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Abstract:

Background and Objective:

Lung cancer remains a leading cause of cancer-related mortality worldwide, necessitating early and accurate detection methods. Our study aims to
enhance lung cancer detection by integrating VGGNet-16 form of Convolutional Neural Networks (CNNs) and Support Vector Machines (SVM)
into a hybrid model (SVMVGGNet-16), leveraging the strengths of both models for high accuracy and reliability in classifying lung cancer types
in different 4 classes such as adenocarcinoma (ADC), large cell carcinoma (LCC), Normal, and squamous cell carcinoma (SCC).

Methods:

Using  the  LIDC-IDRI  dataset,  we  pre-processed  images  with  a  median  filter  and  histogram  equalization,  segmented  lung  tumors  through
thresholding and edge detection, and extracted geometric features such as area, perimeter, eccentricity, compactness, and circularity. VGGNet-16
and SVM employed for feature extraction and classification, respectively. Performance matrices were evaluated using accuracy, AUC, recall,
precision, and F1-score. Both VGGNet-16 and SVM underwent comparative analysis during the training, validation, and testing phases.

Results:

The SVMVGGNet-16 model outperformed both, with a training accuracy (97.22%), AUC (99.42%), recall (94.22%), precision (95.28%), and F1-
score (94.68%). In testing, our SVMVGGNet-16 model maintained high accuracy (96.72%), with an AUC (96.87%), recall (84.67%), precision
(87.40%), and F1-score (85.73%).

Conclusion:

Our experimental results demonstrate the potential of SVMVGGNet-16 in improving diagnostic performance, leading to earlier detection and
better treatment outcomes. Future work includes refining the model, expanding datasets, conducting clinical trials, and integrating the system into
clinical practice to ensure practical usability.

Keywords: AI, Medical machine learning, Deep learning, Image classification, Cancer, Healthcare, Disease, Diagnosis, Bio-imaging, Medical
intelligence.
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1. INTRODUCTION

Globally,  lung  cancer  is  recognized  as  the  deadliest  and
most  devastating  types  of  cancer  [1  -  4].  Detecting  the  lung

cancer  proves  to  be  considerable  challenge,  as  its  symptoms
typically  manifest  only  in  the  later  and  advanced  stages  [5].
Yet,  the  prospects  of  reducing  the  mortality  rate  associated
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with  lung  cancer  hinge  on  early  detection  and  appropriate
treatment provision of patients [6]. While lung cancer primarily
originates  within  the  lungs,  it  occasionally  presents  early
symptoms before spreading [7]. Recent years have witnessed
the  development  of  numerous  techniques  and  on-going
research  endeavours  aimed  at  effectively  identifying  lung
cancer [8]. Among these techniques, CT scan images emerge
as the foremost imaging modality for early diagnosis [9, 10].
Nevertheless,  interpretation and detection of cancer from CT
scan  images  can  pose  a  formidable  task  for  healthcare
professionals [11, 12]. Fig. (1) provides the projected statistics
for recently identified cancer cases and fatalities in the U.S.,
categorized  by  cancer  site.  These  data  includes  both
comprehensive  projections  and  gender-specific  details  for
different cancer types in the year 2023 [13]. These estimations
extrapolated from information supplied by the North American
Association  of  Central  Cancer  Registries  (NAACCR)
(https://www.naaccr.org/cancer-in-north-america-cina-volumes
/  accessed  on  04  March  2024)  [14].  Furthermore,  the
predictions of impermanence are based on mortality data from
the U.S. collected in the year 2006 and 2023, as reported by the
National  Centre  for  Health  Statistics  (NCHS)  [13]  and  the
Centres  for  Disease  Control  (https://www.cdc.gov/
mmwr/volumes/73/wr/mm7331a1.htm accessed on 04 March
2024)  and  Prevention  (CDCP)  [15].  As  per  the  American
Cancer  Society  (ACS)  (https://seer.cancer.gov/statfacts/
html/common.html accessed on 04 March 2024),  it  observed
that lung cancer exhibits a higher fatality rate compared to all
other  forms of  cancer,  resulting in  an estimated global  death
toll of approximately 0.13 million individuals [16]. Every year,
a  substantial  number  of  fresh  instances  of  lung  cancer  are
identified, with an anticipated 0.237 million fresh instances in
2023. The elevated fatality percentage is linked to the advanced
stage at which this cancer is commonly identified, resulting in
a higher proportion of new cases to fatalities compared to other
forms of cancer [17].

Lung  cancer  manifests  in  various  histological  forms,
encompassing  ADC  originating  in  the  glandular  cells  of  the
lungs,  LCC  identified  by  the  presence  of  large,  abnormal-
looking cells, and SCC arisen from the thin, flat squamous cells
resembling  fish  scales  [18].  Specifically,  ADC,  prevalent  on
the lung's outer surface, stands as the most frequent cell type in
lung  cancer  cases.  LCC undifferentiated  distinguished  by  its
swift growth, can occur anywhere within the lung. Conversely,
SCC is closely associated with smoking and typically arises in
the central  lung region [19].  In the domain of detecting lung
cancer,  the VGGNet-16 emerged as a pivotal tool,  renowned
for  its  proficiency  in  image  analysis  and  classification  tasks
[20].  Leveraging  its  deep  architecture,  VGGNet-16
autonomously  extracts  intricate  features  from  chest
radiographs,  discerning  subtle  patterns  indicative  of  lung
malignancies  [21].  With  layers  meticulously  designed  for
hierarchical  feature  abstraction,  it  effectively  captures
morphological  nuances  specific  to  ADC,  LCC,  SCC,  and
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normal lung tissues [22].  The VGGNet-16’s adaptability and
robustness  in  processing medical  images  empower clinicians
with accurate diagnostic insights, revolutionizing lung cancer
screening and treatment strategies [23].

Within the sphere of cancer detection, treatment prognosis,
and enhancing post-diagnosis patient survival, a diverse array
of  methods  is  currently  under  exploration  [24].  Medical
professionals  and  researchers  employ  various  techniques  to
facilitate  early  cancer  identification,  evaluation,  and
classification [25]. In contemporary healthcare, ML models are
of utmost importance in the identification of patterns, analysis,
and  categorization  of  critical  medical  conditions  [26,  27].
Among  these  models,  CNNs  have  surfaced  as  a  particularly
auspicious pathway for the timely identification, surveillance,
and categorization of lung cancer via  the scrutiny of the CT-
scan images [28].

1.1. Challenges in the Lung Cancer Research

To  effectively  situate  our  scholarly  contributions,  it  is
imperative  to  elucidate  the  challenges  identified  in  prior
literature  regarding  lung  cancer  detection,  particularly  those
that  our  research  endeavors  to  address.  Below  are  several
significant challenges from antecedent investigations that our
study is poised to overcome:

1.1.1. Restricted Multi-class Classification

Earlier research primarily dealt with binary classification
(such as cancerous versus non-cancerous), which unfortunately
resulted  in  the  neglect  of  the  distinct  lung  cancer  subtype
differences [29]. This limitation constrains their applicability in
clinical contexts where the comprehension of cancer subtypes
is  of  paramount  importance.  Our  research  remedies  this
deficiency  by  devising  a  model  that  classifies  four  distinct
types: ADC, LCC, normal, and SCC.

