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Abstract:
Background:
Currently, it is difficult to find a solution to the inverse inappropriate problem, which involves restoring a high-resolution image from a low-
resolution image contained within a single image. In nature photography, one can capture a wide variety of objects and textures, each with its own
characteristics, most notably the high-frequency component. These qualities can be distinguished from each other by looking at the pictures.

Objective:
The  goal  is  to  develop  an  automated  approach  to  identify  thyroid  nodules  on  ultrasound  images.  The  aim  of  this  research  is  to  accurately
differentiate thyroid nodules using Deep Learning Technique and to evaluate the effectiveness of different localization techniques.

Methods:
The method used in this research is to reconstruct a single super-resolution image based on segmentation and classification. The poor-quality
ultrasound  image  is  divided  into  several  parts,  and  the  best  applicable  classification  is  chosen  for  each  component.  Pairs  of  high-  and  low-
resolution images belonging to the same class are found and used to figure out which image is high-resolution for each segment. Deep learning
technology, specifically the Adam classifier, is used to identify carcinoid tumors within thyroid nodules. Measures, such as localization accuracy,
sensitivity, specificity, dice loss, ROC, and area under the curve (AUC), are used to evaluate the effectiveness of the techniques.

Results:
The results of the proposed method are superior, both statistically and qualitatively, compared to other methods that are considered one of the latest
and best technologies. The developed automated approach shows promising results in accurately identifying thyroid nodules on ultrasound images.

Conclusion:
The research demonstrates the development of an automated approach to identify thyroid nodules within ultrasound images using super-resolution
single-image  reconstruction  and  deep  learning  technology.  The  results  indicate  that  the  proposed  method  is  superior  to  the  latest  and  best
techniques in terms of accuracy and quality. This research contributes to the advancement of medical imaging and holds the potential to improve
the diagnosis and treatment of thyroid nodules.
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1. INTRODUCTION
Thyroid nodules, including goitre, adenoma, and malignant

growths, are quite common in the clinic. However, the patient
may  get  the  wrong  therapy  at  the  wrong  time  if  the
preoperative  diagnosis  is  inaccurate.  In  the  previous  four
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decades, the number of cases of thyroid nodule lesions in the
United States has grown by up to 3 percent annually [1 -  3].
Ultrasound imaging has several  benefits,  such as  cheap cost,
real-time  imaging,  high  sensitivity,  no  biopsy  required,  no
physical  harm,  and  repeatability.  Ultrasound  may be  used  to
detect thyroid nodules and the surrounding tissues, providing
valuable  information  for  distinguishing  between  benign  and
malignant conditions.

The implementation of The Bethesda System for Reporting
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Thyroid  Cytopathology  (TBSRTC)  in  its  2023  version  has
greatly  simplified  the  procedure  of  reporting  thyroid  fine
needle  aspirations.  It  classifies  findings  into  six  separate
categories,  each associated with a unique risk of  malignancy
(ROM). The classifications are as follows: (i)  nondiagnostic,
(ii)  benign,  (iii)  atypia  of  unknown  significance  (AUS),  (iv)
follicular  neoplasm,  (v)  suggestive  for  malignancy,  and  (vi)
malignant. This method offers a consistent reporting structure
and enhances the ROM for each category using the latest data.
It  delivers  an  average  ROM  and  a  range  of  cancer  risk
assumptions.  The  AUS  category  is  subdivided  into  two
subcategories based on the ROM and molecular profile, which
improves the accuracy of the diagnosis. In addition, TBSRTC
incorporates the most recent advancements in molecular testing
and  adjusts  its  nomenclature  to  match  the  2022  WHO
Classification of Thyroid Neoplasms. This guarantees that the
classification  remains  up-to-date  with  the  changing  medical
standards and practices [4].

In  addition,  the  Bethesda  System  for  Reporting  Thyroid
Cytopathology  (TBSRTC)  provides  a  systematic  method  for
categorising  thyroid  fine  needle  aspiration  (FNA)  cytology
findings. Category II (Benign) has a malignancy risk of around
4% (2–7%), recommending conservative treatment. Category
III (Atypia of Undetermined Significance/Follicular Lesion of
Undetermined  Significance,  AUS/FLUS)  has  a  higher
complexity in risk, with studies showing a malignancy rate of
up  to  25%  for  patients  who  have  had  two  consecutive
AUS/FLUS  diagnoses  and  undergo  surgery.  The  results
emphasise  the  crucial  significance  of  making  follow-up  and
management  decisions  based  on  FNAC  results  within  these
categories [5].

The  blurriness  of  thyroid  nodules,  poor  resolution,
excessive noise in the photographs, the biological complexity
of  the  thyroid,  and  the  degree  of  skill  of  the  radiologist  all
contribute to the difficulties of ultrasound imaging [6]. In this
study, deep learning for lesion recognition has been used as a
means of localization and diagnosis in thyroid ultrasonography.
Ultrasound imaging, in contrast to invasive methods like MRI
and CT scans, is painless and easy. Ultrasound imaging occurs
in real-time and is  continuous [7].  In ultrasonic imaging,  the
detection depth is related to the method's sensitivity. Acoustic
shadowing and post-echo amplification may have an effect on
the  results.  These  characteristics  are  used  for  the  diagnostic
ultrasound pictures. A large number of training instances are
required to guarantee that supervised classification accuracy is
not compromised by the curse of dimensionality from which it
suffers.  Training  resources  that  can  be  put  to  use  in  the  real
world  are  often  few.  If  training  samples  are  few,  semi-
supervised  learning,  in  which  some  unlabeled  examples  are
included in the training set in accordance with prescribed rules,
may  be  able  to  help.  Several  semi-supervised  pixel-level
classification  algorithms  have  also  been  developed  in  recent
studies  [6,  7].  Deep  learning  methods  have  been  extensively
used  for  the  detection  and  diagnosis  of  thyroid  nodules  in
ultrasound  pictures  based  on  the  findings  of  the  search.
Reconstructing high-quality pictures from low-resolution ones
is  the  goal  of  these  approaches,  which  may  increase  the
accuracy  as  well  as  the  efficiency  with  which  nodule
localization is performed. In general, the use of deep learning

