64, Non-

Demented: 3200,
Very Mild

Demented: 2240)
and

ADNI

Class weighting
80% training

(10% validation),
20% testing

MRI Multi-class
Classification

Mild De-
mented vs.

Moderate Demented
vs. Non-

Demented
vs. Very Mild

Demented; AD vs.
CN vs. CI

Convolutional
Neural Networks

(CNN) with
architecture

optimized using
Particle Swarm

Optimization (PSO)

Mild Demented
vs. Moderate
Demented vs.

Non-Demented
vs. Very Mild

Demented: 99.53%;
AD vs. CN vs. CI:

99.32%

Mild Demented
vs. Moderate

Demented vs. Non-
Demented vs. Very

Mild Demented:
99.83%; AD vs.

CN vs. CI: 99.71%

Mild Demented
vs. Moderate

Demented vs. Non-
Demented vs. Very

Mild Demented:
99.70%; AD vs.

CN vs. CI: 99.32%

Mild Demented
vs. Moderate
Demented vs.

Non-Demented
vs. Very Mild

Demented:
99.54%; AD vs.

CN vs. CI:
99.24%

Mild Demented
vs. Moderate
Demented vs.

Non-Demented
vs. Very Mild

Demented:
99.38%; AD vs.

CN vs. CI:
98.99%

- Not mentioned

Islam et al. [21] ADNI (CN: 470,
MCI: 477, AD: 599)

Duplication
MRIs

80% training (10%
validation),
20% testing

sMRI Multi-class
Classification

AD vs. MCI vs.
CN

Support Vector Ma
chine (SVM) 98.71% 99.04% 97.89% 97.92% 97.96% - Not mentioned

Khan et al. [22] ADNI (NC: 80,
EMCI: 75, LMCI:

70, AD: 75)

Data
Augmentation

70% training,
20% testing, and
10% validation

MRI Multi-class
Classification

NC vs. EMCI
vs. LMCI vs. AD

PMCAD-Net
(CNN-based
architecture)

99.2% --- 96.3% 96.34% 96.4% - Not mentioned

(Table 1) contd.....
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Article Dataset Imbalanced
Data Solution/G
eneralizability

Divided Meth-
ods

Modality Classification
Type

Classes Classification
Methods

Accuracy Specificity Sensitivity/Recall F1 Score Precision Area Under
the

Curve (AUC)

Explainable
Artificial

Intelligence (XAI)
El-Latif et al. [23]

Kaggle (Mild
Demented: 896,

Moderate
Demented: 64, Non-

Demented: 3200,
Very Mild

Demented: 2240)

Data
Augmentation

70% training,
20% testing, and
10% validation

MRI Binary and Multi-
class Classification

AD vs. Non-
AD; Non-
Demented

vs. Very Mild
Demented
vs. Mild

Demented
vs. Moderate

Demented

Lightweight CNN
model with seven

layers

AD vs. Non-AD:
99.22%; Non-

Demented vs. Very
Mild Demented vs.

Mild Demented
vs. Moderate

Demented: 95.93%

- AD vs. Non-
AD: 99.22%

AD vs. Non-
AD: 99.21%

AD vs. Non-
AD: 99.22% - Not mentioned

Pan et al. [24]
ADNI (AD: 237,

MCIc: 115, MCInc:
173, NC: 262) and
OASIS (AD: 105,

NC: 91)

Stratified five-
fold cross
validation

80% training,
20% testing MRI Binary

Classification

AD vs. NC;
MCIc vs. NC; MCIc

vs. MCInc

3D CNN, Ensemble
Learning, and

Genetic Algorithm

AD vs. NC: 89%;
MCIc vs. NC: 88%;
MCIc vs. MCInc:

71%

-

AD vs. NC: 85%;
MCIc vs. NC: 84%;
MCIc vs. MCInc:

65%

AD vs. NC: 0.88;
MCIc vs. NC:
0.87; MCIc vs.
MCInc: 0.69

AD vs. NC: 0.90;
MCIc vs. NC:
0.81; MCIc vs.
MCInc: 61%

AD vs. NC:
88%;

MCIc vs. NC:
87%;

MCIc vs.
MCInc:

70%

Gradient-weighted
Class Activation
Mapping (Grad-

CAM)

Fareed et al. [25] Kaggle (Non-
Demented: 3200,

Very Mild
Demented: 2240,
Mild Demented:
896, Moderate
Demented: 64)

SMOTETOMEK
60% training,

20% validation,
and 20% testing

MRI Multi-class
Classification

Non-
Demented

vs. Very Mild
Demented
vs. Mild

Demented
vs. Moderate

Demented

ADD-Net CNN 98.63% - 98.58% 98.61% 98.63% 99.76% Grad-CAM

Khatri and
Kwon [26]

ADNI ([Subjects]
AD: 63, MCIs: 37
stabil MCI, MCIc:
45 MCI, HC: 68;

subject-based)

Ten-fold cross
validation

70% training and
30% testing sMRI and rsMRI Binary

Classification

AD vs. HC;
MCIc vs. HC; MCIc

vs. MCIs; AD vs.
MCIc vs. MCIs vs.

HC

SVM (Best Model)
and RF

AD vs. HC:
95.87%; AD vs.

MCI: 92.45%; HC
vs. MCI: 90.35%;
MCIs vs. MCIc:

88.03%

AD vs. HC:
95.95%; AD vs.
MCI: 91.71%;
HC vs. MCI:

92.11%; MCIs vs.
MCIc: 89.71%

AD vs. HC:
97.35%; AD vs.
MCI: 95.98%;
HC vs. MCI:

94.34%; MCIs vs.
MCIc: 94.85%

AD vs. HC:
96.33%; AD vs.
MCI: 93.75%;
HC vs. MCI:

94.13%; MCIs
vs.

MCIc: 93.17%

-

AD vs. HC:
97.03%; AD

vs.
MCI:

94.03%; HC
vs. MCI:
92.06%;
MCIs vs.
MCIc:
91.08%

Not mentioned

Shamrat et al. [27] ADNI (after data
augmentation each

class has 10000
MRIs. Classes are
CN, EMCI, MCI,
LMCI, Subjective
Memory Concern
(SMC), and AD)

Data
augmentation

60% training,
20% validation,
and 20% testing

T2-w MRI Multi-class
Classification

NC vs. SMC vs.
MCI vs. EMCI

vs. LMCI vs. AD

AlzheimerNet, a
fine-tuned

InceptionV3
98.68% 99.74% 98.68% 98.68% 98.68%

0.97 (average
for each
class)

Grad-CAM

Salehi et al. [28] Kaggle (Non-
Demented: 3200,

Very-Mild-
Demented (AD):

2240)

Shuffle-Split
Cross Validation

80% training
and 20% testing MRI Binary

Classification

Non-
Demented (ND) vs.