1.1.2. Dependence on a Single Model Architecture

Numerous  prior  studies  have  been  anchored  in  either
CNNs  or  traditional  ML  models  such  as  SVM,  resulting  in
constraints  regarding  feature  extraction  or  classification
accuracy  [30].  While  CNNs  are  adept  at  feature  extraction,
they may exhibit overfitting without appropriate generalization;
conversely, SVMs are proficient in classification but may lack
the intricate feature extraction necessary for image data. Our
hybrid (SVMVGGNet-16) model synthesizes the advantages of
VGGNet-16  and  SVM,  effectively  surmounting  these
impediments  by  harnessing  CNNs  for  feature  extraction  and
SVM for robust classification.

1.1.3. Inadequate Image Pre-processing

Previous  investigations  often  relied  on  simplistic  pre-
processing methods, which may neglect critical tumor features
or  inadequately standardize image quality.  This  can result  in
inaccurate segmentation and diminished model reliability [31].
In  contrast,  our  investigation  adopts  sophisticated  pre-
processing  methodologies,  encompassing  median  filtering,
histogram equalization, and edge detection, which collectively
enhance  image  quality  and  precision  in  feature  extraction,
thereby  improving  model  accuracy.
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Fig. (1). Anticipated incidence and mortality of novel cancer cases in 2023, in accordance with the NAACCR.

1.1.4. Lack of Robust Performance Metrics

Earlier  studies  often  relied  on  singular  or  limited
performance  metrics,  such  as  accuracy  alone,  for  model
evaluation  [32].  However,  accuracy  in  isolation  may  not
reliably reflect genuine performance, particularly in the context
of imbalanced datasets. Our research employs a comprehensive
array  of  metrics,  including  AUC,  recall,  precision,  and  F1-
score,  to  furnish  a  holistic  evaluation  of  model  efficacy  and
reliability.

1.1.5. Limited Clinical Applicability

Numerous antecedent models demonstrated commendable
accuracy but exhibited deficiencies in generalizability within
clinical  settings  due  to  inadequate  testing  on  diverse  patient
populations  or  real-world  validation.  Our  work  not  only
achieves  elevated  performance  but  also  delineates  future
trajectories, including the expansion of datasets, the execution
of clinical trials, and the integration of the model into practical
clinical workflows, thereby establishing a foundation for real-
world applicability [33].

1.1.6. Challenges in Data Generalization and Overfitting

Previous investigations frequently encountered challenges
related  to  overfitting  and  struggled  to  generalize  to  novel
datasets  due  to  restricted  sample  sizes  or  limited  feature

diversity [34]. By incorporating rigorous training, validation,
and  testing  phases,  our  research  effectively  addresses  these
concerns, presenting a model that sustains performance across
a spectrum of diverse datasets [35].

These challenges elucidate the limitations inherent in the
existing  literature  and  furnish  a  robust  framework  to
underscore  the  enhancements  and  contributions  that  our
research  imparts  to  lung  cancer  detection.

1.2. Motivations of the Study

The motivations of our study are as follows:

The  main  drive  behind  this  research  addresses  the
urgent need for early detection of lung cancer, which
greatly affects patient outcomes and survival rates, by
creating a sophisticated and reliable detection system.
Additionally, the research aims to enrich the domain of
medical image analysis by integrating cutting-edge DL
and  ML  techniques  to  enhance  the  accuracy  of
automated  systems  in  diagnosing  lung  cancer.
The  study  also  seeks  to  evaluate  the  performance  of
the proposed SVMVGGNet-16 model against current
methodologies, showcasing the progress and efficacy
of the new approach in enhancing the accuracy of lung
cancer detection and supporting medical practitioners
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in clinical decision-making.

1.3. Objective of the Study

The objective of our study certainly condensed into three
points:

The  primary  objective  of  the  study  involves
establishing a reliable and accurate automated system
for  the  early  detection  of  lung  cancer,  with  an
emphasis on classifying lung nodules using advanced
DL  (deep  learning)  and  ML  (machine  learning)
techniques. Our examination evaluates and compares
the  efficacy  of  VGGNet-16  and  SVM  for  initially
detecting  lung  cancer  using  CT  scan  images  across
various stages of training, validation, and testing.
The  research  also  entails  the  integration  of
VGGNet-16 and SVM into an SVMVGGNet-16 model
to  leverage  the  advantages  of  both  DL  and  ML
techniques, aiming to enhance classification accuracy
and robustness in the identification of various classes
such as ADC, LDC, Normal, and SCC of lung cancer
Furthermore, a comprehensive comparative evaluation
of  the proposed models  will  be  carried out  using the
LIDC-IDRI dataset to assess their performance across
various  metrics  such  as  accuracy,  AUC,  recall,
precision,  and  F1-score  and  determine  the  most
efficient  approach  for  lung  cancer  detection.

1.4. Main Contributions of the Study

To  elucidate  the  originality  and  contributions  of  our
research,  it  is  advisable  to  concentrate  on  the  following
dimensions:

1.4.1. Hybrid Model Innovation

It is imperative to underscore that our research introduces a
pioneering hybrid model that amalgamates VGGNet-16, CNN
with SVM, thereby uniting the feature extraction capabilities
inherent in DL with the classification precision characteristic of
SVM. This dual-faceted methodology enhances the efficacy of
lung cancer detection by effectively capturing intricate imaging
features  while  concurrently  mitigating  classification
inaccuracies  [12].

1.4.2. Classification of Multiple Lung Cancer Types

In  contrast  to  numerous  studies  that  predominantly
concentrate on binary classification or a singular cancer type,
our  investigation  engages  with  the  differentiation  of  four
distinct  lung  cancer  classes—ADC,  LCC,  normal,  and  SCC
[36].  The  emphasis  on  this  multi-class  framework  illustrates
the adaptability of our model in addressing various subtypes,
thereby furnishing a more holistic diagnostic instrument.

1.4.3.  Advanced  Pre-processing  and  Segmentation
Techniques

Clearly outlining our use of sophisticated techniques like
median  filtering,  histogram  equalization,  thresholding,  and
edge detection is necessary for effective tumor segmentation.

These methodologies enhance the robustness of our model and
facilitate  superior  feature  extraction,  which  is  vital  for
achieving  precise  classification  and  early  detection  [2].

1.4.4.  Superior  Performance  with  Rigorous  Evaluation
Metrics

The outcomes of our research exceed current benchmarks
regarding training and testing accuracy, AUC, recall, precision,
and F1-score.  Highlighting this  enhancement  in performance
emphasizes  the  credibility  and  utility  of  our  model,
distinguishing  it  from  traditional  diagnostic  methodologies
[37].

1.4.5. Potential for Clinical Application

It is critical to note that our study effectively bridges the
chasm between computational models and clinical application,
thereby  facilitating  integration  into  practical  medical
workflows. Emphasizing prospective future endeavors, such as
the  expansion  of  datasets  and  the  initiation  of  clinical  trials,
illustrates the potential ramifications of the study in the realm
of lung cancer management [38].

These elements accentuate the contributions and innovative
facets of our research, distinctly differentiating it from extant
studies and underscoring its practical relevance.