strategies  has  a  significant  promise for  the  precise  and time-
saving identification of thyroid nodules in ultrasound images.
However,  it  is  essential  to  guarantee  that  these  models  are
interpretable in order to provide physicians with the capacity to
comprehend and have faith in the judgements that are made by
algorithms.  In  addition,  more  research  is  required  to  verify
these methods using bigger datasets and in a variety of clinical
contexts.  Despite  the  fact  that  there  is  very  little  research
available  on  the  subject,  it  was  found  that  the  problem  of
insufficient training samples also has a substantial influence on
the accuracy of the super-resolution mapping. First, we need to
consider  the  spectral  variation present  in  training samples  of
the  same class.  The  generated  super-resolution  variation  and
collaborative  representation  are  then  used  to  determine  the
abundance  percentages  of  each  class  inside  the  ultrasound
image.

The  thyroid  gland,  a  significant  endocrine  organ,  has  a
normal weight range of 20-30 grams in adults. It is common to
find  lesions  on  the  gland,  with  a  prevalence  rate  of  4-7%.
However,  these  lesions  are  mostly  asymptomatic  and  do  not
typically  affect  the  secretion  of  thyroid  hormones.  This
information could be integrated into the existing literature and
further  detailed  insights  could  be  obtained  from  articles  on
PubMed [8].

1.1. Literature Review

Dukker  and  coworkers  developed  a  technique  for
identifying  lesions  using  breast  ultrasonography in  2002 [9].
The Bayesian classifier made a correct diagnosis once the RGI
established the lesion severity. In 2007, Eystratios et al.  [10]
proposed an automated nodule diagnostic method using thyroid
ultrasound  characteristics.  Thyroid  borders  were  determined
for  diagnostic  purposes  using  the  TBD  method  and  then
categorised using the K-means algorithm. In their study, Huang
et  al.  [11]  proposed  a  technique  that  employed  segmented
breast  ultrasound  images.  Using  a  combination  of  RGB  and
particle swarm optimisation, this method was able to get either
perfect  or  almost  perfect  settings.  Shan  et  al.  [12]  in  2014
endorsed ASPS as a means to boost regional development. The
histogram  of  the  ultrasound  image  and  the  geographic
parameters of the breast lesion were used to pinpoint the exact
placement  of  the  seed  in  this  technique.  The  bulk  of  the
findings were from breast ultrasounds. Ultrasound imaging of
the thyroid, which has a more complex echo structure than that
of  the  breast,  provides  better  diagnostic  information.  These
factors  complicate  the  application  of  machine  learning  for
diagnostic  categorization of  thyroid medical  ultrasonography
pictures. Based on the results, a system is developed to identify
and categorise thyroid conditions from ultrasound images. In
this method, lesions are classified using Adam's classifier and
then  located  with  an  improved  FCN  trained  with  transfer
learning. First, the deep learning strategy is used to locate and
label suspicious spots on a thyroid ultrasound, with promising
results.  Ultrasonography  is  often  employed  in  the  screening
procedure for thyroid cancer because of its inexpensive cost.
Nodules  may  be  classified  as  solid  or  cystic  based  on
ultrasonographic criteria related to their pathophysiology [13,
14]. Ultrasound imaging may occasionally differentiate normal
thyroid gland tissue apart from thyroid nodules, which is useful
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for parameter estimation. However, ultrasound images may be
difficult to separate anatomically due to their granular speckle
pattern  and  lack  of  contrast  between  bodily  sections.
Ultrasound  may  be  used  in  a  number  of  different  ways  to
divide  up  thyroid  nodules  [10,  14  -  22].  Most  segmentation
approaches use human-drawn “seed boundaries” to begin with.
This  seed  is  used  to  initiate  the  algorithm.  To  estimate  the
limits  of  a  B-mode  picture,  a  user  may  generate  a  “seeded
boundary”  by  manually  drawing  a  border  of  nodules.  The
generation of a seed precludes the use of an algorithm in real-
time.  Therefore,  verification  must  be  carried  out
retrospectively. Clinical segmentation in real-time may become
achievable  via  the  segmentation  of  seedless  thyroid  nodules.
Feature  hierarchies  are  constructed  using  visual  models  like
convolutional  networks.  Convolutional  networks  that  are
trained  from  the  ground  up  and  pixel-by-pixel  outperform
existing  methods  in  semantic  segmentation.  In  a  study  [23],
“fully  convolutional”  networks  were  constructed,  which,  via
fast inference and learning, may output a size proportionate to
any input. The strategy [23] is referred to as “Method 1.” The
fully convolutional networks may be used for spatially dense
prediction  challenges  and  combined  with  existing  models.
Here,  AlexNet,  VGG  Net,  and  Google  Net  are
convolutionalized and then their representations are adjusted to
enable them to do image segmentation. In another study [24],
the effectiveness of three non-automatic segmentation methods
was  evaluated  and  contrasted  for  free-form  3D  ultrasound
imaging.  'Method 2'  will  refer  to  the  procedure outlined in  a
previous  study  [24].  Precision,  robustness,  user-friendliness,
required human participation, and processing time are only a
few  of  the  metrics  that  have  been  used  to  evaluate  these
algorithms  and  draw  comparisons.  Furthermore,  another
technique was proposed, which was referred to as “Method 3”
[25],  for  differentiating  between  thyroid  nodules.  In  this
method,  expanded  convolutional  layers  are  used  in  a
revolutionary  multi-output  convolutional  neural  network
approach. Method 3 distinguishes between the normal thyroid
gland,  thyroid nodules,  and the cystic  components  inside the
nodules. Nodules on the thyroid gland may be solid, somewhat
cystic, or mostly cystic. Thyroid nodules may be broken down
into  cystic  components  to  reveal  their  internal  anatomy.
Ultrasound  scans  show  hypoechoic  cysts.  It  is  vital  to
distinguish cysts, which may include hypoechoic patches, from
the  arteries  and  veins  of  the  thyroid  gland,  which  may  also
seem  hypoechoic  on  ultrasound.  Thyroid  capillaries  are
responsible for secreting this. The segmentation process begins
with  the  ultrasound  imaging  of  the  thyroid  gland  and  then
checks  the  nodules  for  cystic  components.  More  anatomical
characteristics may be used for ultrasonic image classification
as  the  graphics  processing units  can handle  bigger  and more
complex neural  networks.  In  this  regard,  methods from deep
learning may be  helpful  [26,  27].  Even without  a  seed,  deep
learning  algorithms  may be  operated  in  real  time  because  of
their fast inference time (measured in milliseconds). In order to
differentiate  between  normal  thyroid  glands  and  thyroid
nodules using B-mode pictures, this study introduces a multi-
pronged  convolutional  neural  network  or  CNN.  The
programme can detect and analyse several thyroid anatomical
features  in  real-time.  Thyroid  nodules  may  be  detected,
evaluated, and mapped using this technology. The approach is