Very-Mild-
Demented

(VMD)

LSTM (Long Short-
Term Memory)

networks
98.62% - - - - 0.97 Not mentioned

Kumari, Nigam
and Pushkar [29]

ADNI (NC: 922
MRI, 106 FDG-

PET, 49 PiB-PET;
MCI: 2795 MRI,

384 FDG-PET, 142
PiB-PET; AD: 465
MRI, 59 FDG-PET,

32 PiB-PET)

Stratified
Shuffle-Split

Cross-Validation

70% training
and 30% testing

MRI, FDG-PET,
PiB-PET, and

cognitive
assessments

Binary
Classification

AD vs. NC;
MCI vs. NC; AD vs.

MCI

Adaptive
Hyperparameter
Tuning Random

Forest En- semble
(HPT-RFE)

AD vs. NC: 100%;
MCI vs. NC: 91%;
AD vs. MCI: 95%

AD vs. NC:
100%; MCI vs.
NC: 100%; AD
vs. MCI: 100%

AD vs. NC:
100%; MCI vs.
NC: 60%; AD
vs. MCI: 80%

AD vs. NC:
100%; MCI vs.

NC: 75%; AD vs.
MCI: 88.88%

AD vs. NC:
100%; MCI vs.
NC: 100%; AD
vs. MCI: 100%

- Not mentioned

(Table 1) contd.....
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Article Dataset Imbalanced
Data Solution/G
eneralizability

Divided Meth-
ods

Modality Classification
Type

Classes Classification
Methods

Accuracy Specificity Sensitivity/Recall F1 Score Precision Area Under
the

Curve (AUC)

Explainable
Artificial

Intelligence (XAI)
Goyal, Rani and

Singh [30]

ADNI (CN: 1485,
MCI: 1510, AD:

1490)

Resampling
techniques
(under and

oversampling)

70% training (10%
validation)

and 30% testing
2D T1-w MRI

Binary and
Multiclass

Classification

AD vs. CN;
AD vs. MCI; CN vs.

MCI;
AD vs. CN vs. MCI

Ensemble learning
(and using ranking-

based ensembled
multiclassifier)
with: VGG16,

VGG19, ResNet50
V2, ResNet101 V2,

and MobileNet

AD vs. CN vs. MCI:
96.6% (VGG16);

AD vs. CN: 97.77%
(MobileNet); AD vs.

MCI: 96.89%
(VGG19); CN vs.

MCI: 98.66%
(VGG16)

AD vs. CN vs. MCI:
98.29% (VGG16);

AD vs. CN: 96.54%
(VGG16-VGG19);

AD vs. MCI:
96.89%

(VGG19); CN vs.
MCI: 98.68%

(VGG16)

AD vs. CN vs. MCI:
96.6% (VGG16);

AD vs. CN: 97.77%
(MobileNet); AD vs.

MCI: 96.89%
(VGG19); CN vs.

MCI: 98.65%
(VGG16)

AD vs. CN vs.
MCI: 96.6%

(VGG16); AD vs.
CN: 97.58%

(VGG19); AD vs.
MCI: 96.89%

(VGG19); CN vs.
MCI: 98.67%

(VGG16)

AD vs. CN vs.
MCI: 96.6%

(VGG16); AD vs.
CN: 97.61%

(VGG19); AD vs.
MCI: 96.89%

(VGG19); CN vs.
MCI: 98.68%

(VGG16)

AD vs. CN
vs. MCI:
99.82%

(VGG19);
AD vs. CN:

99.83%
(MobileNet);
AD vs. MCI:

99.75%
(VGG19);

CN vs. MCI:
99.9%

(VGG16)

Not mentioned

Gamal, Elattar and
Selim [31]

ADNI (789 MRI)

Data
augmentation, 5-

fold cross-
validation

70% training (each
fold has 20%

validation), 30%
testing

3D T1-w MRI Binary and Multi-
class Classification

AD vs. CN;
AD vs. MCI; MCI

vs. CN;
AD vs. MCI vs. CN

Ensemble of
3D deep learning
architectures: 3D

CNN, DenseNet201,
and Vision

Transformer (ViT)

AD vs. CN:
89.46%; AD vs.

MCI: 78.60%; MCI
vs. CN: 78.86%; AD

vs. MCI vs. CN:
70.33%

- - - -

AD vs. CN:
95.09%; AD

vs. MCI:
85.81%; MCI

vs. CN:
85.63%

Not mentioned

Turkson et al. [32]

ADNI (AD: 150,
MCI: 150, CN: 150)

No need data is
balanced

86.6% training and
13.4% testing (5

fold cross-validation
with 20% validation

each fold)

3D T1-w MRI Binary
Classification

AD vs. NC;
AD vs. MCI; NC vs.

MCI

Supervised
Convolutional

Neural Network
(CNN)

AD vs. NC:
90.15%; AD vs.

MCI: 87.30%; NC
vs. MCI: 83.90%

AD vs. NC:
87.12%; AD vs.
MCI: 85.30%;
NC vs. MCI:

75.63%

AD vs. NC:
96.50%; AD vs.
MCI: 90.20%;
NC vs. MCI:

88.90%

- - - Not mentioned

Sorour et al. [33] Kaggle (Mild-
Demented: 896,

Moderate-
Demented: 64,

Very-Mild-
Demented: 2240,
Non-Demented:

3200)

Data
Augmentation

80% training
and 20% testing MRI Binary

Classification

Demented (Mild,
Moderate and Very-
Mild-Demented) vs.

