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Abstract: Evolution has optimized proteins to balance stability and function by reduc-
ing unfavorable energy states, leading to regions of flexibility and frustration on protein
surfaces.  These locally frustrated regions correspond to functionally important  areas,
such as active sites and regions for ligand binding and conformational plasticity. Typical
strategies of structure-based drug discovery primarily concentrate on enhancing the bind-
ing affinity during compound screening and target identification. However, this often
overlooks the binding specificity, which is critical for distinguishing specific binding
partners from competing ones and avoiding off-target effects. According to the energy
landscape theory, optimization of the intrinsic binding specificity involves globally mini-
mizing the frustrations existing in the biomolecular interactions. Recent studies have de-
monstrated that identifying local frustrations provides a promising approach for screen-
ing more specific compounds binding with targets, and quantifying binding specificity
complements typical strategies that focus on binding affinity only. This review explores
the principles and strategies of computationally quantifying the binding specificity and
local  frustrations  and  discusses  their  applications  in  structure-based  drug  discovery.
Moreover, given the advancements of artificial intelligence in protein science, this re-
view aims to motivate the integration of AI and available approaches in quantifying the
binding specificity and local frustration. We expect that an AI-powered prediction mod-
el will accelerate the drug discovery process and improve the success rate of hit com-
pounds.

Keywords: Energy landscape, biomolecular recognition, binding specificity, local frustration, drug screening, bind-
ing site, cryptic site.

1. INTRODUCTION
Drug discovery involves multiple stages, from tar-

get and lead compound identifications to clinical trials.
The  process  is  generally  time-consuming and expen-
sive  and  encounters  a  high  risk  of  failure  during  the
clinical  phase  [1,  2].  Therefore,  preclinical  develop-
ment is critical to reduce the   cost   and   improve the
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success rate of a lead compound [3, 4]. Structure-based
drug discovery (SBDD) plays a crucial role throughout
the drug development process by providing a rational
basis  to  increase  the  overall  success  rate  [4,  5].  The
main concept of SBDD is the rational design and opti-
mization of drug candidates based on the three-dimen-
sional  structure  of  the  biological  target  (often  a  pro-
tein) [6, 7]. It directly leverages the detailed structural
information of  the  target  to  guide  the  design of  drug
candidates  that  can  effectively  bind  to  and  modulate
the target’s activity. With the breakthrough of artificial
intelligence,  like  Alphafold2,  in  predicting  protein
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structures,  high-quality  structure  information  readily
available can accelerate the process of SBDD and signi-
ficantly enhance its capability and efficiency [8-11].

The  key  step  of  SBDD  is  computational  docking
and  scoring.  Traditionally,  the  goal  of  this  step  is  to
identify the binding site and maximize binding affini-
ty, which is employed and ranked in the virtual screen-
ing [12, 13]. However, this usually neglects the impor-
tance of the binding specificity of the drug-target sys-
tem [14-18]. For instance, a drug is intended to selec-
tively bind to its biological target (on-target effect) and
avoid side effects by binding to unintended targets (of-
f-target effect). In principle, binding specificity refers
to how selectively a drug candidate binds to its intend-
ed  target  compared  to  all  other  potential  targets.  In
practice, the implementation is impossible both compu-
tationally  and  experimentally  because  the  targets  are
not all known, and the task is huge even if all the tar-
gets  are  available.  This  demands  the  development  of
strategies to address the quantification of binding speci-
ficity. The issue is illustrated through a thought experi-
ment in which shuffling the target sequences is analo-
gous to randomizing the binding sites across the entire
surface of the target protein (Fig. 1) [14, 15, 19, 20].
This shifts the concept of binding specificity from the
conventional approach. In the conventional approach,
a compound identifies a specific protein among all pos-
sible protein targets. Instead, the intrinsic binding speci-
ficity refers to a compound identifying a specific bind-
ing  site  (or  pocket)  on  the  target  protein.  In  other
words,  intrinsic  binding specificity  focuses  solely  on
the interaction between the compound and the known

protein target rather than the protein universe. There-
fore, intrinsic binding specificity merely involves the
optimization of the interactions between the compound
and the known protein target.