verified by applying it to a manually segmented mask, and the
results  are  compared  to  those  obtained  using  the  standard
seeding  method.

2. METHODS

2.1. Image Segmentation

It  is  well  known that  earlier  techniques  for  image super-
resolution reconstruction included the use of  a  large training
database. This database consisted of millions of image pairings
with  varying  degrees  of  resolution.  Learning  from  such  a
massive  database  requires  a  lot  of  computer  power  and
memory,  so it  is  not  an option for  everyone.  In addition,  the
input picture has a complex structure and background, similar
to ultrasound images. Due to this, some of the high-frequency
information in the reconstructed high-resolution picture would
be  lost,  which  is  not  a  desired  outcome.  An  experiment  of
super-resolution  reconstruction  on  an  ultrasound  image  is
executed. This is necessary because of the substantial variety of
features that may be found in various areas. The reconstructed
high-resolution images are provided, each of which is trained
with  a  unique  set  of  image  categories.  When  an  ultrasound
image  is  provided  with  a  variety  of  different  textures,  it  is
segmented  into  many  different  texture  areas.  Then,  a  super-
resolution reconstruction of each segment is performed using
the  dictionary  learned  using  the  category  database  that
corresponds  to  it.  In  this  research,  the  input  low-resolution
picture  is  segmented  using  the  multi-scale  normalised  cut
technique [28], and the outcome of the resolution enhancement
is presented in Fig. (1).

2.2. Classification of Thyroid Nodule Sections

As the input image is split up into multiple distinct parts,
classifying  each  segment  into  the  category  is  the  most
appropriate step. This approach, which improves picture super-
resolution  reconstruction  by  processing  each  section  of  the
input image with its  own lexicon,  is  very valuable.  SPM has
become more popular in image classification [28 - 30], which
has  seen  a  great  deal  of  success  in  many  applications.  The
picture  is  segmented  into  spatial  subregions  that  are
progressively  finer,  and  histograms  of  the  image's  local
characteristics are computed for each of these subregions. Each
individual section of the low-resolution picture is provided as
its own image. After creating the “descriptor” layer, the initial
step  is  to  extract  a  set  of  scale-invariant  feature  transform
(SIFT) descriptors (P - dimensional) from the ultrasound image
feature point. These descriptors are represented by the equation
D = [d1, d2,....,dN] ϵ RPxN. After that, an M-entry codebook called
C  =  [c1,  c2,....,cN]  ϵ  RPxM  turns  each  descriptor  into  an  M-
dimensional  code.  As  a  consequence  of  this,  each  code  is
considered to be an individual component of the “code” layer,
and  these  codes  together  constitute  the  image.  The  local
correlations  between  similar  descriptors  to  improve  segment
categorization  need  to  be  considered,  which  requires  similar
codes. After that, the codes are computed using the following
formula:

(1)𝑚𝑖𝑛
𝑥

∑ ‖𝑑𝑖 − 𝐶𝑥𝑖‖2 + 𝜆‖𝑠𝑖 ⊙ 𝑥𝑖‖𝑁
𝑖=1

2
 s.t. 𝑥𝑖 = 1, ∀𝑖  
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Where X = [x1, x2,....,xN] ϵ RMxN computes similarity to the
input descriptor dj  in the following way: where element-wise
multiplication is denoted by , si ϵ RM is similar to the dj such
that:

(2)

Here,  dist(di,  C)=[dist(di,  c1),...,dist(di,cM)]T  denotes
Euclidean distance between dj,Cj. Here, σ is a weight parameter
for si. After that, max[dist(di, C)] is used to transform si into the
interval (0,1). In practise, the resultant code xi only contains a
few significant values;  thus,  other minuscule coefficients are
zero. Moreover, the other tiny coefficients are also zero. The
“SPM”  layer  histogram  is  formed  by  averaging  and
normalising  several  codes  from  each  sub-region.  “Max”
pooling  is  utilised  when  the  “max”  function  is  applied  row-
wise to produce a vector xin of the same size as its input. After
that,  the  pooled  features  are  normalised  using  the  L2-norm
function as _out=x_in/||x_in||_2. After that, each histogram is
appended to the others to produce a vector. When it comes to
tagging  objects  in  an  image,  this  vector  serves  as  the  most
accurate  depiction.  The  input  picture  has  a  poor  resolution;
hence, this method is used to determine the category for each
individual part of the image.