Non-Demented

CNNs combined
with LSTM 99.92% 100.00% 99.00% 100.00% 100.00% - Not mentioned

Tajammal et al. [34]

ADNI (AD: 1566,
CN: 1376, EMCI:
1471, MCI: 1260,
LMCI: 856, SMC:

1183)

Data
augmentation

80% training,
20% testing fMRI Binary and Multi-

class Classification

AD vs. CN;
MCI vs. AD; CN vs.
MCI; AD vs. SMC;

EMCI vs. AD;
LMCI vs. AD; CN
vs. SMC; EMCI vs.
CN; LMCI vs. CN;

CN vs. EMCI
vs. MCI vs. LMCI

vs. SMC
vs. AD

VGG-16,
ResNet-18,

AlexNet, Inception
v1, and Custom

CNN

AD vs. CN: 99.6%;
MCI vs. AD: 99.4%;
CN vs. MCI: 99.8%;
AD vs. SMC:93.4%;

EMCI vs. AD:
93.5%; LMCI vs.

AD:91.3%; CN vs.
SMC: 92.4%; EMCI

vs. CN: 93.2%;
LMCI vs. CN:

92.5%;
CN vs. EMCI vs.
MCI vs. LMCI

vs. SMC vs. AD:
98.8%

----

AD vs. CN: 95.8%;
MCI vs. AD: 96.6%;
CN vs. MCI: 95.7%;
AD vs. SMC:92.6%;

EMCI vs. AD:
94.5%; LMCI vs.

AD:90.2%; CN vs.
SMC: 93.4%; EMCI

vs. CN: 89.7%;
LMCI vs. CN:

89.6%

---

AD vs. CN:
94.3%; MCI vs.
AD: 96.2%; CN
vs. MCI: 94.5%;

AD vs.
SMC:90.6%;

EMCI vs. AD:
91.4%; LMCI vs.
AD:89.7%; CN

vs. SMC: 90.5%;
EMCI vs. CN:

92.3%; LMCI vs.
CN: 90.5%

- Not mentioned

(Table 1) contd.....
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Article Dataset Imbalanced
Data Solution/G
eneralizability

Divided Meth-
ods

Modality Classification
Type

Classes Classification
Methods

Accuracy Specificity Sensitivity/Recall F1 Score Precision Area Under
the

Curve (AUC)

Explainable
Artificial

Intelligence (XAI)
Ghaffari,Tavakoli,
and Pirzad Jahromi

[35]
ADNI (AD: 94,

pMCI: 65, sMCI:
61, NC: 85), OASIS

(AD: 15, NC: 15)
and AIBL (AD:15,
pMCI: 15, sMCI:

15, NC: 15)

Data
augmentation

80% training,
10% validation,

10% testing
3D t1-w s-MRI Binary and Multi-

class Classification

NC vs. AD +
pMCI + sMCI;

NC vs. pMCI vs.
sMCI vs. AD

Pre-trained CNN
models with Trans-
fer Learning (TL):
ResNet101, Xcep-
tion, InceptionV3

NC vs. AD +
pMCI + sMC:

93.75% (ADNI),
93.33% (OASIS),
93.33% (AIBL);
NC vs. pMCI vs.

sMCI vs. AD:
93.75% (ADNI),
90.0% (AIBL)

- - - -

NC vs. AD +
pMCI + sMC:

92.0%
(ADNI),
93.00%

(OASIS),
95% (AIBL);
NC vs. pMCI
vs. sMCI vs.
AD: 96.00%

(ADNI),
93.00%
(AIBL)

Not mentioned

Chabib, Had-
jileontiadis and

Shehhi [36] Kaggle (ND: 3200,
VMD: 2240, MID:

896, MOD: 64)

Leave-One-
Group-Out

Cross-Validation
(LOGOCV)

and k-fold cross-
validation (10-
fold and 5-fold)

80% training,
20% testing MRI Binary and Multi-

class Classification

Non-
Demented (ND) vs.

Very Mild
Demented (VMD);
ND vs. VMD vs.

MID
vs. MOD

Deep Convolutional
Curvelet Transform-
based CNN (Deep-

CurvMRI)

ND vs. VMD:
98.71%; ND vs.

VMD vs. MID vs.
MOD: 98.62%

ND vs. VMD:
98.50%; ND

vs. VMD vs. MID
vs. MOD: 98.50%

ND vs. VMD:
98.84%; ND

vs. VMD vs. MID vs.
MOD: 99.05%

ND vs. VMD:
99.25%; ND
vs. VMD vs.

MID vs. MOD:
99.21%

- - Curvelet Transform

Al-Otaibi et al. [37] Kaggle (retreived
from ADNI. For

multi-class
classification: CN:
1440, MCI: 2590,

AD: 1124. for
binary

classification: AD:
965, MCI: 689)

ADASYN
(Adaptive
Synthetic
Sampling)

80% training,
20% testing

and 10-fold cross-
validation

MRI Binary and Multi-
class Classification

AD vs. MCI;
AD vs. MCI vs. CN

Dual Attention
Convolutional
AutoEncoder

(DACNA)

AD vs. MCI:
99.22%; AD vs.

MCI vs. CN:
98.30%

AD vs. MCI:
99.27%; AD vs.

MCI vs. CN:
99.18%

AD vs. MCI:
99.27%; AD vs.

MCI vs. CN: 98.32%

AD vs. MCI:
99.23%; AD vs.

MCI vs. CN:
98.20%

AD vs. MCI:
99.28%; AD vs.

MCI vs. CN:
98.18%

AD vs. MCI:
99.19%; AD
vs. MCI vs.
CN: 99.49%

Not mentioned

Thangavel,
Natarajan and
Preethaa [38]

Kaggle (CN: 3200,
Very Mild

Dementia: 2240,
Mild Dementia:
896, Moderate
Dementia: 87))

Data
augmentation
(Keras Image

Data Generator)
and 10-fold

cross-validation

80% training,
20% testing MRI Multi-class

Classification

Non-demented
vs. very mild

demented vs. mild
demented vs.

moderate demented

CNN-ResNet
architecture with
Modified Adam

Optimization

98% - - 90% --- - Not mentioned

Boudi, He and Abd
El Kader [39]

Kaggle (CN: 3200,
Very Mild

Dementia: 2240,
Mild Dementia:
896, Moderate
Dementia: 87))

Data
augmentation
(Keras Image

Data Generator)
and 10-fold

cross-validation,
SMOTE

(Synthetic
Minority Over-

sampling
Technique)

80% training,
10% validation,
and 10% testing

MRI Multi-class
Classification

Non-
Demented

vs. Very Mild
Demented
vs. Mild

Demented
vs. Moderate

Demented

Transfer Learning:
ResNet50V2 (Best
Model), VGG16,

VGG19,
DenseNet201

98.25% - 98.00% 98.00% 98.00% ---- Grad-CAM

Pandey et al. [40]

ADNI (AD: 12028,
MCI: 9604, CN:

13146) and OASIS
(AD: 488, MCI:
6000, CN: 6000)

Data
augmentation
(Keras Image

Data Generator)

80% training,
20% testing 3D T1-w MRI Binary and Multi-

class Classification

AD vs. CN;
MCI vs. CN;

AD vs.CN vs. MCI

Transfer learning:
ResNet-50,

ResNet-101 (Best
Model), ResNet-

152, DenseNet-201,
EfficientNet-B0

AD vs. CN: 92.34%
(ADNI), 90.01%

(OASIS); MCI vs.
CN: 86.57%

(ADNI), 86.87%
(OASIS); AD vs.

