Current Medicinal Chemistry - Anti-Cancer Agents - Volume 5, Issue 4, 2005

Volume 5, Issue 4, 2005
-
-
Triplex-Forming Oligonucleotides as Potential Tools for Modulation of Gene Expression
Authors: F. A. Rogers, J. A. Lloyd and P. M. GlazerTriplex-forming oligonucleotides (TFOs) bind in the major groove of duplex DNA at polypurine/ polypyrimidine stretches in a sequence-specific manner. The binding specificity of TFOs makes them potential candidates for use in directed genome modification. A number of studies have shown that TFOs can introduce permanent changes in a target sequence by stimulating a cell's inherent repair pathways. TFOs have also been demonstrated to inhibit gene expression providing a possible role for these compounds in cancer therapy. This review summarizes the dual roles of TFOs for use in delivering DNA reactive compounds to a specific site in the genome or for introducing permanent changes in the target sequence through the introduction of an altered helical structure. In addition to compiling the ways in which TFOs have been successfully utilized, this review will explore conflicting reports of TFO bioactivity focusing on the variables which affect the efficacy in vitro of TFO mediated genomic modification which in turn may represent the obstacles encountered using TFOs to modulate gene expression in vivo.
-
-
-
Recognition of Triple Helical Nucleic Acids by Aminoglycosides
Authors: H. Xi and D. P. AryaAminoglycosides, traditional RNA binders, were found to be a new class of triple helical nucleic acidstabilizing ligands. Neomycin, of all the aminoglycosides, has shown the most significant effects in stabilizing DNA, RNA, and hybrid triple helices. When compared with minor groove binders or intercalators, neomycin excels at triple helical stabilization in most cases. Molecular modeling studies suggest that neomycin reaches into the larger Watson- Hoogsteen groove. The charge and shape complementarity are the key factors in neomycin-triplex recognition. By conjugating neomycin with intercalators such as BQQ (a potent triple helix intercalating agent designed by Hélène), we have progressed in developing more potent triple helix stabilizing ligands. The design of such dual or even triple recognition ligands opens a new paradigm for recognition of triple helix nucleic acids. The article herein presents studies of neomycin as the first molecule that can selectively stabilize nucleic acid triplex structures. These studies are supported by our recent discovery that neomycin prefers to bind to A-like conformations, of which triple helix structures are known to display some characteristics. These findings will contribute to the development of a new series of triplex-specific ligands, and may contribute to either antisense or antigene therapies.
-
-
-
Competition Dialysis: An Assay to Measure the Structural Selectivity of Drug-Nucleic Acid Interactions
More LessCompetition dialysis is a powerful new tool for the discovery of ligands that bind to nucleic acids with structural- or sequence-selectivity. The method is based on firm thermodynamic principles and is simple to implement. In the competition dialysis experiment, an array of nucleic acid structures and sequences is dialyzed against a common test ligand solution. After equilibration, the amount of ligand bound to each structure or sequence is determined spectrophotometrically. Since all structures and sequences are in equilibrium with the same free ligand concentration, the amount bound is directly proportional to the ligand binding affinity. Competition dialysis thus provides a direct and quantitative measure of selectivity, and unambiguously identifies which of the structures or sequences within the sample array that are preferred by a particular ligand. Following the introduction of the method, competition dialysis has been used worldwide to probe a variety of ligand-nucleic acid interactions. This contribution will focus on new analytical approaches for extracting information from the database that resulted from the first-generation competition dialysis assay, in which binding data was gathered for the interaction of 126 compounds with 13 different structures and sequences. Such global analyses allow identification of compounds with unique types of binding selectivity.
-
-
-
Camptothecin: Roles of the D and E Rings in Binding to the Topoisomerase I-DNA Covalent Binary Complex
By S. M. HechtThe alkaloid camptothecin is the prototypical DNA topoisomerase I poison. This core structure has formed the basis for two marketed antitumor agents and numerous clinical candidates, and has been the focus of many synthetic and medicinal chemistry studies. Recent reports have furthered our understanding of the roles played by the D and E rings of camptothecin in stabilization of the enzyme-DNA-camptothecin ternary complex. Important parameters for further study and optimization include the facility of E-ring lactone hydrolysis and the prospects for replacing the E ring with more stable structures, the role of the 14-CH group in binary complex binding, and the effect of ternary complex dynamics on the expression of cytotoxicity by the camptothecins.
-
-
-
Etoposide, Topoisomerase II and Cancer
Authors: E. L. Baldwin and N. OsheroffEtoposide is an important chemotherapeutic agent that is used to treat a wide spectrum of human cancers. It has been in clinical use for more than two decades and remains one of the most highly prescribed anticancer drugs in the world. The primary cytotoxic target for etoposide is topoisomerase II. This ubiquitous enzyme regulates DNA under- and overwinding, and removes knots and tangles from the genome by generating transient double-stranded breaks in the double helix. Etoposide kills cells by stabilizing a covalent enzyme-cleaved DNA complex (known as the cleavage complex) that is a transient intermediate in the catalytic cycle of topoisomerase II. The accumulation of cleavage complexes in treated cells leads to the generation of permanent DNA strand breaks, which trigger recombination/repair pathways, mutagenesis, and chromosomal translocations. If these breaks overwhelm the cell, they can initiate death pathways. Thus, etoposide converts topoisomerase II from an essential enzyme to a potent cellular toxin that fragments the genome. Although the topoisomerase II-DNA cleavage complex is an important target for cancer chemotherapy, there also is evidence that topoisomerase II-mediated DNA strand breaks induced by etoposide and other agents can trigger chromosomal translocations that lead to specific types of leukemia. Given the central role of topoisomerase II in both the cure and initiation of human cancers, it is imperative to further understand the mechanism by which the enzyme cleaves and rejoins the double helix and the process by which etoposide and other anticancer drugs alter topoisomerase II function.