Naturally occurring proteins have been evolved to
minimize energetic conflicts in balancing structural sta-
bility and functional binding. Besides being optimized
for folding, proteins have evolved primarily for functio-
nal binding, often leading to a trade-off where stability
and function may conflict [21-25]. Even if the protein
is  completely  folded,  not  all  conflicting  interactions
have  been  minimized  [26,  27].  This  results  in  native
proteins being marginally stable, with regions of flexi-
bility and frustration that are crucial for their biologi-
cal functions [28-31]. It has been demonstrated that th-
ese locally frustrated regions generally correspond to
functionally important areas, such as active sites and re-
gions involved in conformational changes. Identifying
these frustrated regions cannot only help in understand-
ing how a protein performs its biological function and
how it interacts with other molecules but also provide
potential binding sites for drugs [32-34]. By recogniz-
ing  these  regions,  researchers  can  design  molecules
that  alleviate  frustration  by  binding  to  these  patches,
thereby stabilizing the protein-ligand complex and po-
tentially increasing the binding specificity. This review
attempts to introduce the principles and strategies for
computationally  quantifying  the  binding  specificity
and local frustrations, as well as their applications in
structure-based  drug  discovery.  Furthermore,  this  re-
view outlines potential future developments in utiliz-
ing binding specificity and local frustration in drug dis-
covery.

Fig. (1). Thought experiment on the equivalence of conventional and intrinsic binding specificity for protein-ligand binding.
Conventional binding specificity refers to the ligand (red) binding onto the intended protein target rather than all other possible
proteins (purple), while intrinsic binding specificity refers to the ligand binding onto the intended binding site rather than all
other binding sites (green); they are equivalent if the protein is large enough compared to the ligand. (A higher resolution /
colour version of this figure is available in the electronic copy of the article).
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2. METHODOLOGY
The reviewed literature was searched from Google

Scholar, ScienceDirect, and Web of Science. The key-
words used for searching were “biomolecular recogni-
tion”, “binding specificity”, “local frustration”, “drug
screening”, “binding site”, “cryptic site”, “energy func-
tion”,  “multi-state  conformations,”  and  the  combina-
tion of them. The searched literature was included if it
met  the  following  criteria.  First,  the  published  or  re-
leased year should be between 2000 and 2025, except
for the original literature on the funneled energy lands-
cape of protein folding. Second, the written language
is  English  only.  Third,  the  literature  irrelevant  to  the
topics  of  binding  specificity  and  local  frustration,  as
well as drug discovery, was manually disregarded.

In addition, the web server for computing local frus-
trations (Frustrometer server) was searched on Google
by using the keyword “frustration calculation”. The da-
ta for drawing the figures were obtained from the corre-
sponding literature reviewed.

3. INTRINSIC SPECIFICITY OF BIOMOLECU-
LAR BINDING

3.1. Quantification of Intrinsic Binding Specificity
for Protein-ligand Interactions

The quantification of the intrinsic binding specifici-
ty was carried out by applying the well-established en-
ergy  landscape  theory  of  protein-ligand  binding  [14,

15, 19, 20]. According to the theory, specific protein-li-
gand  binding  interactions  adhere  to  the  principle  of
minimal  frustration,  which  leads  to  funnelled  energy
landscape (Fig. 2). According to the principle, the con-
flicted interactions in the specific protein-ligand bind-
ing  should  be  minimally  frustrated  to  enable  high
affinity and specificity, i.e., the energetic conflicts or
unfavorable interactions are minimized once the pro-
tein and ligand bind together. A dimensionless parame-
ter was derived to quantify the funnelness of the ener-
gy  landscape  of  protein-ligand  binding  [14,  15,  19,
20],  which  is  computed  using  Eq.  1:

 

(1)

 
Λ can be readily quantified by computationally gen-

erating an ensemble of binding decoys. δE is the ener-
gy gap between the energy of the native binding confor-
mation and the average energy of the decoy conforma-
tion ensemble, and ΔE is the energy roughness or the
width  of  the  Gaussian-like  energy  distribution  of  the
conformation ensemble (Fig. 2), KB  is the Boltzmann
constant,  and  S  is  the  conformational  entropy  of  the
system. Larger Λ means higher binding specificity. Λ
can  be  used  as  a  quantitative  global  specificity  mea-
sure for biomolecular binding.