3. SUPER-RESOLUTION OF INDIVIDUAL SEGMENTS

Following the step of assigning each section of the input
low-resolution  picture  to  the  category  that  best  fits  it,  each
section's  high-resolution  picture  is  reconstructed  using  the
thyroid ultrasound database [31]. The image super-resolution
reconstruction  is  a  low-resolution  scene  reconstruction
problem.  Furthermore,  a  low-resolution  picture  (X)  is
transformed  into  a  high-resolution  one  (Y)  of  the  same
scenario. A high-resolution picture is input, Y = DBX, where D
is the down-sampling operator, B is the blurring operator, and
X is an image with an unknowingly higher resolution improved
in the previous step. As every image X satisfies the potential to
be  the  answer  to  this  inverse  problem,  it  is  abundantly  clear
that this is a very poorly framed issue.

3.1. An Incomplete Sparse Representation

Suppose x ϵ Rn represents the patches that were taken from
the resolution-improved image X, and that x ϵ Rm ill represents
the patches that were taken from the high-resolution images Y,
then the high-resolution vector is represented by VHigh for high-
resolution image patches. The formula for this combination is
as follows x = DHσ,

Fig. (1). Qualitative results (a) input image (b) resolution enhanced image (c) histogram of resolution enhanced image.

⊙

 𝑠𝑖 = 𝑒𝑥𝑝 〖((𝑑𝑖𝑠𝑡(𝑑_𝑖, 𝐶)))/𝜎〗   

 

(a) (b)

(c)
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Where VH ϵ RnxK (n<K) represents a vector that corresponds
to  the  high-resolution  vector  and  α  ε  RK(||V  0||<<K)  is
coefficients  that  contain  few non-zero  values.  After  that,  the
sparse  coefficient  a  is  computed  by  representing  the  image
patches y that have low-resolution with the low-resolution pixel
vector  Vlow  contained  with  the  high-resolution  pixels  Vhigh.
Sparse  coefficients  may  describe  low-resolution  patches  y  =
Vlowα. Then, given a low-resolution patch y, we will calculate
the sparse coefficients in terms of Clow and utilise them with the
high-resolution  pixels  vector  Vhigh  to  construct  the  high-
resolution  patch  y.  The  formula  for  calculating  the  sparse
coefficients  α  is  as  follows:

(3a)

(3b)

L0-norm(||.||  0)  and  (P)  are  linear  feature  extraction
operators  that  should  remove  the  key  parts  of  the  low-
resolution picture as customers prefer high-frequency material.

As  the  feature  extraction  operator,  a  high-pass  filter  of
some  form  is  often  used  as  the  appropriate  option.  In  this
article, the features are extracted using the following four 1 - D
filters:

(4a)

(4b)

As a consequence of  this,  four  descriptor  feature vectors
will be constructed for each patch by using the aforementioned
four  filters.  As  the  final  representation  of  the  low-resolution
patch,  a  vector  is  created  by  concatenating  all  of  the
aforementioned  elements  together.  Afterward,  L1-norm  is
minimised  into  L0-norm,

(5a)

(5b)

Where λ  balances  coefficient  sparsity  and approximation
accuracy for y. After the ideal solution, α, has been found, the
high-resolution patch may be reconstructed using the equation
x = Vhighα* As a consequence of this, the high-resolution picture
Y  is  produced  by  combining  all  of  the  reconstructed  high-
resolution  patches  and  then  taking  an  average  of  the  region
where they overlap.

3.2.  Generation  of  Training  Data  using  High-resolution
Image

Deep learning often depends on the mining of big datasets
that are representative of their subject matter. This allows for
the training of a resilient network that generalises effectively
when it is put into action in the real world. Using ultrasound
data from a database [31] for training is a basic process. Now,
the dataset includes each associated low-resolution ultrasound
image  and  super-resolved  image  as  a  foundation  for  a

diversified  training  dataset  that  incorporates  a  number  of
different  variants.  In  a  high-resolution  image,  target  patches
consist of several microbubbles of varying intensities, each of
which  includes  multiple  target  patches.  In  this  article,  the
assumption  that  thyroid  nodule  is  detected  by  using  singular
value  filtering  or  contrast-enhanced  imaging  sequences  has
been used.

3.3. The Structure of Deep Neural Network

Deep neural networks employ three-layer-block encoding
contraction.  Each  block  has  two  leaky  rectified  linear  units
(ReLU)-triggered  3x3  convolution  layers  and  a  2x2  Max-
pooling operation. All convolution layers employ leaky ReLUs
[32]  to  avoid  idle  neurons  or  nodes  affecting  model
performance.  Batch  normalisation  before  network  activation
improves trainability. Moreover, hyper-parameter optimisation
has  some  limitations,  but  it  allows  quicker  learning  [33].  A
dropout  layer  randomly disables  50% of  the following latent
layer.  The  decoder  creates  a  comprehensive  map  from
concealed  information.  A  2x2  nearest-neighbor  up-sampling
layer  repeats  picture  rows  and  columns,  and  two  5x5
deconvolution layers, one with an output stride of 2, make up
the decoder [23]. The final block has two deconvolution layers,
the second of which preserves its output stride value of 2.  A
five-by-five  convolution  with  a  linear  activation  function
converts  feature  space  to  a  single-channel  picture.

