Skip to content
2000
  • ISSN: 1568-0118
  • E-ISSN: 1875-5968

Abstract

DNA is prone to structural polymorphism: its three-dimensional structure can differ markedly from the classical double helix. Nucleic acid structures composed of more than two strands have also been observed. The guanine-rich sequence of both the telomere and centromere can form a quadruplex based on G-quartets while the complementary cytosine-rich strand can fold into an intercalated tetramer called the i-motif. The G-quartet is a gold mine for structural biologists and the telomere has become a target for anti-cancer drug design since it was observed that deregulation of telomerase favors proliferation of certain tumors. Other DNA sequences may adopt unusual confor-mations. Polypurine-polypyrimidine sequences capable of forming a triple-stranded structure called H-DNA are found abundantly in the eukaryotic genome and may play a significant role in DNA metabolism, transcription and replication. Triplex-forming oligonucleotides are currently being developed as “anti-gene”agents. Unusual DNA structures may therefore be implicated in fundamental processes such as gene expression and represent unique targets for both structural-specific and sequence-specific agents. In this review, we present work characterizing some of these unusual conformations in terms of structure, stability and formation kinetics and discuss their biological implications.

Loading

Article metrics loading...

/content/journals/cmcaca/10.2174/1568011023353877
2002-09-01
2025-09-18
Loading full text...

Full text loading...

/content/journals/cmcaca/10.2174/1568011023353877
Loading

  • Article Type:
    Review Article
Keyword(s): Guanine Quadruplexes; i-motif; Telomeres
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test