Current Medicinal Chemistry - Anti-Cancer Agents - Volume 5, Issue 3, 2005

Volume 5, Issue 3, 2005
-
-
DNA Helicases as Targets for Anti-Cancer Drugs
Authors: Sudha Sharma, Kevin M. Doherty and Robert M. Brosh Jr.DNA helicases have essential roles in nucleic acid metabolism by facilitating cellular processes including replication, recombination, DNA repair, and transcription. The vital roles of helicases in these pathways are reflected by their emerging importance in the maintenance of genomic stability. Recently, a number of human diseases with cancer predisposition have been shown to be genetically linked to a specific helicase defect. This has led researchers to further investigate the roles of helicases in cancer biology, and to study the efficacy of targeting human DNA helicases for anticancer drug treatment. Helicase-specific inhibition in malignant cells may compromise the high proliferation rates of cancerous tissues. The role of RecQ helicases in response to replicational stress suggests a molecular target for selectively eliminating malignant tumor cells by a cancer chemotherapeutic agent. Alternate DNA secondary structures such as Gquadruplexes that may form in regulatory regions of oncogenes or G-rich telomere sequences are potential targets for cancer therapy since these sequence-specific structures are proposed to affect gene expression and telomerase activation, respectively. Small molecule inhibitors of G-quadruplex helicases may be used to regulate cell cycle progression by modulating promotor activation or disrupting telomere maintenance, important processes of cellular transformation. The design of small molecules which deter helicase function at telomeres may provide a molecular target since telomerase activity is necessary for the proliferation of numerous immortal cells. Although evidence suggests that helicases are specifically inhibited by certain DNA binding compounds, another area of promise in anti-cancer therapy is siRNA technology. Specific knockdown of helicase expression can be utilized as a means to sensitize oncogenic proliferating cell lines. This review will address these topics in detail and summarize the current avenues of research in anti-cancer therapy targeting helicases through small molecule inhibitors of DNA-protein complexes, DNA binding drugs, or down-regulation of helicase gene expression.
-
-
-
Prospects for Plant-Derived Chemopreventive Agents Exhibiting Multiple Mechanisms of Action
Authors: L. M. Howells and M. M. MansonThere is great potential for the use of plant-derived agents in the fight to prevent onset or delay progression of the carcinogenic process. Epidemiological evidence for their chemopreventive action is compelling, but even though many of these compounds have an extensive history of use within the human populace, it is of increasing importance to determine more precisely the primary targets contributing to their efficacy, prior to embarking on large-scale clinical trials. This rapidly moving field now concentrates in particular, on the modulating effects these agents can have on cellular signalling pathways involved in the apoptotic, proliferative and angiogenic processes, perturbances to which, are common in many cancers. It is perhaps the ability of these agents to exhibit multi-site mechanisms of action that offers their key to success where conventional single-site agents have disappointed in the past. As well as being promising chemopreventive agents, there is also an exciting role for these compounds in combinatorial therapy with more traditional chemotherapeutics, potentially in lowering of toxicity and enhancing efficacy for treatment of more advanced cancers. This review will summarise known and proposed mechanisms of action for various chemopreventive agents of interest highlighting their potential in combination therapy, and will address benefits and problems of using such multi-site agents in long-term prevention/therapeutic regimes.