CN vs. MCI:
98.21% (ADNI),
97.45% (OASIS)

-

AD vs. CN: 90.02%
(ADNI), 90.17%

(OASIS); MCI vs.
CN: 92.34%

(ADNI), 88.76%
(OASIS); AD vs. CN

vs. MCI:
94.89% (ADNI),
93.67% (OASIS)

AD vs. CN:
92.89% (ADNI),

91.89%
(OASIS); MCI
vs. CN: 85.23%
(ADNI), 81.23%
(OASIS); AD vs.

CN vs. MCI:
94.78%

(ADNI), 93.45%
(OASIS)

AD vs. CN:
90.12% (ADNI),
91.34% (OASIS);

MCI vs. CN:
79.45% (ADNI),
78.99% (OASIS);

AD vs. CN vs.
MCI: 94.67%

(ADNI), 93.12%
(OASIS)

- Grad-CAM

(Table 1) contd.....
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Article Dataset Imbalanced
Data Solution/G
eneralizability

Divided Meth-
ods

Modality Classification
Type

Classes Classification
Methods

Accuracy Specificity Sensitivity/Recall F1 Score Precision Area Under
the

Curve (AUC)

Explainable
Artificial

Intelligence (XAI)
Parvatham and
Maguluri [41]

Kaggle (2560
healthy subjects,

very mild dementia:
1792, mild

dementia: 717,
moderate dementia:

52)

Data
augmentation

(15-fold-cross-
validation)

80% training,
20% testing T1 s-MRI Binary

Classification
Demented

vs. Non- Demented
Hybrid CNN-SVM

model 99.60% 99.40% 99.83% 99.58% 99.35% - Not mentioned

Basheera and Satya
Sai Ram [42]

ADNI (Non-
demented: 2560,

very mild dementia:
1792, mild

dementia: 717,
moderate dementia:

52)

Only horizontal
flipping

75% training,
25% testing

and 10-fold cross-
validation

T1 and T2 MRI Binary and Multi-
class Classification

AD vs. CN;
AD vs. MCI; MCI

vs. CN;
AD vs. MCI vs.

CN

Adaboost classifier
using LM Filter
Bank features

AD vs. CN:
84.24%; AD vs.

MCI: 79.33%; AD
vs. MCI vs. CN:

72.88%

AD vs. CN:
79.22%; AD vs.
MCI: 80.00%;

AD vs. MCI vs. CN:
58.88%

AD vs. CN:
89.85%; AD vs.
MCI: 78.82%;

AD vs. MCI vs. CN:
77.77%

- - - Not mentioned

Fan et al. [43]

ADNI (AD: 108,
LMCI: 163, EMCI:
261, NC: 213) and

AIBL (AD: 13, NC:
13)

Oversampling
80% training, 20%

testing, 5-fold cross-
validation

3D T1 MRI Binary and Multi-
class Classification

AD vs. NC;
NC vs. EMCI;

EMCI vs.
LMCI; LMCI
vs. AD; NC

vs. EMCI vs. LMCI
vs. AD

U-net architecture
with deep

supervision and
skip-connections

AD vs. NC:
95.71%; NC vs.
EMCI: 87.98%;
EMCI vs. LMCI:

90.14%; LMCI vs.
AD: 90.05%; NC vs.
EMCI vs. LMCI vs.

AD: 86.47%

- - - - AD vs. NC:
0.89 Grad-CAM

Mahim et al. [44] Kaggle (CN: 3200,
Very Mild

Dementia: 2240,
Mild Dementia:
896, Moderate

Dementia: 64) and
ADNI (AD: 615,
MCI: 1455, CN:

900)

Effective feature
engineering

10-fold cross-
validation and
80% training,

10% testing, and
10% validation

T1 MRI Binary and Multi-
class Classification

AD vs. CN;
Demented

vs. Healthy; No
Dementia vs. Very
Mild Dementia vs.
Mild Dementia vs.

Moderate Dementia

ViT-GRU hybrid
model

Demented vs.
Non-Demented:

99.69%; No
Dementia vs. Very
Mild Dementia vs.
Mild Dementia vs.

Moderate Dementia:
99.53%

Demented vs.
Non-Demented:

99.47%; No
Dementia vs. Very
Mild Dementia vs.
Mild Dementia vs.

Moderate Dementia:
99.76%

Demented vs.
Non-Demented:

99.53%; No
Dementia vs. Very
Mild Dementia vs.
Mild Dementia vs.

Moderate Dementia:
99.53%

Demented vs.
Non-Demented:

99.53%; No
Dementia vs.

Very Mild
Dementia vs.

Mild Dementia
vs. Moderate
Dementia:

99.53%

Demented vs.
Non-Demented:

99.53%; No
Dementia vs.

Very Mild De-
mentia vs. Mild

Dementia vs.
Moderate De-

mentia: 99.53%

- LIME, SHAP ve
Attention Map

Mehmood et al.
[45].

ADNI (CN: 2520,
MCI: 1995, LMCI:
3475, AD: 3475)

Data
augmentation/fea

ture extraction

80% training,
20% testing 2D T1 MRI Binary classification

NC vs. AD; NC vs.
LMCI; NC vs. MCI;
MCI vs. AD; LMCI

vs. AD

Siamese 4D-
AlzNet model
with transfer

learning using
Frozen VGG-16,
Frozen VGG-19,
and customized

AlexNet

NC vs. AD: 95.07%;
NC vs. LMCI:

96.75%; NC vs.
MCI: 96.82%; MCI

vs. AD: 95.43%;
LMCI vs. AD:

79.16%

-

NC vs. AD: 92.51%;
NC vs. LMCI:

95.93%; NC vs.
MCI: 92.10%; MCI

vs. AD: 94.85%;
LMCI vs. AD:

76.36%

NC vs. AD:
95.90%; NC vs.
LMCI: 97.22%;

NC vs. MCI:
94.24%; MCI vs.