1.5. Organization of the Study

Our paper encompasses several key sections essential for a
comprehensive  exploration  of  lung  cancer  detection
methodologies. It commences with an introduction, setting the
stage by elucidating the significance of initially detecting lung
cancer  and  the  necessity  for  advanced  computational
approaches.  Section  2  deals  with  thorough  related  work
follows, synthesizing existing research on the topic, elucidating
various methodologies, and highlighting noteworthy findings.
The method and material  in section 3 delineate the proposed
approach,  including  dataset  selection,  pre-processing
techniques,  tumor  segmentation,  feature  extraction,  and
classification using both VGGNet-16 and SVM. Subsequently,
section  4  experimental  results  and  interpretation  section
presents detailed analyses of the performance metrics obtained
from experiments conducted with the proposed methodology,
offering  insights  into  the  effectiveness  of  VGGNet-16  and
SVM models across different stages of evaluation dealing with
the discussion of experimental results with the application of
our  study  with  limitation  of  the  study  and  section  5  for
conclusion and future prospects section summarizes our study's
key findings followed with outlines potential avenues for future
research  to  further  advance  early  lung  cancer  detection
methodologies.

2. RELATED WORKS

In the domain of medical image analysis, particularly for
lung  nodule  detection  and  classification,  the  use  of  CNNs
substantially  advanced  through  various  innovative
methodologies. To understand the current state of lung cancer
detection, it is essential to conduct a methodical review of the
appropriate literature Gattasset al [39]. along with their team
implemented  a  CNNs  configuration  optimized  via  Particle
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Swarm  Optimization  (PSO)  algorithm.  CNNs  trained  and
validated  on  the  LIDC-IDRI  dataset,  ensuring  consistency
across different iterations. The LIDC-IDRI dataset comprises
extensive CT scans, annotated by multiple radiologists, making
it a robust dataset for lung nodule research. The optimization
process  involved  initializing  a  swarm  of  particles,  each
representing  a  potential  solution  for  CNNs  configuration.
These  particles  explored  the  solution  space,  adjusting  their
positions based on individual and collective experiences, thus
iteratively converging towards the optimal CNNs architecture.
Their study highlighted the exceptional performance of specific
test  subsets,  with  Test-4  achieving  the  highest  accuracy,
sensitivity,  and specificity,  demonstrating the efficacy of  the
PSO  algorithm  in  refining  CNNs  architectures  for  medical
image analysis.

Sofat  et  al.  [40]  designed  a  CNNs  architecture
incorporating multiple ReLU and convolutional layers. ReLU
activation  function  introduces  non-linearity  into  the  model,
allowing  it  to  learn  complex  patterns  in  the  data.  The
convolutional layers, which apply convolution operations with
learnable filters, enable the model to detect local patterns and
features  in  the  input  images.  Their  assessment  of  the  JSRT
dataset, which contains chest radiographs, yielded noteworthy
results. The multi-ReLU layers enhanced the model's capability
to capture intricate features, leading to superior average metrics
in terms of accuracy, overlap rate, sensitivity, and specificity.
Their  architecture  exemplifies  how  deep  CNNs  with
appropriate  activation  functions  can  effectively  handle  the
complexity  of  medical  image  data.  Incorporating  ResNet
principles, Wollersheim et al. [41] employed principles derived
from  ResNet  for  the  purpose  of  classifying  lung  nodules.
ResNet  frameworks  address  the  issue  of  vanishing  gradients
within  deep  neural  networks  by  introducing  residual  blocks,
enabling smoother gradient flow through shortcut connections.
Transfer  learning  capitalizes  on  the  feature  extraction
capabilities  of  deep  networks  trained  on  extensive  datasets,
resulting in notable performance enhancements despite limited
medical data availability.

Additionally,  they  implemented  curriculum  learning,  a
strategy  that  entails  initial  training  on  simpler  tasks  before
advancing to more complex ones, thereby further boosting the
model's efficacy. The outcomes of their experimentation on the
LIDC-IDRI dataset revealed substantial enhancements in terms
of accuracy, sensitivity, and specificity. Qiang et al. [42]. used
within the context of lung nodule detection were Deep Belief
Networks  (DBN).  Involving  various  layers  of  Restricted
Boltzmann  Machines  (RBMs),  DBN  aids  in  the  gradual
acquisition of more conceptual representations of the input data
at  each  level.  An  RBM,  characterized  as  an  undirected
probabilistic graphical model, is comprised of visible units and
hidden units  within its  structure.  The efficacy of  their  DBN-
centric methodology, which was honed through training on the
LIDC-IDRI  dataset,  is  evidenced  by  its  exceptional
performance, particularly in the realm of larger nodules (>30
mm). The consistent preservation of heightened sensitivity and
precision  across  varying  nodule  dimensions  serves  to
underscore  the  resilience  of  DBNs in  the  domain  of  medical
image  scrutiny.  Causey  et  al.  [43]  nodule-X  unveiled  as
DLCNNs specifically crafted for the assessment of lung nodule

malignancy  through  CT  scans.  The  researchers  developed
intricate  CNNs  structures  to  analyze  CT  images  from  the
LIDC-IDRI  dataset  at  varying  resolutions,  enabling  the
detection  of  subtle  features  associated  with  malignancy.  The
model's  efficacy  was  confirmed  through  independent
validation,  demonstrating  notable  levels  of  accuracy,
sensitivity,  and  specificity,  along  with  a  remarkable  AUC
value, thereby emphasizing the promise of DL in the field of
clinical diagnostics.

Hu  et  al.  [44].  implemented  a  Stacked  Autoencoder  +
Softmax  strategy,  integrating  both  2D  and  3D  data  for  lung
nodule  classification.  An  autoencoder,  is  a  neural  network
trained to  reconstruct  its  input,  consisting of  an encoder  that
maps  the  input  to  a  latent  representation  and  a  decoder  that
maps  the  latent  representation  back  to  the  input  space.  The
softmax layer, typically used for classification tasks, outputs a
probability distribution over the target classes. Their approach,
leveraging  the  LIDC-IDRI  dataset,  achieved  outstanding
results,  including  a  minimal  false  positive  rate  and  high
accuracy,  sensitivity,  and  specificity.

The integration of  2D and 3D data enabled the model  to
capture  spatial  dependencies  and  volumetric  information,
crucial for accurate lung nodule classification. In their study,
Shaffie et al. [45] employed a Deep-Autoencoder for the non-
invasive  clinical  diagnosis  of  lung  nodules.  Their  model,
trained  on  the  LIDC-IDRI  dataset,  aimed  to  differentiate
between benign and malignant nodules.  A deep autoencoder,
consisting  of  multiple  hidden  layers,  can  learn  hierarchical
feature representations, improving classification performance.
Their results underlined promising performance metrics, with
significant  accuracy,  specificity,  and  sensitivity.
Wilaiprasitporn et al. [46]. analyzed large datasets of chest X-
ray  images  using  CNNs  to  detect  anomalies.  They  assessed
three  retrained  models  across  varied  datasets,  including
ChestX-ray14 and JSRT, focusing on critical metrics such as
accuracy, specificity, and sensitivity. Their study emphasized
the  importance  of  retraining  models  for  specific  tasks  and
datasets, with Model C, which amalgamated multiple datasets,
displaying superior performance across all metrics. Bhandary
et  al.  [47].  used  a  customized  version  of  AlexNet  for
identifying  lung  abnormalities,  including  cancer  and
pneumonia. AlexNet, deep CNNs with multiple convolutional
and  fully  connected  layers,  has  demonstrated  significant
success in image classification tasks. Their DL methodology,
applied to the Chest X-ray and LIDC-IDR datasets, achieved
high accuracy, demonstrating the adaptability of AlexNet for
medical image analysis.