3.4. The Optimizer

To  reduce  the  cost  function,  the  network  is  trained  on
batches of 256 imaging frames over 20,000 iterations using the
Adam  optimizer  with  a  learning  rate  of  0.001.  This  cost
function  matches  [34]  and  is  represented  as:

(6)

The input patches are denoted by x, while the target super-
resolved patches are denoted by super-resolved image Y. The
nonlinear  neural  network function is  denoted by f(θ),  and its
parameters (weights and biases) θ are shown in brackets. The
regularisation parameter λ supports sparse network predictions
and is conservatively set at 0.01. The Gσ standard deviation is
initialised  at  1  pixel  upon  training.  The  suggested  technique
highlights thyroid nodules during image reconstruction. Each
cycle generates new data online, which improves the model's
robustness and capacity to generalise. Dropout while training
was  found  to  help  in  this  regard.  The  encoded  latent  space
characteristics are randomly deactivated with a 0.5 probability.

4. RESULTS AND DISCUSSION

This work employed 173 ultra-sonographic pictures of 173
thyroid  samples  (80  normal  and  93  cancerous)  from  Kaggle
[31]. The Intel i7-6900K Nvidia GeForce GTX 1080Ti system
was  used  to  run  MATLAB2021a.  Fig.  (1a-c)  shows  pre-
processing  inputs  and  output  images.  Fig.  (2)  shows
localization  results,  which  were  achieved  by  all  proposed
methods after super-resolution segmentation (Figs. 2a,b) and
optimization  (Figs.  2c,d).  The  thyroid  tissues  share  morpho-
logy with the lesion site, but current methods cannot find them.
The  proposed  methods  can  localize  the  nodule  with  border
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infiltration, lesions with ambiguous boundaries, and generally
clear nodules, as shown by the boundary box and the coloured
area  in  Fig.  (2).  In  the  proposed  work,  the  neural  network
training requires ground truth. Thyroid nodule detection is the
best technique, which uses intersection over union (IoU), Dice
loss, accuracy, sensitivity, specificity, ROC, and AUC in order
to  assess  the  disease  diagnosis.  Fig.  (3)  shows  the  ROC
analysis of the proposed method and state of art methods. The
proposed  method’s  specificity  value  increases  when  ROC
approaches  1.  Fig.  (4a,b)  plots  training  and  validation
performance: (a) Dice loss and (b) Accuracy. Table 1 presents
the  performance  evaluation  of  the  proposed  method  before
super-resolution  segmentation  and  after  super-resolution

segmentation  techniques.  The  proposed  method  outperforms
other approaches by using a deep neural network average IoU
of 0.81 for 173 test samples. The findings are poor since the
photographs are classified without considering their substance.
Our  approach  analyses  image  textures  to  distinguish  healthy
from  damaged  tissues.  Our  technique  is  more  flexible  and
accurate. The proposed method will leverage the classifier for
further  categorization  processes.  This  improves  method
comparison.  The  proposed  method's  ROC  integrates  various
methodologies,  and  the  curve  is  steeper  than  other  methods.
Table  2  compares  the  proposed  method  with  the  recent
methods [23 - 25]. As indicated in the table, our technique has
significantly improved classification accuracy.

Fig. (2). Qualitative results (a) nodule localization with boundary after super-resolution segmentation (b) region detection after super-resolution
segmentation (c) Nodule localization with boundary after optimization (d) region detection after optimization.

Fig. (3). ROC analysis of the proposed method and state-of-the-art methods.

(a) (b)
  

(c) (d)
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Fig. (4). Training and validation performance (a) dice loss (b) accuracy.

Table 1. Performance evaluation of the proposed method.

Method Accuracy AUC Mean IoU
Before super-resolution segmentation 0.72 0.81 0.53
After super-resolution segmentation 0.81 0.83 0.71

After classification 0.83 0.87 0.78
After optimization 0.91 0.96 0.81

Table 2. Comparison of the proposed method with recent state-of-the-art methods.

Method/Refs. Method Used Performance Metric
Method 1 [23] Fully convolutional neural networks 0.622 (mean IoU)

Method 2 [24] Segmentation and improvement
using machine learning 0.862 and 0.876 (Dice coefficient)

Method 3 [25] Multi-output convolutional
neural network algorithm 0.76 (Dice coefficient)

Proposed method Super-Resolution based nodule localization in thyroid ultrasound images 0.81

Recent  research  by  Mulita  et  al.  (2022)  compared  early postoperative complications between total thyroidectomy (TT)

 
(a)

 

 
(b) 
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and  subtotal  thyroidectomy  (STT)  for  differentiated  thyroid
cancer.  Their  findings  indicated  no  significant  difference  in
complications,  such  as  hematoma,  wound  infection,
hypoparathyroidism, and temporary recurrent laryngeal nerve
palsy between the two surgical approaches. This information
highlights the importance of not only improving diagnostic and
imaging techniques, as our method does but also considering
the surgical strategies employed in the management of thyroid
conditions.  While  our  approach  focuses  on  enhancing  the
accuracy of thyroid lesion detection, it is crucial to recognize
that  the  ultimate  goal  is  to  optimize  patient  outcomes.  The
choice between TT and STT, as demonstrated by Mulita et al.
(2022),  plays  a  vital  role  in  minimizing  postoperative
complications  and  ensuring  the  well-being  of  patients  [35].