-
-
-
Programmable DNA Binding Oligomers for Control of Transcription
Authors: P. B. Dervan, R. M. Doss and M. A. MarquesMapping and sequencing the genetic blueprint in human, mice, yeast and other model organisms has created challenges and opportunities for chemistry, biology and human medicine. An understanding of the function of each of the ∼ 25, 000 genes in humans, and the biological circuitry that controls these genes will be driven in part by new technologies from the world of chemistry. Many cellular events that lead to cancer and the progression of human disease represent aberrant gene expression. Small molecules that can be programmed to mimic transcription factors and bind a large repertoire of DNA sequences in the human genome would be useful tools in biology and potentially in human medicine. Polyamides are synthetic oligomers programmed to read the DNA double helix. They are cell permeable, bind chromatin and have been shown to downregulate endogenous genes in cell culture.
-
-
-
Dications That Target the DNA Minor Groove: Compound Design and Preparation, DNA Interactions, Cellular Distribution and Biological Activity
Authors: W. D. Wilson, B. Nguyen, F. A. Tanious, A. Mathis, J. E. Hall, C. E. Stephens and D. W. BoykinFluorescence microscopy of trypanosomes from drug treated mice shows that biologically active heterocyclic diamidines that target the DNA minor groove bind rapidly and specifically to parasite kinetoplast DNA (k-DNA). The observation that the kinetoplast is destroyed, generally within 24 hours, after drug treatment is very important for understanding the biological mechanism, and suggests that the diamidines may be inhibiting some critical opening/closing step of circular k-DNA. Given the uncertainties in the biological mechanism, we have taken an empirical approach to generating a variety of synthetic compounds and DNA minor groove interactions for development of improved and new biological activities. Furamidine, DB75, is a diphenyl-diamidine that has the curvature to match the DNA minor groove as expected in the classical groove interaction model. Surprisingly, a linear diamidine with a nitrogen rich linker has significantly stronger binding than furamidine due to favorable linker and water-mediated DNA interactions. The water interaction is very dependant on compound structure since other linear compounds do not have similar interactions. Change of one phenyl of furamidine to a benzimidazole does not significantly enhance DNA binding but additional conversion of the furan to a thiophene (DB818) yields a compound with ten times stronger binding. Structural analysis shows that DB818 has a very favorable curvature for optimizing minor groove interactions. It is clear that there are many ways for compounds to bind to k-DNA and exert specific effects on kinetoplast replication and/or transcription that are required to obtain an active compound.
-
-
-
Target Practice: Aiming at Satellite Repeats with DNA Minor Groove Binders
Authors: G. Susbielle, R. Blattes, V. Brevet, C. Monod and E. KasMuch progress has been made in recent years in developing small molecules that target the minor groove of DNA. Striking advances have led to the design of synthetic molecules that recognize specific DNA sequences with affinities comparable to those of eukaryotic transcription factors. This makes it feasible to modulate or inhibit DNA/protein interactions in vivo, a major step towards the development of general strategies of anti-gene therapy. Examples from anti-parasitic drugs also suggest that synthetic molecules can affect a variety of cellular functions crucial to cell viability by more generally targeting vast portions of genomes based on their biased base composition. This provides a rationale for developing approaches based on selective interactions with broad genomic targets such as satellite repeats that are associated with structural or architectural components of chromatin essential for cellular proliferation. Using examples drawn from the Drosophila melanogaster model system, we review here the use of synthetic polyamides or diamidines that bind the DNA minor groove and can be used as highly selective agents capable of interfering with specific protein/DNA interactions that occur in A+T-rich repeated sequences that constitute a significant portion of eukaryotic genomes. The satellite localization of cellular proteins that bind the minor groove of DNA via domains such as the AT hook motif is highly sensitive to these molecules. A major consequence of the competition between these proteins and their synthetic mimics is an alteration of the nuclear localization and function of proteins such as topoisomerase II, a major target of anti-cancer drugs.
-
-
-
Interfacial Inhibitors of Protein-Nucleic Acid Interactions
Authors: Y. Pommier and C. MarchandThis essay develops the paradigm of “Interfacial Inhibitors” (Pommier and Cherfils, TiPS, 2005, 28: 136) for inhibitory drugs beside orthosteric (competitive or non-competitive) and allosteric inhibitors. Interfacial inhibitors bind with high selectivity to a binding site involving two or more macromolecules within macromolecular complexes undergoing conformational changes. Interfacial binding traps (generally reversibly) a transition state of the complex, resulting in kinetic inactivation. The exemplary case of interfacial inhibitor of protein-DNA interface is camptothecin and its clinical derivatives. We will also provide examples generalizing the interfacial inhibitor concept to inhibitors of topoisomerase II (anthracyclines, ellipticines, epipodophyllotoxins), gyrase (quinolones, ciprofloxacin, norfloxacin), RNA polymerases (a-amanitin and actinomycin D), and ribosomes (antibiotics such as streptomycin, hygromycin B, tetracycline, kirromycin, fusidic acid, thiostrepton, and possibly cycloheximide). We discuss the implications of the interfacial inhibitor concept for drug discovery.
-
Volumes & issues
Most Read This Month