Zhang et al. [48] developed a multi-view knowledge-based
collaborative  (MV-KBC)  deep  NNs  model  to  classify  lung
nodules as benign or malignant on chest CT scans. This model
integrates  multiple  views  of  the  input  data,  leveraging
collaborative  learning to  enhance classification performance.
Their approach, validated on the LIDC-IDRI dataset, showed
high accuracy and AUC, indicating its potential for integration
into  clinical  workflows.  Chauhan  et  al.  [49]  focused  on
enhancing lung cancer prediction using routine blood indices
through various ML algorithms, including XGBoost, Logistic
Regression, SVM, Decision Tree, KNN with Grid Search CV,
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and Gaussian Naive Bayes. Feature selection using scikit-learn
algorithms retained only the most relevant features, improving
model  performance.  Their  XGBoost-based  model
outperformed  others,  demonstrating  the  efficacy  of  feature
selection  and  ensemble  learning  techniques  in  medical
prediction  tasks.  Ayesha  et  al.  [50]  made  significant
contributions  to  lung  cancer  type  classification  using  feature
extraction  and  fusion  techniques,  such  as  Discrete  Cosine
Transform (DCT) and patch-based Local Binary Pattern (LBP).
These techniques capture texture and spatial features in chest
CT scans, improving classification accuracy.

ML classifiers, including KNN and SVM, are employed to
evaluate  the  extracted  features,  yielding  high  diagnostic
precision. Li et al. [51]. demonstrated outstanding diagnostic
precision  through  ML-assisted  analysis  of  serum  small
extracellular vesicles (sEVs). Their approach, involving both
pre-and  post-surgery  serum  sEVs,  aimed  to  predict  tumor
relapse in NSCLC patients. Ezugwu et al. [52] highlighted the
importance of early lung cancer detection with a hybrid CNN
architecture  combined  with  the  Ebola  Optimization  Search
Algorithm  (EOSA).  EOSA,  inspired  by  the  Ebola  virus
propagation  mechanism,  optimizes  CNN's  hyperparameter,
enhancing  its  performance.  Their  model,  applied  to  the  IQ-
OTH/NCCD dataset, achieved high accuracy in classifying CT
images,  demonstrating  the  potential  of  hybrid  optimization
techniques  in  medical  image  analysis.

The  results  of  various  studies  for  cancer  detection  using
different  ML  and  DL  models  displayed  offer  a  thorough
evaluation  of  various  parameters  metrics  such  as  accuracy,

specificity,  sensitivity,  and  F1  score/AUC  detailing  various
datasets and sample collections consumed in each model with
their outcomes from 2017 to 2023. By leveraging optimization
algorithms  like  PSO,  transfer  learning,  curriculum  learning,
and  hybrid  models,  researchers  have  achieved  remarkable
performance  metrics,  paving  the  way  for  improved  clinical
diagnostics and patient outcomes. The integration of ML, DL,
and advanced optimization techniques continues to enhance the
accuracy  and  reliability  of  medical  image  analysis,
demonstrating  the  transformative  potential  of  these
technologies  in  healthcare  [53].

3. MATERIALS AND METHODS

This  section  delineates  the  proposed  methodology
integrating both DL and ML techniques. Our study utilized two
distinct  approaches:  VGGNet-16  and  SVM,  conducting  a
comparative  assessment.  Fig.  (2)  illustrates  our  proposed
method  for  lung  cancer  detection.  The  proposed  method
includes the following steps: dataset selection, pre-processing,
tumor  segmentation,  geometric  feature  extraction,  and
classification using VGGNet-16 and SVM. In this  study,  the
LIDC-IDRI dataset was chosen for its diversity, comprehensive
annotation, and substantial sample size which makes it as a tool
for  advancing  lung  cancer  detection  [54].  In  our  study,  we
implemented the VGGNet-16 approach and used the libraries
of  Keras  libraries  and  the  Tensor  Flow  platform.  This  setup
prepared  the  environment  for  developing  and  evaluating  the
VGGNet-16 model, including importing essential libraries and
defining  key  components  for  data  processing  and  model
training.

Fig. (2). Organizational diagram of the proposed model.

Pre-Processing

LIDC-IDRI 
Dataset

(Area,
Perimeter, 

Eccentricity, 
Compactness, 
Circulatory)

Categorized Lung Cancer 

Test & Predict
(VGGNet-16 & SVM)

Evaluation 
metrics

Noise Mitigation
(Median Filter) Accuracy, 

Precision, 
Recall,

F-score.
Image 

Enhancement 

Image Segmentation 

Edge Detection

Thresholding

Geometrical Extraction 

Classification & Train 
(VGGNet-16 & SVM)

Training Feature 
Extraction

(VGGNet-16 & SVM)
SCCLCCADC Normal



Lung Cancer Detection using Combined SVM and VGGNet-16 Current Medical Imaging, 2025, Volume 21   7

3.1. Dataset

In  the  assessment  of  lung  tissue  test  images,  a  pertinent
dataset  is  required.  LIDC-IDRI dataset  identified  as  an  ideal
option  meticulously  curated  for  a  thorough  investigation  of
lung nodules on CT scans. This dataset stands out as a valuable
reference, purposefully crafted to augment the capabilities of
lung  cancer  detection  and  facilitate  associated  research
endeavours  which  is  publically  available  on  kaggle
(https://www.kaggle.com/datasets/mohamedhanyyy/chest-ctsca
n-image accessed on 04 March 2024). The dataset comprises
three types of chest cancer: ADC, LCC, and SCC, along with a
folder for normal cells. This data is organized within the main
folder  named  Data,  which  contains  subfolders  for  distinct
stages of processing. The dataset's comprises training, testing,
and  validation,  with  70%,  20%,  and  10%  data  allocation,
respectively.

3.2. VGGNet-16 Architecture

CNNs are  specialized  DL models  primarily  designed  for
processing  visual  data  like  images  [5].  They  excel  the  tasks
such as image recognition, object detection, and classification
[55]. In our work, the VGGNet-16 architecture begins with an
input layer designed to accommodate batched RGB images of
size 224x224 pixels [56]. This input processed through the pre-
trained VGGNet-16 and the result is the feature maps of size
7x7x512.  Following  the  pre-trained  VGGNet-16,  batch
normalization applied to standardize the activation functions to
maintain  the  stability  of  the  model  during  training.
Subsequently, max pooling reduces the spatial dimensions to
3x3x512, emphasizing crucial features [57]. The feature maps
flattened into a 1D-vector of size 4608 and facilitate the input
to a series of dense layers. These dense layers combined with
dropout  regularization  which  progressively  reduce  the
dimensions from 1024 to 128 neurons and serve as a classifier.
The final layer comprises a dense layer activated by softmax
and  serves  as  an  output  layer  for  predictions  reflecting  the
model's  assessment  of  lung cancer  presence or  absence [58].
Table  1  represents  VGGNet-16  model  used  in  our  study
providing a concise summary of each layer, including its type,
output shape, and a number of parameters.