Localization errors may affect benign or malignant disease
diagnosis.  Segmented  ROIs  resemble  lesion  areas.  The
segmented ROI is too big and contains useless lesion data. The
first algorithm will be limited by picture ROI. A wide region
covers  the  ROI.  Thus,  non-lesion  tissue  data  is  abundant.
Thyroid ultrasound pictures are difficult to interpret, increasing
the chance of location-related false positives. Shadows may be
misinterpreted for the ROI. If a lesion-suspected site is linked
to  the  image  border,  the  whole  lesion-containing  region  is
recognised.  Thyroid  ultrasonography  may  distort  the  picture
and  leave  a  worthless  area.  This  approach  cannot  ensure
diagnostic  accuracy.  In  this  regard,  lesion localization inside
the ROI can be improved, and visual interference can reduce
sample adaptability. The proposed approach uses deep learning
and classification so that the proposed model may learn about
image features and transmit segmentation abilities via training.
Thus, it adapts better to complex thyroid lesion tissue.

CONCLUSION AND FUTURE WORK

This  article  suggests  automated  thyroid  lesion  detection.
The thyroid ultrasound image is segmented using the proposed
deep learning-based method to find the lesion. Next, the Adam
classifier is used for the localization region. However, further
testing is needed to establish whether the lesion is malignant.
Contract trials for this study employed many methods on the
same  data  set.  The  experimental  findings  imply  that  the
proposed  method-based  lesion  localization  technology  may
obtain  an  IoU value  of  0.81,  outperforming  earlier  methods.
This  approach  can  diagnose  benign  and  malignant  thyroid
nodules  with  accuracy,  AUC,  and  IOU values  of  0.91,  0.96,
and 0.81. These experiments prove the approach works. Even
compared  to  older  approaches,  the  new  method  exceeds  the
state-of-the-art  in  detecting  lesion  sites  and  discriminating
benign  from  malignant  thyroid  lesions.  Lesion  detection
methods  may  be  improved.  GAN  networks  may  recreate
thyroid  ultrasound  pictures.  Higher-resolution  images  will
improve thyroid nodule auto-identification. Moreover, the use
of  deep  learning  to  the  problem  of  pinpointing  nodules  in
thyroid ultrasound pictures may provide a few different ways.
Researchers  may  investigate  multi-modality  fusion,  where
ultrasound pictures are fused with additional medical images
like CT or MRI to enhance nodule localisation in ultrasound
images. The term “transfer learning” refers to the practise of
bringing learned skills  from one situation to  bear  on another
similar one. When working with limited data, researchers have
the  option  of  using  transfer  learning  to  create  more  precise

nodule  localisation  models.  Despite  their  outstanding
performance  on  a  variety  of  medical  imaging  tasks,  deep
learning  models  are  sometimes  referred  to  as  “black  boxes”
due  to  the  difficulty  in  understanding  how  they  arrived  at  a
given interpretation.  To improve the model's  credibility  with
healthcare  practitioners  and  to  foster  mutual  understanding,
researchers  might  investigate  explainable  deep  learning
models. The majority of deep learning models used for nodule
localisation in thyroid ultrasound images are currently intended
for  post-hoc  analysis,  meaning  they  cannot  be  used  for  real-
time  diagnosis.  During  ultrasound  procedures,  doctors  may
benefit  from  real-time  diagnostic  systems.  However,
researchers  need  to  evaluate  these  procedures  further.

LIST OF ABBREVIATIONS

AUC = Area under the curve

TBSRTC = Thyroid Cytopathology

ROM = Risk of Malignancy
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ETHICS  APPROVAL  AND  CONSENT  TO
PARTICIPATE

Not applicable.

HUMAN AND ANIMAL RIGHTS

No  animals/humans  were  used  that  are  the  basis  of  this
study.

CONSENT FOR PUBLICATION

Not applicable.

AVAILABILITY OF DATA AND MATERIALS

The  data  used  to  support  the  findings  of  this  study  are
included in the article.

FUNDING

None.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

Bibbins-Domingo  K.  Screening  for  thyroid  cancer:  US  preventive[1]
services task force recommendation statement. JAMA 2017; 317(18):
1882-7.
Moon W-J. Benign and malignant thyroid nodules: US differentiation[2]
multicenter retrospective study. Radiology 2008; 247(3): 762-70.
[http://dx.doi.org/10.1148/radiol.2473070944]
Frates MC. Management of thyroid nodules detected at US: Society of[3]
radiologists in ultrasound consensus conference statement Radiology
2005; 237(3): 794-800.
[http://dx.doi.org/10.1148/radiol.2373050220]
Ali  SZ,  Baloch  ZW,  Cochand-Priollet  B,  Schmitt  FC,  Vielh  P,[4]

http://dx.doi.org/10.1148/radiol.2473070944
http://dx.doi.org/10.1148/radiol.2373050220


Nodule Localization in Thyroid Ultrasound Images through Deep Learning Current Medical Imaging, 2024, Volume 20   9