AD: 96.45%;
LMCI vs. AD:

86.05%

NC vs. AD:
99.56%; NC vs.
LMCI: 98.56%;

NC vs. MCI:
96.49%; MCI vs.

AD: 98.12%;
LMCI vs. AD:

98.56%

- Not mentioned

Chatterjee and
Byun [46] OASIS (Subjects:

150)
Feature selection,

imputation

70% training,
30% testing

and 5-fold cross-
validation

T1-w MRI Binary
Classification

Demented
vs. Non- Demented

Voting Ensemble
of base classifiers:

SVM, KNN,
Logistic Regression,

Naive Bayes

96.43% 96.81% 94.64% - - 97.26% Not mentioned

Aparna and
Rao [47] ADNI (All MRIs:

1296)
Data

augmentation

95% training, 5%
testing and 5-fold
cross-validation

T1-w MRI Multi-class
Classification

CN vs. LMCI
vs. EMCI vs. MCI

vs. AD

Hybrid Xception
and FractalNet
deep learning
architecture

99.06% - 98.30% - 99.72% 98.72% Not mentioned

Cao et al. [48]

ADNI (Subject-
based: NC: 172,

EMCI: 188, LMCI:
161)

No need data is
balanced

10-fold cross-
validation (90%

train, 10% test for
each fold)

rs-fMRI and BOLD
(Blood-

oxygenation-
level–dependent
imaging) signals

Binary and Multi-
class Classification

NC vs. EMCI;
EMCI vs.

LMCI; NC
vs. EMCI vs. LMCI

S4D (Diagonal-
Structured State-
Space Sequence

Model) integrated
into a deep learning

framework

NC vs. EMCI:
87.4%; EMCI vs.

LMCI: 85.0%; NC
vs. EMCI vs. LMCI:

77.9%

-

NC vs. EMCI:
86.4%; EMCI vs.

LMCI: 89.0%;
NC vs. EMCI vs.

LMCI: 80.1%

- -

NC vs.
EMCI: 0.95;

EMCI vs.
LMCI: 0.93;
NC vs. EMCI

vs. LMCI:
0.92

Pointwise
Convolutional

(Table 1) contd.....
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2.4.4. Performance Metrics and Evaluation

To  ensure  a  comprehensive  evaluation  of  classification
performance, we considered multiple metrics, including:

Accuracy:  The  proportion  of  correctly  classified
instances. While commonly used, it can be misleading
in imbalanced datasets.
Precision, Recall, and F1-score: Particularly crucial for
imbalanced  class  distributions.  The  F1-score,  as  the
har-monic  mean  of  precision  and  recall,  provides  a
balan-ced assessment of both false positives and false
negatives.
AUC (Area Under the ROC Curve):  A robust  metric
that  evaluates  model  performance  across  various

threshold  settings,  making  it  less  sensitive  to  class
imbalance.

By  gathering  these  metrics,  we  aimed  to  compare  the
performance of different machine learning algorithms and data-
handling strategies under varying levels of class imbalance.

3. RESULTS
A  total  of  66  studies  were  initially  identified  through

database searches. After applying the inclusion and exclusion
criteria described in Section 2, 39 studies were selected for this
systematic  review.  As  shown  in  Fig.  (1),  8  studies  were
excluded  during  the  abstract  and  title  screening,  and  an
additional 2 studies were removed after full-text review. The
PRISMA flow diagram presents this final count of 39 studies
(Fig. 1).

Fig. (1). PRISMA flow diagram.
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3.1. Study Design Quality and Sample Size Observations
Aligned  with  our  Quality  Assessment  criteria  (Section

2.4.1),  we observed varying levels of methodological quality
among the included studies:

3.1.1. Study Design
The  majority  of  studies  employed  a  cross-sectional

approach,  while  a  few  utilized  longitudinal  data,  such  as
ADNI’s multi-timepoint scans. Studies including longitudinal
data  provided  deeper  insights  into  disease  progression  but
required  more  complex  modeling  frameworks.

3.1.2. Sample Size and Diversity
Sample sizes varied significantly, ranging from fewer than

100 scans (commonly in Kaggle-based datasets) to thousands
of images (particularly in ADNI). While some studies justified
their sample sizes using power analysis or external references,
many did  not  explicitly  assess  statistical  sufficiency.  Studies
with smaller sample sizes often relied on data augmentation or
oversampling techniques to managed data limitations.

3.1.3. Risk of Bias and Methodological Transparency
A subset  of  studies,  particularly  those  relying  on  single-

center data or lacking clarity in validation strategies, indicated
a  higher  risk  of  bias.  In  contrast,  studies  using  multi-center
datasets (e.g., ADNI, OASIS) and those providing transparent
reporting of preprocessing steps tended to produce more robust
and reproducible results.

3.2. Datasets
The  majority  of  the  reviewed  studies  utilized  well-

established, publicly available datasets for training and testing
their models. The most frequently cited datasets were:

3.2.1. Alzheimer’s Disease Neuroimaging Initiative (ADNI)2

Approximately  65%  (only  ADNI:  approx  45%)  of  the
included studies  relied  on ADNI,  which provides  large-scale
MRI  and  PET  data,  along  with  cognitive  scores  and  genetic
information. Its longitudinal design and diverse demographic
representation  make  it  a  benchmark  dataset  for  Alzheimer’s
research.

3.2.2. Kaggle Datasets3

Around 33% of the studies used smaller, Kaggle datasets.
These  datasets  typically  contained  only  a  few  hundred  MRI
scans  labeled  by  dementia  stage,  often  requiring  data
augmentation  or  oversampling  to  address  lack  of  data.

3.2.3. Open Access Series of Imaging Studies (OASIS)4

Roughly 8% of the studies utilized OASIS, which includes
MRI data from both healthy older adults and individuals with
dementia. OASIS is particularly valuable for tracking cognitive
decline over time in longitudinal analyses.