3.3.  Categorization  of  Lung  Cancer  into  4  Classes
Classifications

In  our  study,  we  focus  on  accurately  classifying  lung
tumors into four key classes:  ADC, LCC, Normal,  and SCC.
Each class represents a distinct type of cellular morphology in
the lungs, making precise classification essential for targeted
treatment.  This  process  utilizes  a  two-tiered  approach
combining VGGNet-16 for deep feature extraction and SVM
for refined classification, resulting in highly reliable diagnostic
outcomes. ADC represents the most common type of non-small
cell  lung  cancer,  ADC  originates  in  the  outer  regions  of  the
lung  and  is  commonly  associated  with  non-smokers.  Our
model identifies ADC by detecting lung cancer characteristics
of glandular patterns. LCC is known for its rapid growth and
poor differentiation, LCC often appears in any part of the lung.
The  model  differentiates  LCC  by  its  unique  cellular
appearance, devoid of specific glandular or squamous features.
This  class  represents  non-cancerous lung tissue,  serving as  a

baseline  for  comparison.  Our  model’s  ability  to  recognize
normal  lung  structures  ensures  that  benign  regions  are
accurately  classified,  reducing  false  positives  and  enhancing
overall  reliability.  Typically  related  to  smoking,  SCC
originates  in  the  bronchial  tubes  and  features  distinctive
squamous  cells.  The  model  identifies  SCC  based  on  these
structural  patterns,  enhancing  specificity  in  diagnosing
smoking-related  lung  cancer.

Table 1. Representation of our VGGNet-16 model used in
our study.

Layer (Type) Output Shape Parameter Activation
VGGNet-16(Functional) (None, 7, 7, 512) 14,714,688 -

Batch Normalization (None, 7, 7, 512) 2,048 -
Max Pooling2d (None, 3, 3, 512) 0 -

Flatten (None, 4608) 0 -
Dense (None, 1024) 4,719,616 ReLU

Dropout (None, 1024) 0 -
Dense 1 (None, 512) 524,800 ReLU

Dropout 1 (None, 512) 0 -
Dense 2 (None, 256) 131,328 ReLU
Dense 3 (None, 128) 32,896 ReLU
Dense 4 (None, 4) 516 Softmax

By  combining  the  extensive  feature  extraction  of
VGGNet-16 with SVM’s discriminative capabilities, the model
achieves  robust  classification  across  these  four  tumor  types.
This  approach  not  only  enhances  the  accuracy  of  each
diagnosis but also contributes to targeted treatment planning by
precisely distinguishing between varied cellular compositions
within lung tissue.

This conclusive phase of our methodology revolves around
the critical task of categorizing lung tumors into 4 classes. This
pivotal  step  is  approached  through  a  dual-pronged  strategy,
integrating the strengths of both VGGNet-16 and SVM [59].
The trained VGGNet-16 model, having undergone meticulous
training  on  an  extensive  dataset,  is  deployed  to  classify  new
and previously unseen lung tumor images [60]. Leveraging the
discriminative  capabilities  of  VGGNet-16,  the  model
categorizes  tumors  based  on  features  extracted  during  the
training  phase.  This  ensures  robust  and  precise  predictions,
contributing  to  the  accurate  identification  of  all  four  classes
[61].

3.4. Performance Methods

The purpose of our study is to evaluate the effectiveness of
a  suggested  methodology  using  the  LIDC-IDRI  dataset  to
address the pressing need for early lung cancer identification
[62].  The  main  objective  is  to  create  a  reliable  automated
system  that  accurately  classifies  lung  tumors  in  order  to
identify cancers in a timely manner [63].  The training of the
models  took  place  on  the  Kaggle  platform,  utilizing  both  its
CPU and GPU resources. The storage demands for the models
were  around  73.1  GB,  with  RAM  usage  totaling  29  GB.
Computational tasks were handled by two GPU T4 units, each
providing  15  GB  of  memory.  Our  study  employs  the
VGGNet-16 for feature extraction due to their high accuracy,
sensitivity, and specificity in image-based classification. SVM

https://www.kaggle.com/datasets/mohamedhanyyy/chest-ctscan-image
https://www.kaggle.com/datasets/mohamedhanyyy/chest-ctscan-image
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operated for classification based on geometric characteristics,
aiming to create an automated system for accurate lung tumor
classification  [64].  The  mathematical  expression  of  the
performance methods are mentioned in Eqs. (1 to 4) [65, 66].

(1)

(2)

(3)

(4)

where, TP for True Positive, TN for True Negative, FP for
False Positive and FN for False Negative.

3.5. VGGNet-16 based Analysis

VGGNet-16  was  chosen  over  VGG-19,  AlexNet,  and
GoogleNet for lung cancer detection due to its balanced depth,
efficiency  in  feature  extraction,  robust  transfer  learning
capability  from  ImageNet,  manageable  computational
demands, and extensive community support, making it ideal for
medical image analysis tasks for lung cancer detection [67, 68].
The  trained  VGGNet-16  model  deployed  for  lung  tumor
classification, autonomously extracting intricate features from
lung  tumor  images  without  explicit  feature  engineering.
VGGNet-16  deeply  handles  the  complexity  and  nuanced
characteristics  within  lung  tumor  images,  enabling  accurate
categorization [69]. This integration serves as a cornerstone in
automating  the  categorization  process,  providing  invaluable
insights for medical diagnosis and treatment planning [70].

In  our  proposed  methodology  for  detecting  lung  cancer,
our  innovative  SVMVGGNet-16  method  synergizes  the
inherent strengths of VGGNet-16 and SVM. For our study, we
selected SVM for lung cancer detection because of its strong
performance in high-dimensional spaces, robust resistance to
overfitting,  ability  to  handle  non-linear  classification
effectively, and its proven reliability in medical image analysis
[71]. These attributes make SVM, a superior choice compared
to  other  ML models  like  Random Forest  [72]  and  AdaBoost
[73].  By  capitalizing  on  SVM's  discriminative  prowess  and
VGGNet-16’s  ability  to  autonomously  extract  complex
features, our proposed model architecture and methodological
stages  collectively  constitute  a  robust  framework.  This
framework not only advances the field of lung cancer detection
but  also  fosters  in-depth  research  endeavors,  positioning  our
study at the forefront of cutting-edge methodologies in medical
image  analysis  [74].  The  seamless  integration  of  our  two
models  augments  the  reliability,  accuracy,  and  efficiency  of
lung cancer identification,  underscoring the significance of a
multifaceted approach in addressing the intricacies of medical
image classification.

4. RESULTS AND DISCUSSION

In  our  experimental  analysis,  we  evaluated  the
performance  of  VGGNet-16  and  SVM  models  across  three
phases: training, validation, and testing. Then we evaluated the

SVMVGGNet-16 model performance for classification of lung
tumors across various 4 classes with their performance metrics.

4.1. Pre-processing of Dataset

A median filter is employed to reduce noise in the images,
thereby  enhancing  image  quality  [75]  and  facilitating  the
straightforward identification of lung tumors. The median filter
replaced  each  pixel's  value  with  the  median  value  of  the
intensities in its neighborhood, effectively reducing salt-and-
pepper  noise  while  preserving  edges.  Image  contrast  and
sharpness  improved  using  histogram  equalization,  which
enhances the visibility of lung tumors. Histogram equalization
redistributes  the  intensity  values  of  the  image,  enhancing
contrast  by  spreading  out  the  most  frequent  intensity  values
[76].