Fig. (2). Quantification of binding specificity. Binding energy landscape with a funneled shape towards the “native” state, with
the corresponding distribution of binding energies, including the roughness or standard deviation of energy (ΔE), the average
energy of decoys (< ED >), and the energy gap (δE). (A higher resolution / colour version of this figure is available in the elec-
tronic copy of the article).
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3.2.  Two-dimensional  Drug  Screening  with  Both
Specificity and Affinity

An ideal  target-based drug is  designed to  achieve
both high affinity and specificity for its target within
the crowded cellular environment. Affinity determines
the stability of the drug-target complex, while specifici-
ty ensures the drug’s ability to selectively bind to its in-
tended target over other competing biomolecules and
to  differentiate  itself  from  other  small  molecules
[14-19]. Traditional virtual drug screening methods of-
ten focus solely on ranking binding affinity, overlook-
ing  the  crucial  role  of  binding  specificity.  The  igno-
rance of binding specificity may contribute significant-
ly to the drug’s side effects.

To emphasize the critical role of binding specifici-
ty, a two-dimensional drug screening strategy has been
proposed,  which  incorporates  specificity  into  the
screening process [14, 15, 19]. This approach has been

computationally validated in the drug-cyclooxygenase
(COX) system. Traditional nonsteroidal anti-inflamma-
tory drugs (NSAIDs) are considered nonselective be-
cause they inhibit  both COX-1 and COX-2 enzymes.
While the inhibition of COX-2 accounts for the anti-in-
flammatory  effects  of  NSAIDs,  the  inhibition  of
COX-1  can  lead  to  toxicity  and  side  effects,  such  as
peptic ulceration. Therefore, COX-1 inhibition is often
undesirable,  whereas  COX-2  inhibition  is  intended.
COX-2  selective  drugs  represent  a  newer  class  of
NSAIDs  that  specifically  inhibit  COX-2,  allowing
COX-1 to perform its essential functions. These drugs
serve  as  selective  pain  relievers  and  fever  reducers
without  the  associated  side  effects  of  traditional
NSAIDs [35]. COX-2 and COX-1 are isoenzymes that
compete  for  binding  with  small  molecules  (Fig.  3a).
For testing the screening performance of a two-dimen-
sional  drug  screening  strategy  [15,  19],  37  selective
and 20 non-selective drugs were   manually   collected

Fig. (3). Two-dimensional drug screening test on the drug-COX system. (a) The aligned structures of COX2 (green, PDB ID:
1CX2) and COX-1 (purple, PDB ID: 1Q4G) with a selective drug (SC-558) inside the pocket (red); (b) the Kolmogorov-S-
mirnov statistic (KS statistic) of discrimination between COX-2 and COX-1 when binding with selective drugs of COX-2; (c)
KS statistic of discrimination between selective drugs and nonselective drugs upon binding with COX-2. The data for drawing
is taken from the literature [19]. (A higher resolution / colour version of this figure is available in the electronic copy of the ar-
ticle).
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from the published literature. Kolmogorov-Smirnov (K-
S) test was carried out to quantify the discrimination of
COX-2  (PDB  ID:  1CX2)  against  COX-1  (PDB  ID:
1Q4G) when binding with selective drugs and the dis-
crimination  of  selective  drugs  against  non-selective
drugs upon binding with COX-2. It has been demons-
trated that the two-dimensional drug screening strategy
is more effective than affinity-based methods alone in
distinguishing  between  selective  and  nonselective
COX-2 drugs (Fig. 3c) [15, 19].  Additionally, it  pro-
vides a greater ability to differentiate between COX-2
and COX-1 binding of selective drugs (Fig. 3b).  The
enhanced  discriminatory  power  of  two-dimensional
screening would improve the identification of selective
drugs and increase the hit rate of lead compounds from
compound libraries.