3.3. Data Modalities

The  majority  of  studies  (92,3%)  relied  exclusively  on
magnetic  resonance  imaging  (MRI)  for  Alzheimer’s  disease

detection. However, a subset of studies (approx. 7%) employed
multimodal  approaches,  integrating  MRI  with  additional
modality,  including:

Positron  Emission  Tomography  (PET):  Captures
metabolic  or  amyloid  changes  associated  with  AD
progression.
Cognitive  test  scores,  genetic  data,  vital  signs,
demographics,  etc.:  Enhance  classification
performance, particularly for borderline or early-stage
cases.

Studies  including  multimodal  data  generally  reported
higher  diagnostic  accuracy,  highlighting  the  advantages  of
combining  structural,  functional,  and  other  relevant
information for more precise and early AD detection (Fig. 2).

3.4. Classification Methods

A  range  of  machine  learning  (ML)  algorithms  and  deep
learing approach (generally CNN) were employed across the
39 studies.

3.4.1. Convolutional Neural Networks (CNN)

The  most  widely  used  approach  for  image-based
classification. CNNs are highly effective at extracting features
from  MRI  scans,  allowing  them  to  capture  subtle  structural
changes associated with AD.

3.4.2. Random Forest (RF)

Frequently  applied  in  multi-modal  studies  combining
imaging with clinical data.  RF is valued for its robustness to
overfitting  and  its  ability  to  provide  interpretable  feature
importance  insights.

3.4.3. Support Vector Machine (SVM)

Particularly  suited  for  high-dimensional  neuroimaging
data.  SVMs  demonstrated  strong  performance  in  smaller
datasets,  provided  that  appropriate  feature  selection  or
dimensionality  reduction  techniques  were  implemented.

3.4.4. Hybrid Models

These approaches combined CNNs with other algorithms
(e.g.,  SVM, RF)  to  exploit  complementary  strengths.  Hybrid
models often reported performance improvements, particularly
in multi-class classification tasks.

Each model’s  performance depended on the type of  data
and  the  classification  task  (binary  vs.  multi-class
classification). The distribution of the methods used by studies
is in Fig. (3).

2 https://adni.loni.usc.edu/

3 https://www.kaggle.com/

4 https://sites.wustl.edu/oasisbrains/

https://adni.loni.usc.edu/
https://www.kaggle.com/
https://sites.wustl.edu/oasisbrains/
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Fig. (2). Modality distribution.

Fig. (3). Classification methods by studies.

3.4.5. Algorithmic Performance and Limitations

CNNs generally achieved the highest accuracy, especially
in  binary  classifications  (e.g.,  AD  vs.  CN).  However,  their
performance declined when training data were insufficient or
highly  imbalanced.  Random  Forest  demonstrated  stable
performance  when  integrating  imaging  with  clinical  or
demographic variables, but it required careful hyperparameter
tuning.  SVMs  were  effective  for  smaller  datasets  but  were
highly sensitive to parameter selection (e.g., kernel type) and
data preprocessing strategies. Hybrid Models offered improved
performance  but  introduced  greater  complexity  and  longer
training  times,  requiring  careful  implementation  for  optimal
results.

3.5. Performance Metrics

While  accuracy  was  the  most  commonly  reported
performance  metric,  many  studies  also  included  precision,
recall,  F1-score,  and AUC to provide a  more comprehensive

evaluation. We analyzed binary and multi-class classification
performance separately (Figs. 4 and 5).

Best performances according to accuracy:

Best Binary Classification:  Qin et al.  [12] achieved
100%  accuracy  for  distinguishing  aMCI  from  sMCI
using  a  3D  CNN  with  hybrid  attention  (3D  HA-
ResUNet)  applied  to  MRI  data.
Best  Multi-class  Classification:  AbdulAzeem,
Bahgat,  and  Badawy  [17]  reported  99.98%  accuracy
for  AD  vs.  NC  vs.  MCI  using  a  CNN-based  model
trained on MRI scans.

Although reported accuracy values were often high, studies
that  included  additional  metrics  such  as  F1-score,  precision,
recall,  and  AUC  provided  stronger  evidence  of  model
robustness,  particularly  in  the  presence  of  class  imbalance.
Notably,  multimodal  studies  demonstrated  improved

MRI

MRI + PET
MRI + Other5,1%

2,6%

92,3%

Modality Distribution

DL

ML

Hybrid Models5,1%

17,9%

76,9%

Classification Methods
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employed:

Oversampling (e.g., SMOTE, ADASYN):

Synthetic  samples  were  generated  to  balance  class
distributions.  While  effective  in  certain  cases,  this  method
risked  amplifying  noise,  especially  in  small  or  highly
heterogeneous  datasets.

Fig. (4). Binary classification performance metrics by the studies.

Fig. (5). Multi-class classification performance metrics by the studies.
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performance, likely due to the complementary nature of 
imaging and non-imaging features.

3.6. Handling of Data Imbalanced
Data imbalance, such as a disproportionately higher 

number of CN cases compared to AD, posed a significant 
challenge in  many studies. To handle this issue and to increase 
the generalization ability of the model, various strategies were
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Fig. (6). Used methods for unbalanced data (and also generalizability).

Data Augmentation:

Image  transformations  such  as  rotation,  flipping,  and
scaling  were  applied  to  expand  training  datasets  and  reduce
overfitting, particularly in CNN-based models.

Cross Validation:  Cross-validation splits the dataset
into  multiple  subsets,  allowing  the  model  to  be
evaluated  on  each  segment,  which  helps  reduce  the
risk  of  overfitting.  Techniques  like  stratified  k-fold
cross-validation  maintain  the  representation  of  the
minority  class  by  preserving its  distribution  in  every
fold, especially in imbalanced datasets. This approach
enables a more objective and reliable assessment of the
model's overall performance.

Class Weighting:

A subset of studies adjusted loss functions to assign higher
penalties  for  misclassifications  in  underrepresented  classes.
This approach provided a computationally efficient alternative
to oversampling.

No Specific Handling:

Some  studies  did  not  report  any  strategy  for  addressing
class  imbalance,  potentially  limiting  their  models’
generalizability  and  performance  in  real-world  clinical
applications.

Because  methods  ranged  from  simple  augmentation  to
more  advanced  GAN-based  approaches,  comparing
effectiveness  was  challenging.  Nonetheless,  studies  that
explicitly addressed imbalance generally reported more stable
metrics  (e.g.,  higher  F1-scores  and  fewer  false  negatives),
underscoring  the  importance  of  proper  class  balancing
techniques.