4.2. Segmentation of Lung Tumors

The  application  of  image  thresholding  is  employed  to
separate lung tumors from the adjacent tissue, facilitating the
identification  of  tumor  regions.  This  methodology  entails
establishing  a  specific  threshold  value,  where  pixel  values
above  it  are  categorized  as  tumor  and  those  below  it  are
categorized  as  background.  The  implementation  of  edge
detection  algorithms,  such  as  the  renowned  Canny  edge
detector, is employed to identify the precise boundaries of the
segmented tumors, resulting in a more precise delineation. The
Canny  edge  detector  undertakes  a  multi-step  process
encompassing  noise  reduction,  gradient  computation,  non-
maximum suppression, and edge tracking through hysteresis.

4.3. Extraction of Geometric Parameters

The  area  of  segmented  tumor  regions  is  determined
following  the  same  procedure  [77],  which  provides  insights
into tumor size. The perimeter of tumor regions is quantified to
characterize their shape [77]. The eccentricity is computed to
ascertain the elongation of tumors [77]. The compactness of the
gauge tumor is also calculated following the same procedure
[77], indicating proximity to a circular form. The circularity of
the tumor was evaluated for geometric classification [77].

4.4. Feature Extraction from Trained Lung Cancer Images

A diverse dataset of lung cancer images, including ADC,
LCC,  SCC,  and  normal  cells,  was  compiled.  Images  are
standardized through pre-processing and meticulously labeled.
Random  sampling  ensures  a  varied  subset  for  robust  feature
extraction and facilitates comprehensive model training [78].
Employing a pre-trained VGGNet-16 model,  the hierarchical
features  are  extracted  from  chest  cancer  images  and  normal
cells. VGGNet-16 processes images and generates the feature
maps  capturing  specific  textures,  shapes,  and  patterns.  Max-
pooling  layers  reduce  the  dimensionality  focusing  on
discriminative features. Extracted features serve as the inputs
of the pre-trained VGGNet-16 model for classification [79].

4.5. Training Phase

In our experimental analysis of training phase, Table 2 and
Fig. (3) illustrate the performance of VGGNet-16, SVM, and
SVMVGGNet-16 models in classifying instances, particularly

Accuracy =  (TP+TN) 
(TP+TN+FP+FN).

Recall =   TP 
(TP+FN). 

Precision = TP 

(TP+FP). 

F1-Score = 
2 (precision∗ recall) 

(precision + recall).
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focusing  on  positive  cases.  VGGNet-16  exhibit  remarkable
accuracy and high recall, indicating their adeptness in correctly
classifying  positive  instances.  However,  the  relatively  lower
AUC  value  raises  concerns  about  their  ability  to  effectively
differentiate between positive and negative cases. Conversely,
SVMVGGNet-16 demonstrated a training accuracy (97.22%)
and  a  higher  AUC  (0.9922),  suggesting  robust  classification
based  on  geometric  features.  Despite  slightly  lower  recall,
SVM  achieves  a  higher  F1-score  (94.48%),  underscoring  its
effectiveness in capturing positive instances accurately.

4.6. Validation Phase

In the validation stage of our work,  Table 3  and Fig.  (4)
present  the  performance  metrics  of  VGGNet-16,  SVM,  and
SVMVGGNet-16  models.  VGGNet-16  demonstrates  an

accuracy (83.33%) and an AUC (0.9285), indicating proficient
classification.  The  recall,  precision,  and  F1-Score  (80.00%),
(82.32%), and (81.08%), respectively, highlighting the model's
ability  to  accurately  identify  positive  instances.  Conversely,
SVM achieves accuracy (81.94%) and a higher AUC (0.9405),
showcasing  its  robust  classification  based  on  geometric
features whereas SVMVGGNet-16 had accuracy (94.72%), an
AUC (97.87%), recall  (86.67%), precision (91.49%) and F1-
score  (87.73%).  Despite  similar  recall  to  VGGNet-16  Net,
SVM yields slightly higher precision and F1-Score (85.17%)
and (82.23%), respectively. These results underscore the trade-
offs between different evaluation metrics and offer insights into
the comparative performance of the two models. These results
provide insights into the performance of each model during the
validation  phase,  aiding  in  informed  decision-making  for
model  selection  and  refinement  [80].

Fig. (3). Evaluating the effectiveness of VGGNet-16 and SVM models during training phase.

Table 2. Results acquired in the training stage.

Models Accuracy AUC Recall Precision F1-Score
VGGNet-16 90.70% 97.78% 86.82% 89.48% 88.04%

SVM 94.45% 99.42% 94.45% 94.67% 94.48%
SVMVGGNet-16 97.22% 99.42% 94.22% 95.28% 92.68%
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Table 3. Results acquired in the validation stage.

Models Accuracy AUC Recall Precision F1-Score
VGGNet-16 83.33% 92.85% 80.00% 82.32% 81.08%

SVM 81.94% 94.05% 81.94% 85.17% 82.23%
SVMVGGNet-16 94.72% 97.87% 86.67% 91.40% 87.73%

Fig. (4). Evaluating the effectiveness of VGGNet-16 and SVM models during the validation phase.

4.7. Testing Phase

In  the  testing  stage  of  our  work,  Table  4  and  Fig.  (5)
outline  the  performance  metrics  of  VGGNet-16,  SVM,  and
SVMVGGNet-16  models.  VGGNet-16  exhibits  an  accuracy
(84.13%)  and  an  AUC  (0.9537),  demonstrating  proficient
classification.  The  recall,  precision,  and  F1-Score  (81.13%),
(86.31%),  and  (83.58%),  respectively,  indicate  the  model's
ability  to  effectively  identify  positive  instances.  Conversely,
SVM  achieves  an  accuracy  (84.44%)  and  a  higher  AUC
(0.9684), showcasing robust classification based on geometric
features.  Despite  similar  recall  to  VGGNet-16,  SVM  yields
slightly higher precision and F1-Score (85.30%) and (84.56%),
respectively  whereas  SVMVGGNet-16  achieved  accuracy
(96.72%), AUC (96.87%), recall (84.67%), precision (87.40%)
and  F1-score  (85.73%)  respectively.  These  results  offer

insights into the comparative performance of the two models
during the testing phase, aiding in informed decision-making
for model selection and deployment.

Figs. (3, 4, and 5) provide an extensive assessment of DL
model  used  in  the  detection  of  lung  cancer  throughout  the
training, validation, and testing stages. Throughout all phases,
VGGNet-16  consistently  outperforms  SVM  in  AUC,
highlighting their efficacy in distinguishing between positive
and  negative  instances  in  detecting  lung  cancer.  The
improvement  in  AUC from training to  testing phases  for  the
VGGNet-16  underscores  their  generalization  ability  and
potential for real-world applications. SVM, while competent,
reveals  limitations  in  AUC  across  validation  and  testing
phases,  suggesting  areas  for  refinement  to  enhance  practical
performance [81].

Table 4. Results acquired in the testing stage.

Models Accuracy AUC Recall Precision F1-Score
VGGNet-16 84.13% 95.37% 81.13% 86.31% 83.58%

SVM 84.44% 96.84% 84.44% 85.30% 84.56%
SVMVGGNet-16 96.72% 96.87% 84.67% 87.40% 85.73%
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Fig. (5). Evaluating the effectiveness of VGGNet-16 and SVM models during testing phase.

On  the  whole,  SVM  exhibits  an  outstanding  efficacy
during the training phase and delivers competitive outcomes in
validation  and  testing  scenarios.  SVM  particularly  shines  in
managing high-dimensional datasets and performing non-linear
classification  tasks.  Conversely,  the  VGGNet-16  showcases
robust  generalization  capabilities,  rendering  both  models’
feasible options. Nevertheless, SVM hold slight edge in terms
of precision and recall, which are crucial for minimizing false
positives  and  negatives,  especially  in  the  realm  of  medical
applications. Now, we go with the VGGNet-16 and the SVM
proposed SVMVGGNet-16 model for the classification of lung
cancer with their geometric extraction in our study.