3.3. Scoring Function Development with Both Speci-
ficity and Affinity

The  scoring  function  is  central  to  structure-based
virtual database screening [36, 37]. Recently, AI-based
AlphaFold3 has  revolutionized the  prediction of  bio-
molecular  interactions  [38],  significantly  improving
the  structure  quality  of  predicted  binding  complexes
and greatly enhancing docking capabilities. However,
the  higher  prediction  accuracy  of  structural  models
does  not  necessarily  translate  to  increased scoring or
discriminatory power in distinguishing specific bind-
ing complexes from competing ones [39, 40]. Previous
studies have attempted to incorporate binding specifici-
ty into the development of scoring functions, resulting
in an approach known as SPA (SPecificity and Affini-
ty) [15, 41-45]. The concept of SPA is that maximizing
intrinsic binding specificity involves globally minimiz-
ing  the  frustrations  present  in  biomolecular  interac-
tions. SPA has demonstrated superior scoring and dis-
criminatory power compared to widely used academic
and industrial scoring functions [15, 41-45]. This devel-
opment strategy establishes a framework for optimiz-
ing scoring functions by integrating ligand binding spe-
cificity.

4.  LOCAL  FRUSTRATION  OF  BIOMOLECU-
LAR INTERACTIONS

4.1. Quantification of Local Frustration
Strong, energetic conflicts are generally minimized

in folded native states, allowing protein sequences to
spontaneously fold according to the principle of mini-
mal frustration [46-48]. The principle of minimal frus-
tration  guarantees  the  funneled  energy  landscape  of
protein  folding.  However,  local  deviations  from  this
principle are necessary to encode the complex energy

landscapes  required  for  active  biological  functions
[28-31]. Achieving minimal frustration across the en-
tire  structure  often  results  in  localized  frustration  in
specific regions of a protein, where the interactions be-
tween  amino  acids  are  not  fully  energetically  mini-
mized.  These frustrated regions are  crucial  for  main-
taining  functional  flexibility  and  can  be  compatible
with ligand binding. For instance, residues in or near
the binding site may experience energetic conflicts that
are  relieved  and  minimally  frustrated  upon  ligand
recognition.

Quantifying local frustration has proven to be an ef-
fective method for identifying these functionally impor-
tant regions within a protein’s structure. Local frustra-
tion can be assessed in three ways: configurational frus-
tration and mutational frustration for the contact, and
mutational frustration for the position [49]. The frustra-
tion index Fi for a residue position or contact i is calcu-
lated using Eq. 2:

 

(2)

 

Where   is  the  “native”  energy of  residue  posi-
tion or contact i, and  is the reference energy of the
same residue position or contact, obtained by scuffling
the amino acids or local environment M times. In this
manner, the individual position or contact can be rough-
ly classified as being either minimally frustrated, high-
ly frustrated, or neutrally frustrated with regard to their
frustration  level.  For  example,  a  residue  position  or
contact is defined as minimally frustrated if Fi < -0.78,
highly frustrated if Fi > 1.0, and neutrally frustrated if
the values fall between these two limits [49]. The frus-
tration index can be viewed as a localized version of
the global specificity measure Λ for biomolecular bind-
ing [14, 15, 19, 20]. This energy landscape theory-in-
spired algorithm has been developed as a web server
Frustratometer and a package FrustratometerR, which
are both available to quantify the degree of local frus-
tration for proteins [50, 51].

4.2. Identification of Drug-binding Sites with Local
Frustration

Studies have reported that enzyme-active sites and
regions responsible for conformational changes are of-
ten enriched with highly frustrated interactions [29-32,
49]. By analysing the frustration indices with or with-
out the binding of substrate, it is straightforward to de-
termine  whether  the  conflict  of  frustrations  is  mini-
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mized upon binding. Drug binding specificity is close-
ly  linked to  minimal  frustration,  which  discriminates
frustrated interactions. Selective drugs tend to bind ef-
fectively to frustrated pockets in protein targets that be-
come minimally frustrated upon binding [33]. Conse-
quently, local frustration indices are valuable for identi-
fying  potential  ligand-binding  sites  and  assessing
whether a binding site for a specific drug will become
minimally frustrated or remain frustrated after binding.
If the site still remains frustrated after binding, then the
protein may undergo structural rearrangements, or the
drug  may  change  its  configuration  and  orientation,
which potentially leads to side effects. Frustration anal-
ysis  thus  offers  a  promising  approach  for  screening
more specific compounds in drug discovery. Based on
the identification of binding sites with local frustration
patterns in the unbound protein structures, a protein-li-
gand binding site predictor, FrustraPocket, has been re-
cently developed using a machine learning algorithm
[34]. Its package link is https://github.com/CamilaCle-
mente/FrustraPocket.  An  example  of  ligand  binding
site prediction with mutational frustration through Frus-
traPocket is shown in Fig. (4).