VanderLaan PA. The 2023 Bethesda System for Reporting Thyroid
Cytopathology. Thyroid 2023; 33(9)
[http://dx.doi.org/10.1089/thy.2023.0141] [PMID: 37427847]
Zahid  A,  Shafiq  W,  Nasir  KS,  et  al.  Malignancy  rates  in  thyroid[5]
nodules classified as Bethesda categories III and IV; A subcontinent
perspective. J Clin Transl Endocrinol 2021; 23: 100250.
[http://dx.doi.org/10.1016/j.jcte.2021.100250] [PMID: 33643850]
LeCun  Y,  Bengio  Y,  Hinton  G.  Deep  learning.  Nature  2015;[6]
521(7553): 436.
[http://dx.doi.org/10.1038/nature14539]
Brito JP, Gionfriddo MR, Al Nofal A, et al. The accuracy of thyroid[7]
nodule  ultrasound to  predict  thyroid  cancer:  Systematic  review and
metaanalysis. J Clin Endocrinol Metabol 2014; 99(4): 1253-63.
[http://dx.doi.org/10.1210/jc.2013-2928]
Mulita F, Anjum F. Thyroid Adenoma. In: StatPearls. Treasure Island[8]
(FL): StatPearls Publishing 2023.
[PMID: 32965923]
Drukker Karen. Computerized lesion detection on breast ultrasound.[9]
Medical Physics 2002; 29(7): 1438.
[http://dx.doi.org/10.1118/1.1485995]
Keramidas  EG.  Efficient  and  Effective  Ultrasound  Image  Analysis[10]
Scheme  for  Thyroid  Nodule  Detection.  In:  Image  Analysis  and
Recognition ICIAR 2007 Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer 2007.
[http://dx.doi.org/10.1007/978-3-540-74260-9_93]
Huang Q. Optimized graph-based segmentation for ultrasound images.[11]
Neurocomputing 2014; 129.SI: 216-24.
[http://dx.doi.org/10.1016/j.neucom.2013.09.038]
Shan J. A novel automatic seed point selection algorithm for breast[12]
ultrasound  images.  2008  19th  International  Conference  on  Pattern
Recognition,. Tampa, FL, 08-11 December 2008, pp. 1-4.
Mazzaferri EL. Management of a solitary thyroid nodule New Eng-[13]
land J Med 1993; 328(8): 553-9.
Chang C-Y, Lei Y-F, Tseng C-H, Shih S-R. Thyroid segmentation and[14]
volume  estimation  in  ultrasound  images.  IEEE  Trans  Biomed  Eng
2010; 57(6): 1348-57.
[http://dx.doi.org/10.1109/TBME.2010.2041003]
Maroulis  D  E,  Savelonas  M  A,  Iakovidis  D  K,  Karkanis  S  A,[15]
Dimitropoulos  N.  Variable  background  active  contour  model  for
computer-aided delineation of nodules in thyroid ultrasound images.
IEEE Trans Inf Technol Biomed 2007; 11(5): 537-43.
[http://dx.doi.org/10.1109/TITB.2006.890018]
Iakovidis  D  K,  Savelonas  M  A,  Karkanis  S  A,  Maroulis  D  E.  A[16]
genetically optimized level  set  approach to segmentation of thyroid
ultrasound images. Appl Intell 2007; 27(3): 193-203.
[http://dx.doi.org/10.1007/s10489-007-0066-y]
Singh  N,  Jindal  A.  A  segmentation  method  and  comparison  of[17]
classification  methods  for  thyroid  ultrasound  images.  Int  J  Comput
Appl 2012; 50(11): 43-9.
Mahmood N H, Rusli A H. Segmentation and area measurement for[18]
thyroid ultrasound image. Int J Sci Eng Res 2011; 2(12): 1-8.
Kollorz E N, Hahn D A, Linke R, Goecke T W, Hornegger J, Kuwert[19]
T.  Quanti_cation  of  thyroid  volume  using  3-D  ultrasound  imaging.
IEEE Trans Med Imag 2008; 27(4): 457-66.
Nugroho HA, Nugroho A, Choridah L. Thyroid nodule segmentation[20]
using  active  contour  bilateral  filtering  on  ultrasound  images.  2015
International  Conference  on  Quality  in  Research  (QiR),.  Lombok,
Indonesia, 10-13 August 2015, pp. 43-46.
[http://dx.doi.org/10.1109/QiR.2015.7374892]
Tsantis  S,  Dimitropoulos  N,  Cavouras  D,  Nikiforidis  G.  A  hybrid[21]
multi-scale model for thyroid nodule boundary detection on ultrasound
images Comput Methods Programs Biomed 2006; 84(2-3): 86-98.
[http://dx.doi.org/10.1016/j.cmpb.2006.09.006]

