Skip to content
2000
  • ISSN: 1568-0142
  • E-ISSN: 1875-6131

Abstract

Endocannabinoids are amides, esters and ethers of long chain polyunsaturated fatty acids, which include anandamide (N-arachidonoylethanolamine, AEA) and 2-arachidonoylglycerol (2-AG) as the main endogenous agonists of cannabinoid (CB) receptors. The biological actions of these compounds at CB receptors depend on their life span in the extracellular space, which for AEA is regulated by intracellular uptake through a selective AEA membrane transporter (AMT), followed by intracellular degradation by an AEA-degrading enzyme (fatty acid amide hydrolase, FAAH). Together with AEA and 2-AG and their synthetic enzymes, CB receptors, AMT and FAAH form the “endocannabinoid system”. Here, we review recent literature on the properties of the constituents of this system, and on its role in inflammation. We also show how restraining the flexibility of the acyl chain of AEA affects the ability of this compound to bind to CB receptors and to interact with AMT and FAAH. Furthermore, we show how molecular dynamics simulations with free and restrained AEA and a number of its analogs, generated by lipoxygenase-mediated hydroperoxidation, help to understand the structural requirements essential for the interaction with the proteins of the endocannabinoid system. The hydroxy AEAs described herein might act in vivo as inhibitors of endocannabinoid metabolism, the only ones of natural origin as yet known. The relevance of these findings, which help to predict and facilitate the design of novel drugs with greater potency and / or selectivity at the different molecular targets of AEA, will be discussed in the light of their therapeutic potential.

Loading

Article metrics loading...

/content/journals/cmcaiaa/10.2174/1568014023355953
2002-09-01
2025-10-13
Loading full text...

Full text loading...

/content/journals/cmcaiaa/10.2174/1568014023355953
Loading

  • Article Type:
    Review Article
Keyword(s): Endocannabinoid Degradation; OXIDATIVE METABOLISM; Th erapeutic Agents
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test