-
-
-
Synthesis and Biological Activity of New Class of Dioxygenated Anticancer Agents
Authors: Maria D. Pujol, Manel Romero and Isabel SanchezThis paper describes extensive research on the activity of more of 100 cytotoxic compounds containing an oxygenated ring in their structure and isolated from natural plants or prepared by semisynthesis or synthesis from available intermediates. Anticancer drugs have been classified according to the chemical structure of the natural products that are considered to lead the series. The origin and mechanism of action involved in each case have been considered. This new family of natural, semisynthetic and synthetic products includes compounds with interesting antitumor activity such as podophyllotoxin derivatives, NK-611 (15), TOP-53 (16), NPF (24) and Tafluposide (28); camptothecin analogs such as 45 with a considerable cytotoxicity against β-cell chronic lymphocytic leukemia (CLL), and 52 (new piperazinyl- CPT analog). New dioxygenated ellipticine analogs showed more activity and stability than the natural pattern when the structure incorporated a lactone function instead of the pyridine ring. In the acridine series the new tetracyclic derivatives 75 and 76 containing ethylenedioxy groups at the 2- and 3-positions of the acridine system exhibited the same activity as m-AMSA in vivo against murine P-388 leukemia. Other isolated compounds containing a dioxygenated ring in their structure such as 100 and 101 showed antitumor activities related to kinase inhibition, and are attractive candidates for development of new synthetic antitumor agents.
-
-
-
Anti-Cancer Potential of Sesquiterpene Lactones: Bioactivity and Molecular Mechanisms
Authors: Siyuan Zhang, Yen-Kim Won, Choon-Nam Ong and Han-Ming ShenSesquiterpene lactones (SLs) are the active constituents of a variety of medicinal plants used in traditional medicine for the treatment of inflammatory diseases. In recent years, the anti-cancer property of various SLs has attracted a great deal of interest and extensive research work has been carried out to characterize the anti-cancer activity, the molecular mechanisms, and the potential chemopreventive and chemotherapeutic application of SLs. In this review, we attempt to summarize the current knowledge of the anti-cancer properties of SLs by focusing on the following important issues. First, we discuss the structure-activity relationship of SLs. All SLs contain a common functional structure, an α- methylene-γ-lactone group, and this important chemical characteristic means that the thiol-reactivity of SLs is an underlying mechanism responsible for their bioactivities. Second, we assess the experimental evidence for the anti-cancer function of SLs obtained from both in vitro cell culture and in vivo animal models. Various SLs have been demonstrated to execute their anti-cancer capability via inhibition of inflammatory responses, prevention of metastasis and induction of apoptosis. Thirdly, we outline the molecular mechanisms involved in the anti-cancer activity of SLs, in particular, the SLthiols reaction, the effect of SLs on cell signaling pathways such as nuclear transcription factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPK). Finally, we recapitulate some important SLs with regards to their anti-cancer activities and their potential in anti-cancer drug development. Taken together, many SLs are emerging as promising anticancer agents with potential applications in both cancer chemotherapy and chemoprevention.
-
-
-
Cisplatin Is a DNA-Damaging Antitumour Compound Triggering Multifactorial Biochemical Responses in Cancer Cells: Importance of Apoptotic Pathways
Authors: Yuliya Sedletska, Marie-Josephe Giraud-Panis and Jean-Marc Malingecis-Diamminedichloroplatinum(II) (cisplatin) is among the most active antitumour agent used in human chemotherapy. The purpose of this review is to give an insight in several molecular mechanisms that mediate the sensitivity of cancer cells to this drug and to show how recent progress in our knowledge on some critical molecular events should lay the foundations of a more rational approach to anticancer drug design. Cisplatin is primarily considered as a DNA-damaging anticancer drug, mainly forming different types of bifunctional adducts in its reaction with cellular DNA. We will address the question of cellular activity disruption that cisplatin could cause through binding to more sensitive region of the genome such as telomeres. Cellular mechanisms of resistance to cisplatin are multifactorial and contribute to severe limitation in the use of this drug in clinics. They include molecular events modulating the amount of drug-DNA interaction, such as a reduction in cisplatin accumulation inside cancer cells or inactivation of cisplatin by thiol-containing species. Other important mechanisms acting downstream to the initial reaction of cisplatin with DNA, include an increase in adducts repair and a decrease in induction of apoptosis. Recently accumulating evidence suggest a role of the long patch DNA mismatch repair system in sensing cisplatin-damaged DNA and in triggering cell death through a c-Abl- and p73-dependent cascade; two other important pathways have been unravelled that are the mitogenactivated protein kinase cascade and the tumor suppressor p53. Several of these mechanisms underlying cisplatin resistance have been exploited to design new platinum derivatives. This issue will be covered in the present review.