These  methods  played a  crucial  role  in  ensuring  that  the
models  could  generalize  across  different  patient  populations

and perform well even with imbalanced datasets.

In some of the studies reviewed, precautions were taken for
unbalanced class distributions (Fig. 6).

Most  reviewed  studies  demonstrated  a  high  ability  to
diagnose  Alzheimer’s  disease  using  structural  MRI  images.
Typically, the binary classification of AD versus CN (healthy
controls)  achieved  accuracy  levels  between  90%  and  100%,
with some deep learning models performing nearly perfectly.
In contrast, determining the MCI (Mild Cognitive Impairment)
stage-and  particularly  distinguishing  between  its  subtypes
(sMCI  vs.  pMCI)-proved  more  challenging,  with  accuracies
generally between 75% and 90% (e.g., sensitivities of 80–95%
for  distinguishing  AD  from  MCI).  For  multi-class  problems
(such as differentiating among AD, MCI, and CN or additional
stages),  deep  learning  models  typically  reached  accuracies
between  85%  and  97%,  and  several  studies  even  reported
overall  accuracies  exceeding  90%  for  three-  or  four-class
classification  tasks.  Overall,  deep  learning-based  approaches
have outperformed classical  machine  learning methods  (e.g.,
SVM, Random Forest), though traditional methods have also
been  successfully  applied  on  smaller  datasets-achieving
accuracies of up to 90% when combined with effective feature
extraction techniques.

4. DISCUSSION

This review highlights a diverse range of computer-aided
diagnostic  (CAD)  approaches  for  Alzheimer’s  disease  (AD)
classification,  showcasing  their  potential  to  enhance  early
detection. While these findings emphasize the promise of CAD
systems, they also expose critical methodological and practical
challenges  that  must  be  addressed  to  achieve  reliable  and
clinically  meaningful  outcomes.

4.1.  Methodological  Quality  and  External  Validation
(Critique  of  Methodological  Quality,  External  Validation,
Model  Explainability,  Data  Imbalance  Strategies,  and
Limitations.

A  key  finding  of  this  review  was  the  variability  in

 

Not mentioned / No need / No info

Data Augmentation

Cross validation + Other

Cross validation

Data Augmentation + Other

Other

12,8%

7,7%

10,3%

7,7%

17,9%

43,6%

Methods for Unbalanced Data or Generalizability
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methodological quality across the 39 included studies. While
many  utilized  well-established  datasets  such  as  ADNI  and
OASIS, the majority relied on cross-sectional designs. Only a
small subset used longitudinal analyses, which are essential for
tracking disease progression from mild cognitive impairment
(MCI) to Alzheimer’s disease (AD).

4.1.1. External Validation Gaps

Most  studies  depended  only  on  internal  validation
methods,  such  as  k-fold  cross-validation,  without  evaluating
their  models  on  external  datasets.  This  lack  of  external
validation raises concerns regarding model generalizability and
robustness  in  real-world  clinical  settings.  To  ensure  that
reported accuracies are not due to overfitting or dataset-specific
artifacts, future research should prioritize:

Independent test sets
Multi-center datasets
External validation cohorts

4.1.2. Sample Size Justification

Although some studies used power analyses or referenced
external benchmarks to justify their sample sizes, many did not
provide  explicit  rationale.  Small  or  highly  homogeneous
samples can significantly limit the generalizability of findings.
To enhance the clinical applicability of CAD systems, future
studies should include:

Larger and more diverse datasets.
Representation of different disease stages.
Strategies  to  reduce  bias  and  ensure  robust  model
performance across varied clinical populations.

4.2.  Data  Imbalance  Strategies  and  Performance
Assessments

Data  imbalance,  such  as  a  disproportionately  higher
number of cognitively normal (CN) compared to Alzheimer’s
disease  (AD)  cases,  was  a  recurring  challenge  across  the
reviewed  studies.  Various  techniques  were  employed  to
address  this  issue,  including  SMOTE,  ADASYN,  cross-
validation,  and  data  augmentation  to  artificially  expand  the
minority  class,  while  class  weighting  provided  a  simpler
alternative  to  account  for  imbalanced  distributions.

4.2.1. Effectiveness vs. Overfitting

While  these  techniques  often  led  to  improvements  in
reported  performance  metrics-such  as  higher  F1-scores  and
reduced  false  negatives-they  also  had  potential  risks.  If  not
carefully applied, oversampling and augmentation methods can
amplify  noise  or  generate  synthetic  artifacts,  particularly  in
small or heterogeneous datasets. To ensure robustness, future
studies should:

Evaluate the long-term stability of imbalance-handling
methods
Include external validation to assess generalizability
Use  additional  metrics  (e.g.,  confusion  matrices)  to

detect potential overfitting

4.2.2. GAN-Based Augmentation

A  small  subset  of  studies  (only  Goyal,  Ran  &  Singh
(2024)) explored Generative Adversarial Networks (GANs) for
data  augmentation,  allowing  for  the  generation  of  more
realistic synthetic samples. However, GAN-based methods also
pose risks, particularly when trained on small datasets, as they
may produce unrealistic or redundant images. This highlights
the importance of:

Transparent reporting of GAN-generated data
Thorough  validation  to  ensure  the  synthetic  samples
meaningfully enhance model performance rather than
introducing bias.

4.3. Model Explainability and Clinical Applicability

As  computer-aided  diagnostic  (CAD)  systems  become
increasingly  complex,  particularly  with  the  adoption  of  deep
neural  networks,  explainability  is  crucial  for  clinical
acceptance.  While  some  studies  (11  of  39)  explored
interpretability  tools  (e.g.,  Grad-CAM, SHAP),  most  did  not
provide  detailed  explanations  of  how  predictions  were
generated.

4.3.1. Importance of Interpretability

Clinicians  require  a  clear  rationale  behind  each
classification to trust automated decisions, especially for high-
stakes  diagnoses  such as  Alzheimer's  disease.  Future  models
should include interpretability techniques such as:

Grad-CAM  (Gradient-weighted  Class  Activation
Mapping)
Layer-wise Relevance Propagation (LRP)
Shapley Values (SHAP)

These  methods  can  help  identify  which  regions  of  brain
scans  contribute  most  to  a  positive  AD  classification,
improving transparency and trust in AI-driven diagnostic tools.