4.8. SVMVGGNet-16

Fig.  (6)  illustrates  the  correlation  between  training
accuracy and validation accuracy, alongside training loss and
validation  loss.  The  graph  designates  that  training  accuracy
improves  as  epochs  improvement,  implying  enhanced
classification  proficiency  of  the  VGGNet-16  and  SVM
algorithm with increasing epochs.  Fig.  (7)  displays the AUC
and  Recall  of  our  experiment,  providing  further  perceptions
into the model's performance. Finally, the classification is done
by confusion matrix and ROC curve respectively, illustrated in
Fig. (8).

Fig. (6a, b). Model accuracy and model loss graph.
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Fig. (7a, b). Model AUC and model recall graph.

Table 5. Performance measurements for our experiment during the training phase.

Class Type of Lung Cancer Recall Precision Accuracy AUC F1 Score
0 ADC 0.953846 0.898551 0.95106 0.994205 0.925373
1 LCC 0.913043 0.990566 0.982055 0.994205 0.950226
2 Normal 0.972973 0.993103 0.991843 0.994205 0.982935
3 SCC 0.929032 0.929032 0.964111 0.994205 0.929032

Average 0.942223 0.952813 0.972267 0.994205 0.946892

Table 6. Performance measurements for our experiment during testing phase.

Class Type of Lung Cancer Recall Precision Accuracy AUC F1 Score
0 ADC 0.875000 0.772059 0.963968 0.968799 0.820312
1 LCC 0.882353 0.849057 0.975556 0.968799 0.865385
2 Normal 0.851852 1.000000 0.984603 0.968799 0.920000
3 SCC 0.777778 0.875000 0.944762 0.968799 0.823529

Average 0.846740 0.874020 0.967220 0.968790 0.857300
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Fig. (8a, b). Confusion matrix and ROC graph for the classification of Lung cancer in 4 classes.
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Table 7. Study performance metrics for VGGNet-16, SVM, and SVMVGGNet-16 model.

Model Phase Accuracy AUC Recall Precision F1-Score

VGGNet-16
Training 90.70% 97.78% 86.82% 89.48% 88.04%
Testing 84.13% 95.37% 81.13% 86.31% 83.58%

SVM
Training 94.45% 99.42% 94.45% 94.67% 94.48%
Testing 84.44% 96.84% 84.44% 85.30% 84.56%

SVMVGGNet-16
Training 97.22% 99.42% 94.22% 95.28% 94.68%
Testing 96.72% 96.87% 84.67% 87.40% 85.73%

4.9.  Classification during the Training and Testing Phase
with their Performance Metrics

Tables 5 and 6 depict the assessment of performance in our
study  on  the  identification  of  lung  cancer  using  VGGNet-16
and  SVM  classifiers,  involving  four  classes  ADC,  LCC,
Normal,  and  SCC  present  in  the  image  dataset  operated  for
both testing and training phases.

4.10. Comparison of Our Approach

In  our  study,  analysis  conducted  in  Table  7  and  Fig.  (9)
delineates  the  performance  measures  of  VGGNet-16,  SVM,
and the SVMVGGNet-16 model in the context of lung cancer
detection  throughout  both  the  training  and  testing  phases.

Meanwhile,  Fig.  (9)  visually  depicts  the  comparative
performance  of  each  model  used  in  our  study,  VGGNet-16,
SVM,  and  SVMVGGNet-16  models.  Clearly,  our
SVMVGGNet-16 model achieves the highest precision rates of
97.22%  during  training  and  96.72%  during  testing,
emphasizing its superior effectiveness. VGGNet-16 showcases
notable  generalization  capabilities,  whereas  SVM  excels  in
managing  high-dimensional  data  and  executing  non-linear
classification tasks proficiently. By synergistically integrating
these  models  within  a  hybrid  framework,  the  reliability  and
accuracy  are  heightened,  leading  to  a  robust  approach  for
diagnosing  lung  cancer.  The  comprehensive  performance
metrics pertaining to various categories ADC, LCC, Normal,
and SCC accentuate the efficacy of each individual model.

Fig. (9). Performance of various models used in the proposed work.
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Table 8. Comparison of our works with previous work.

Year Dataset Model Accuracy (%)
2017 [13] LIDC-IDRI dataset ResNet Principles 89.90
2019 [18] LIDC-IDRI dataset Deep Autoencoder 91.20
2022 [21] LIDC-IDRI dataset MV-KBC Deep Neural Network Model 91.60

Current Work LIDC-IDRI dataset SVMVGGNet-16 96.72

4.11. Comparison with Previous Work

The  progression  of  lung  cancer  classification  models
applied  to  the  LIDC-IDRI  dataset  throughout  various  years
(Table  8).  Commencing  in  2017  with  the  implementation  of
ResNet  Principles  resulting  in  accuracy  (89.9%),  there  had
been a series of advancements leading to increasingly precise
models.  The  year  2019  saw  the  introduction  of  Deep
Autoencoder  model  achieving accuracy (91.20%),  succeeded
by  MV-KBC  Deep  Neural  Network  Model  in  2022  with
accuracy  (91.60%).  In  our  present  study,  we  introduced  the
SVM  and  VGG-16  Net  model,  showcasing  the  highest
accuracy  (96.72%)  among  all  models  listed,  and  signifying
notable progress in lung cancer classification. This progression
highlights  the  ongoing  refinement  and  efficacy  of  DL
methodologies  in  tasks  related  to  the  analysis  of  medical
images.

The findings of our study regarding the detection of lung
cancer through the utilization of VGGNet-16 and SVM model
notable  implications  for  clinical  practice,  research,  and  have
public  health  endeavors.  By  incorporating  these  models  into
clinical  processes,  healthcare  professionals  can  avail
themselves of automated assistance in precisely detecting lung
tumors  from  CT  scan  images,  which  may  result  in  earlier
diagnoses and enhanced patient results. Besides, the inception
of  computer-guided  diagnostic  systems  that  harness  these
models  can  enhance  diagnostic  accuracy  and  efficiency,
ultimately benefiting patients by decreasing diagnostic errors.
Additionally, our research contributes to growth in the context
of  medical  image  analysis  and  DL,  establishing  a  basis  for
further  exploration  into  the  detection  of  lung  cancer  and
customized cure approaches. The implementation of automated
detection systems in public health for screening initiatives has
the  capacity  to  streamline  early  detection  efforts  on  a
population  level,  facilitating  prompt  interventions  for
individuals  at  high  risk  and  ultimately  enhancing  outcomes
related to lung cancer on a wider scale [82].