-
-
-
Multi-Nuclear Platinum Drugs: A New Paradigm in Chemotherapy
Authors: Nial J. Wheate and J. G. CollinsThe initial report of the therapeutic anticancer properties of a di-nuclear platinum complex in 1988 started a new paradigm in platinum based chemotherapy. Several multi-nuclear platinum complexes have entered clinical trials in recent years, with varying results. This group of charged complexes, consisting of di- and tri-nuclear compounds linked by aliphatic ligands, many with hydrogen bonding functionality, are able to overcome cisplatin and carboplatin resistance in many important human cancer cell lines. The adducts they form with DNA - which are, to some extent, affected by their pre-covalent association - are the reason for their increased cytotoxicity, and are distinctly different from those formed by cisplatin. Multi-nuclear platinum DNA adducts are broadly defined as flexible, non-directional and mainly interstrand cross-links. These complexes are also able to induce conformational changes in DNA, particularly the conversion from Btype to Z- and A-type. While these complexes are much more cytotoxic than cisplatin, they are also highly toxic. The maximum tolerated doses range from 0.006 to 1.1 mg/m2 which is 10 to 100 fold lower than cisplatin. BBR3464 has shown in vivo activity at its MTD in several pre-clinical and clinical trials; however, recent phase II trials have shown that BBR3464, and other multi-nuclear platinum drugs, did not yield results substantially different from cisplatin, possibly due to their binding and degradation by human plasma proteins. This review will look at the success, and limitations, of multinuclear platinum drugs, and discuss their future potential as anti-cancer agents.
-
-
-
Progress in the Development of Aminopeptidase N (APN/CD13) Inhibitors
Authors: Wenfang Xu and Qianbin LiAminopeptidase N (APN; CD13) is a member of zinc-containing ectoenzymes family involved in the degradation of neutral or basic amino acids (Ala>Phe>Leu>Gly) from N-terminal of bioactive peptides and amide or arylamide derivatives of amino acids. The expression of APN being up regulated has been implicated in the pathogenesis of a variety of diseases such as cancer, leukemia, diabetic nephropathy, and rheumatoid arthritis. Thus, APN inhibitors (APNIs) are expected to be useful for the treatment of these disorders. This article reviews briefly the structure characteristic and possible function of APN. The proposed biomolecular structures and mechanism of action used in the design of APNIs are thoroughly covered. Major emphasis is on recently published potent, small molecular weight APNIs and their essential structure activity relationship (SAR). Finally, available clinical results of compounds in development are summarized in this review.
-
-
-
Lanthanide Bearing Microparticulate Systems for Multi-Modality Imaging and Targeted Therapy of Cancer
The rapid developments of high-resolution imaging techniques are offering unique possibilities for the guidance and follow up of recently developed sophisticated anticancer therapies. Advanced biodegradable drug delivery systems, e.g. based on liposomes and polymeric nanoparticles or microparticles, are very effective tools to carry these anticancer agents to their site of action. Elements from the group of lanthanides have very interesting physical characteristics for imaging applications and are the ideal candidates to be co-loaded either in their non-radioactive or radioactive form into these advanced drug delivery systems because of the following reasons: Firstly, they can be used both as magnetic resonance imaging (MRI) and computed tomography (CT) contrast agents and for single photon emission computed tomography (SPECT). Secondly, they can be used for radionuclide therapies which, importantly, can be monitored with SPECT, CT, and MRI. Thirdly, they have a relatively low toxicity, especially when they are complexed to ligands. This review gives a survey of the currently developed lanthanide-loaded microparticulate systems that are under investigation for cancer imaging and/or cancer therapy.
-
Volumes & issues
Most Read This Month