4.3.2. Integration with Clinical Workflows

Beyond  technical  performance,  CAD  systems  must
smoothly  integrate  into  existing  diagnostic  pipelines.
Standardized  data  acquisition  protocols,  preprocessing
workflows, and user-friendly interfaces can facilitate adoption
and enhance clinical utility.

4.4.  Overfitting,  Data  Leakage,  and  Extremely  High
Accuracy Reports

Several  studies  reported  near-perfect  classification
accuracy  (e.g.,  99–100%),  particularly  in  binary  AD  vs.  CN
tasks. While such results may seem promising, they often raise
concerns about potential methodological flaws, including:

Overfitting:  Models  trained  on  small  or  imbalanced
datasets  may  memorize  patterns  rather  than  learning
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generalizable features.
Data Leakage: Unintentional inclusion of test data in
the  training  process  (e.g.,  overlapping  patient  IDs  in
train/test splits) can artificially inflate performance.
Lack of External Validation: Without independent test
sets,  it  remains  unclear  whether  these  models
generalize  to  diverse  patient  populations.

4.4.1. Clinical Feasibility Check

Studies  reported  100%  accuracy  often  lacked  additional
validation  through  external  cohorts  or  prospective  clinical
trials, requiring careful interpretation of results. Future research
should:

Cross-validate  models  on  independent  multi-center
datasets.
Systematically check for potential data leakage in data
partitioning strategies.
Ensure that reported accuracies demonstrate real-world
diagnostic utility rather than dataset-specific artifacts.

4.5. Future Research Directions
Building upon the limitations observed in this review, we

propose  several  strategies  to  advance  CAD  systems  for  AD
classification:

4.5.1. Robust Data Collection and Sharing

Encourage multi-institution collaborations to assemble
larger, more diverse datasets.
Expand  public  database  like  ADNI,  OASIS,  and
Kaggle  to  include more  comprehensive  demographic
and longitudinal data coverage.

4.5.2. Longitudinal Modeling

Focus  on  tracking  disease  progression  (e.g.,  MCI  to
AD) using time-series or sequence-based models.
Identify early biomarkers that predict AD conversion
through longitudinal analysis.

4.5.3. Explainable AI Frameworks

Integrate  model-agnostic  interpretability  tools  (e.g.,
LIME,  SHAP)  and  deep-learning-specific  methods
(e.g.,  Grad-CAM)  to  improve  clinical  trust.
Facilitate regulatory approval by ensuring AI decisions
are explainable and reproducible.

4.5.4. Standardization of Protocols

Establish common preprocessing pipelines (e.g., skull
stripping,  intensity  normalization,  registration)  to
enhance  reproducibility.
Encourage  consistent  performance  reporting  (e.g.,
confusion matrices, calibration plots) to enable direct

comparisons across studies.

4.5.5. Prospective Clinical Trials

Conduct  real-world  evaluations  of  high-performing
CAD systems to assess clinical impact, including:

Time to diagnosis
Cost-effectiveness
User acceptability in healthcare settings

4.6. Limitations of This Study

Despite synthesizing a wide range of studies, this review
has several limitations:

4.6.1. Publication Bias

Only  peer-reviewed  articles  in  English  from  the  last
three years were included, which may have excluded
relevant but unpublished or non-English research.

4.6.2. Search Scope

While  multiple  databases  were  searched  (PubMed,
IEEE Xplore, Web of Science), additional sources or
grey  literature  may  contain  findings  not  captured  in
this review.

4.6.3. Heterogeneity of Studies

Variability in data preprocessing, model architectures,
and reported metrics complicated direct comparisons.
Although studies  were grouped by modality  and ML
algorithm, use of a wide variety of methods in studies
prevented a more detailed meta-analysis.

4.6.4. Evolving Field

Given rapid advancements in machine learning, novel
techniques  may  have  emerged  since  the  final  search
date.
Ongoing  updates  to  public  datasets  and  the
introduction of new augmentation strategies may shift
performance trends over time.

CONCLUSION
This systematic review highlights the significant potential

of  computer-aided  diagnostic  (CAD)  systems  in  the  early
detection and classification of Alzheimer’s disease (AD). By
leveraging  advanced  machine  learning  algorithms  applied  to
neuroimaging data-primarily MRI, but also multimodal inputs
such as PET scans and cognitive scores-these systems achieve
high  diagnostic  accuracy  and  hold  promise  for  enhancing
clinical  decision-making.  Notably,  multimodal  approaches
consistently  outperform  single-modality  models,  reinforcing
the importance of integrating structural, functional, and other
relevant information for a more comprehensive assessment of
disease progression.
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LIST OF ABBREVIATIONS

AD = Alzheimer’s Disease

ADASYN = Adaptive Synthetic Sampling

ADNI = Alzheimer’s Disease Neuroimaging Initiative

aMCI = Amnestic Mild Cognitive Impairment

AUC = Area Under the Curve

CAD = Computer-Aided Diagnosis

cAD = Converter Alzheimer’s Disease

CN = Cognitively Normal

CSF = Cerebrospinal Fluid

CNN = Convolutional Neural Network

DCNN = Deep Convolutional Neural Network

FAQ = Functional Activities Questionnaire

fMRI = Functional Magnetic Resonance Imaging

FL = Focal Loss

GANs = Generative Adversarial Networks

GDL = Generalized Dice Loss

LOGOCV = Leave-One-Group-Out Cross-Validation

MCI = Mild Cognitive Impairment

mD = Moderate Dementia

miD = Mild Dementia

MMSE = Mini-Mental State Examination

NC = Normal Cognition

OASIS = Open Access Series of Imaging Studies

oMCI = Other Mild Cognitive Impairment

PET = Positron Emission Tomography

pMCI = Progressive Mild Cognitive Impairment

PRISMA = Preferred  Reporting  Items  for  Systematic  Reviews
and Meta-Analyses

RF = Random Forest

ROC = Receiver Operating Characteristic

SES = Socioeconomic Status

sMCI = Stable Mild Cognitive Impairment

SMOTE = Synthetic Minority Over-sampling Technique

STARD = Standards for Reporting Diagnostic Accuracy Studies

SVM = Support Vector Machine

vmiD = Very Mild Dementia
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