4.12. Limitation of the Study

While the study offers valuable insights into lung cancer
detection  using  VGGNet-16  and  SVM  models,  several
limitations  should  be  acknowledged.  Firstly,  the  study's
reliance  on  a  single  dataset,  such  as  the  LIDC-IDRI  dataset,
may  boundary  the  generalized  ability  of  the  outcomes  to
diverse  patient  inhabitants  or  imaging  protocols.  Also,  our
study's  concentration  on  CT  scan  images  may  overlook  the
potential  benefits  of  incorporating  other  imaging  modalities,
such  as  MRI  or  PET  scans,  which  could  provide
complementary  information  for  a  more  comprehensive
diagnosis.  Furthermore,  the  performance  of  VGGNet-16  and
SVM models may be influenced by factors such as the worth of

image pre-processing techniques, the selection of model hyper
parameters,  and  the  availability  of  labeled  data  for  training
[83].  Moreover,  the  study  primarily  evaluates  model
performance in terms of accuracy, AUC, recall, precision, and
F1-score,  neglecting  other  important  aspects  such  as
computational efficiency or interpretability, which are crucial
for  real-world  implementation.  Finally,  our  study's
retrospective  design  may  limit  its  ability  to  prospectively
validate the developed models in clinical settings, warranting
further validation studies to assess their real-world utility and
impact on patient outcomes.

4.13. Model Effectiveness to Demonstrate the Advantage

The  following  is  a  systematic  exposition,  tailored  to  our
research,  regarding  the  detection  of  lung  cancer  across  four
distinct categories:

The comparative  evaluation  of  our  SVMVGGNet-16
model's  efficacy  against  established  methodologies
will facilitate the validation of its dependability across
diverse  lung  cancer  scenarios,  thereby  ensuring  that
metrics  such  as  accuracy,  recall,  and  precision  align
with the exigencies of real-world clinical practice.
Through the process of our novelty model, we are able
to delineate the areas in which our model demonstrates
superior performance, particularly in the identification
of early-stage lung cancer nodules, which may enhance
the early detection of cases and subsequently improve
patient prognoses.
Our  novelty  conducting  the  relative  to  alternative
methodologies  can  illuminate  any  deficiencies  in
performance, thereby enabling us to refine the model
and  gain  insights  into  specific  domains—such  as
image  resolution  or  noise  mitigation—where
adjustments  may  requisite.
By  evaluating  the  model  in  conjunction  with
competing  methods,  we  illustrate  its  potential
applicability within clinical environments, providing a
holistic  perspective  on  its  benefits  in  practical  use,
ranging from accuracy to operational feasibility [84].
Transparent  benchmarking  affords  healthcare
practitioners and researchers a lucid understanding of
the  model’s  strengths  and  weaknesses  [28],  thereby
fostering  confidence  in  its  implementation  for  lung
cancer detection.
Furthermore,  our  method  serves  to  establish  a
normative standard, providing a foundational reference
for prospective improvements or modifications of our
model  in  response  to  the  evolving  landscape  of
diagnostic  requirements  [27].
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This  structured  analysis  emphasizes  the  particular
mechanisms  through  which  benchmarking  can  fortify  the
impact of our model and enhance its preparedness for clinical
utilization.

4.14. Application of This Study:

The  findings  of  our  research  present  numerous  technical
applications within clinical and healthcare settings:

The  SVMVGGNet-16  model  represents  a  robust
instrument  for  radiologists,  facilitating  the  expedited
classification of lung cancer variants with augmented
diagnostic  accuracy [85].  Through the automation of
the  identification  and  categorization  of  specific  lung
cancer  variants—ADC,  LCC,  SCC,  and  normal
tissues—the model  offers  considerable assistance for
initial  evaluations,  reducing  the  likelihood  of  human
error and accelerating diagnostic processes.
The incorporation of our SVMVGGNet-16 model into
automated  diagnostic  frameworks  can  promote  the
early identification of lung cancer, particularly within
populations at elevated risk. By embedding this system
into hospital infrastructures and specialized oncology
screening  centers,  healthcare  practitioners  can
substantially enhance the diagnostic timeline, enabling
prompt intervention and treatment, which is essential
for  improving  survival  rates  among  lung  cancer
patients  [86].
The  synthesis  of  the  VGGNet-16  and  SVM  in  the
context  of  lung  cancer  detection  underscores  the
tangible  influence  of  DL  and  ML  methodologies  on
medical  imaging  practices  [87].  This  hybrid  model
functions  as  an  instructive  exemplar  for  medical
trainees  and  practitioners  who  are  keen  on
sophisticated diagnostic technologies, illustrating how
DL can be applied in pragmatic clinical settings while
bridging the educational divide between data science
and medical practice.
Upon the completion of further validation and clinical
investigations,  the  proposed  model  possesses  the
capacity to be seamlessly integrated into conventional
clinical  workflows  [88].  Such  incorporation  could
enable a high-caliber, economically viable strategy for
lung cancer screening and diagnosis, thereby assisting
healthcare  teams  in  achieving  timely  and  precise
diagnoses  with  minimal  interruptions.

By establishing a framework for accurate, automated lung
cancer  detection,  our  study  significantly  contributes  to  the
technological  advancement  of  diagnostic  medicine.  The
SVMVGGNet-16 model illustrates a promising trajectory for
the  integration  of  AI-augmented  diagnostic  systems  within
clinical practice, ultimately fostering enhanced patient care and
favorable therapeutic outcomes through timely intervention.

CONCLUSION AND FUTURE PROSPECTS

In conclusion, our study presents a comprehensive analysis
of  lung  cancer  detection  developing  VGGNet-16  and  SVM,
leveraging  the  LIDC-IDRI  dataset.  Our  experimental  results

underscore  the  effectiveness  of  DL  techniques  in  early
diagnosis, with VGGNet-16 outperforming SVM in accuracy
and AUC. Notably, our proposed model VGGNet-16and SVM
achieved  an  impressive  accuracy  (97.22%)  in  the  training
phase  and  (96.72%)  in  the  testing  phase,  representing  better
performance in loss minimization. These results emphasize the
essential  role  of  advanced  DL  methods  in  addressing  the
critical need for timely lung cancer detection. Moving forward,
optimizing the VGGNet-16 training phase and refining SVM's
generalization  capabilities  are  key  research  directions.  Fine-
tuning model parameters, exploring diverse architectures, and
augmenting  dataset  diversity  can  enhance  VGGNet-16
discriminative  capabilities.  Additionally,  employing  hybrid
methods  and  advanced  feature  engineering  techniques  may
improve  SVM's  performance.  Integrating  explainability
techniques into models could enhance interpretability, aiding in
understanding classification decisions.  Continuous validation
on diverse datasets and collaboration with medical experts are
essential for real-world applicability and reliability. In essence,
our  study  lays  a  solid  foundation  for  advancing  lung  cancer
identification,  contributing  to  improved  initial  diagnosis  and
patient consequences.

As  for  forthcoming  research  directions,  optimizing
VGGNet-16 and SVM performance during the training phase
should be a focal point to enhance discriminative capabilities.

Further refine the hybrid model by exploring other DL
architectures and advance SVM kernels to enhance the
detection, accuracy, and robustness.
Incorporate  additional  datasets  with  diverse  lung
cancer  types  and  varying  imaging  conditions  to
improve  models'  generalizability  and  performance
across  different  populations.
Conduct extensive clinical trials and collaborate with
healthcare  professionals  to  integrate  the  proposed
model  into  clinical  workflows,  ensuring  practical
usability  and  effectiveness  in  medical  settings.
Develop detection capabilities,  supporting automated
systems  to  assist  radiologists  and  oncologists  in
building  quick  and  accurate  diagnostic  decisions
during  routine  screenings.
Design  and  implement  user-friendly  interfaces  for
automated detection systems, making them accessible
and  easy  to  use  for  medical  consultants  without
specialized  technical  knowledge.
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