Selvathi D, Sharnitha VS. Thyroid classification and segmentation in[22]
ultrasound  images  using  machine  learning  algorithms.  2011
International  Conference  on  Signal  Processing,  Communication,
Computing and Networking Technologies,.  Thuckalay, India, 21-22
July 2011, pp. 836-841.
[http://dx.doi.org/10.1109/ICSCCN.2011.6024666]
Long  J,  Shelhamer  E,  Darrell  T.  Fully  convolutional  networks  for[23]
semantic  segmentation.  Proceedings  of  the  IEEE  conference  on
computer vision and pattern recognition,. UC Berkeley, USA, 2015,
pp.3431-3440.
Poudel P, Illanes A, Sheet D, Friebe M. Evaluation of commonly used[24]
algorithms  for  thyroid  ultrasound  images  segmentation  and
improvement using machine learning approaches. J Healthc Eng 2018;
2018(Sep): 1-13.
[http://dx.doi.org/10.1155/2018/8087624] [PMID: 30344990]
Kumar  V,  Webb  J,  Gregory  A,  et  al.  Automated  segmentation  of[25]
thyroid nodule, gland, and cystic components from ultrasound images
using deep learning. IEEE Access 2020; 8: 63482-96.
[http://dx.doi.org/10.1109/ACCESS.2020.2982390]  [PMID:
32995106]
Kumar  V,  Webb  JM,  Gregory  A,  et  al.  Automated  and  real-time[26]
segmentation of suspicious breast masses using convolutional neural
network. PLoS One 2018; 13(5): e0195816.
[http://dx.doi.org/10.1371/journal.pone.0195816] [PMID: 29768415]
Looney  P,  Stevenson  GN,  Nicolaides  KH,  et  al.  Automatic  3D[27]
ultrasound  segmentation  of  the  first  trimester  placenta  using  deep
learning.  2017  IEEE  14th  International  Symposium  on  Biomedical
Imaging (ISBI 2017),. Melbourne, VIC, Australia, 18-21 April 2017,
pp. 279-282.
[http://dx.doi.org/10.1109/ISBI.2017.7950519]
Cour T, Benezit F, Shi 1. Spectral segmentation with multiscale graph[28]
decomposition.  2005  IEEE  Computer  Society  Conference  on
Computer  Vision  and  Pattern  Recognition  (CVPR'05),.  San  Diego,
CA, USA, 2005, pp. 1124-1131.
Mosseri I, Zontak M, Irani M. Combining the power of Internal and[29]
External denoising. IEEE International Conference on Computational
Photography (ICCP),. Cambridge, MA, USA, 2013, pp. 1-9.
[http://dx.doi.org/10.1109/ICCPhot.2013.6528298]
Wang J, Yang J, Yu K, et al. Locality-constrained Linear Coding for[30]
image  classification.  2010  IEEE  Computer  Society  Conference  on
Computer Vision and Pattern Recognition,. San Francisco, CA, USA,
2010, pp. 3360-3367.
DDTI:  Thyroid  Ultrasound  Images.  Available  from:[31]
https://www.kaggle.com/datasets/dasmehdixtr/ddti-thyroid-ultrasound-
images
Xu  B,  Wang  N,  Chen  T,  Li  M.  Empirical  evaluation  of  rectified[32]
activations in convolutional network. arXiv:150500853 2015; 2015:
00853.
[http://dx.doi.org/10.48550/arXiv.1505.00853 ]
Ioffe S, Szegedy C. Batch normalization: Accelerating deep network[33]
training by reducing internal covariate shift. arXiv:150203167 2015;
2015: 03167.
[http://dx.doi.org/10.48550/arXiv.1502.03167 ]
Nehme E, Weiss LE, Michaeli T, Shechtman Y. Deep-STORM: super-[34]
resolution single-molecule microscopy by deep learning. Optica 2018;
5(4): 458-64.
[http://dx.doi.org/10.1364/OPTICA.5.000458]
Mulita  F,  Verras  GI,  Dafnomili  VD,  et  al.  Thyroidectomy  for  the[35]
management of differentiated thyroid carcinoma and their outcome on
early postoperative complications: A 6-year single-centre retrospective
study. Chirurgia 2022; 117(5): 556-62.
[http://dx.doi.org/10.21614/chirurgia.2736] [PMID: 36318685]

© 2024 The Author(s). Published by Bentham Science Publisher.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is
available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

http://dx.doi.org/10.1089/thy.2023.0141
http://www.ncbi.nlm.nih.gov/pubmed/37427847
http://dx.doi.org/10.1016/j.jcte.2021.100250
http://www.ncbi.nlm.nih.gov/pubmed/33643850
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1210/jc.2013-2928
http://www.ncbi.nlm.nih.gov/pubmed/32965923
http://dx.doi.org/10.1118/1.1485995
http://dx.doi.org/10.1007/978-3-540-74260-9_93
http://dx.doi.org/10.1016/j.neucom.2013.09.038
http://dx.doi.org/10.1109/TBME.2010.2041003
http://dx.doi.org/10.1109/TITB.2006.890018
http://dx.doi.org/10.1007/s10489-007-0066-y
http://dx.doi.org/10.1109/QiR.2015.7374892
http://dx.doi.org/10.1016/j.cmpb.2006.09.006
http://dx.doi.org/10.1109/ICSCCN.2011.6024666
http://dx.doi.org/10.1155/2018/8087624
http://www.ncbi.nlm.nih.gov/pubmed/30344990
http://dx.doi.org/10.1109/ACCESS.2020.2982390
http://www.ncbi.nlm.nih.gov/pubmed/32995106
http://dx.doi.org/10.1371/journal.pone.0195816
http://www.ncbi.nlm.nih.gov/pubmed/29768415
http://dx.doi.org/10.1109/ISBI.2017.7950519
http://dx.doi.org/10.1109/ICCPhot.2013.6528298
https://www.kaggle.com/datasets/dasmehdixtr/ddti-thyroid-ultrasound-images
https://www.kaggle.com/datasets/dasmehdixtr/ddti-thyroid-ultrasound-images
http://dx.doi.org/10.48550/arXiv.1505.00853%0A
http://dx.doi.org/10.48550/arXiv.1502.03167%0A
http://dx.doi.org/10.1364/OPTICA.5.000458
http://dx.doi.org/10.21614/chirurgia.2736
http://www.ncbi.nlm.nih.gov/pubmed/36318685
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/

	Super-resolution based Nodule Localization in Thyroid Ultrasound Images through Deep Learning 
	[Background:]
	Background:
	Objective:
	Methods:
	Results:
	Conclusion:

	1. INTRODUCTION
	1.1. Literature Review

	2. METHODS
	2.1. Image Segmentation
	2.2. Classification of Thyroid Nodule Sections

	3. SUPER-RESOLUTION OF INDIVIDUAL SEGMENTS
	3.1. An Incomplete Sparse Representation
	3.2. Generation of Training Data using High-resolution Image
	3.3. The Structure of Deep Neural Network
	3.4. The Optimizer

	4. RESULTS AND DISCUSSION
	CONCLUSION AND FUTURE WORK
	LIST OF ABBREVIATIONS
	ETHICS APPROVAL AND CONSENT TO PARTICIPATE
	HUMAN AND ANIMAL RIGHTS
	CONSENT FOR PUBLICATION
	AVAILABILITY OF DATA AND MATERIALS
	FUNDING
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES




