Skip to content
2000
  • ISSN: 1568-0142
  • E-ISSN: 1875-6131

Abstract

Apoptosis is a noninflammatory process used by multicellular organisms to eliminate unwanted cells. It is implemented by a family of cysteine proteases called caspases through their cleavage of cellular proteins. The upstream events leading to caspase activation are controlled at multiple levels by an extensive array of proteins, including death receptors, adapters, transcription factors and Bcl-2 family members, while acting downstream to curb caspase activity are the inhibitor of apoptosis proteins (IAPs). Since their initial discovery much has been learned about how IAPs regulate cell death and are themselves regulated. Structural studies have given us insight into how IAPs interact with and neutralise caspase activity, proteomic approaches have uncovered IAP interacting molecules, such as DIABLO/SMAC, that can antagonise IAP function, and additional modes of IAP regulation at the transcriptional and post translational level have been identified. Their potential involvement in conferring cancer cell resistance to apoptotic stimuli, e.g. chemotherapeutic drugs, has presented them as plausible targets for cancer therapy. Conversely, they may be beneficial in protecting neuronal cells from inappropriate apoptosis observed in many different neurological diseases. What follows is a discussion of the various mammalian IAPs and other BIR domain containing proteins (BIRPs), focussing on their structure, function and regulation by antagonists as well as their possible involvement in disease processes.

Loading

Article metrics loading...

/content/journals/cmcaiaa/10.2174/1568014054546272
2005-08-01
2025-12-06
Loading full text...

Full text loading...

/content/journals/cmcaiaa/10.2174/1568014054546272
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test