5. FUTURE OUTLOOK

5.1. Protein Dynamics Enhances Prediction of Bind-
ing Specificity

The quantification of binding specificity discussed
above is generally based on the static structures. Pro-
teins actually are not static; they exhibit conformation-
al flexibility that allows them to adapt to different subs-
trates [52, 53]. Proteins often interconvert between dif-
ferent conformations that are either in dynamic equilib-
rium or triggered by ligand binding. For example, con-
formational  changes  can  help  proteins  fit  precisely
around a ligand (induced fit) or select the optimal con-
formation for binding (conformation selection), there-
by affecting the specificity of the interaction [54, 55].
The dynamic conformational change ultimately allows
proteins to perform their biological functions by adapt-
ing the ligands. Advances in molecular dynamics simu-
lation algorithms and experimental techniques, as well
as  the  integration  of  AI  and  the  energy  landscape
[55-60], have led to the increasing availability of multi-
-state structures and their motions, providing more op-
portunities to describe the mechanisms of specific bind-
ing and develop specific inhibitors.

Fig. (4). Example of ligand binding site prediction by FrustraPocket. The protein is ATP-dependent DNA ligase (PDB ID:
1A0I). Four predicted binding sites are shown in different colors, and the ligand ATP is shown using the sticks. The data for
drawing is obtained from the link: https://github.com/CamilaClemente/FrustraPocket/ [34]. (A higher resolution / colour ver-
sion of this figure is available in the electronic copy of the article).
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5.2. Detecting Cryptic Binding Site of Undruggable
Target with Local Frustration

The number of biologically validated drug targets
for complex diseases has considerably increased due to
the rise in genomics and proteomics [61, 62]. Howev-
er,  undruggable  protein  targets  are  also  discovered
with few characteristics of conventional druggable tar-
gets.  The  term  undruggable  refers  to  target  proteins
whose  functional  interfaces  are  flat  and  lack  defined
pockets for ligand interaction, making classic drug dis-
covery strategies facing a challenge [63, 64]. For this
reason, significant efforts were put toward alternative
strategies, including identifying allosteric ligands and
characterizing  hidden  (cryptic)  allosteric  pockets
[65-67]. A typical example of an undruggable target is
KRAS, one of the most frequently mutated oncogenes,
for which an allosteric inhibitor has recently been ap-
proved by the FDA [68, 69].

Conventional approaches to predict ligand binding
sites are generally based on the geometric definition of
the  protein’s  pocket  [70,  71].  However,  the  pockets
identified with geometric means are often large, which
could neglect the cryptic sites. This challenge could be
alleviated by detecting the sites with local frustration,
which combines geometric and energetic characteris-
tics [34]. Studies have reported that protein structural
fluctuations often lead to the formation of cryptic pock-
ets,  which  could  present  druggable  sites  for  undrug-
gable targets [72, 73]. This matches the predictive pow-
er of local frustration since the regions with highly frus-
trated interactions tend to be flexible and change con-
formation [32]. Thus, targeting those sites detected by
local frustration could provide a number of compelling
opportunities for drug discovery.

5.3. AI-Powered Drug Discovery with Binding Spe-
cificity and Local Frustration

As  AI  continues  to  evolve  rapidly,  it  holds  great
promise for advancing the prediction of binding speci-
ficity and ligand binding sites. Traditional methods for
predicting binding specificity often rely on static struc-
tures, which ignores the dynamic nature of protein-li-
gand interactions. However, AI-driven models can inte-
grate vast datasets,  including structural and sequence
information as well  as  biophysical  principles,  to pre-
dict binding specificity with higher accuracy. For ex-
ample, by feeding Alphafold2 with similarity-clustered
sequences or highly frustrated sequences, researchers
can  predict  multi-state  structures  and  dynamic  path-
ways [59, 74]. This provides opportunities for refining
the binding specificity of protein-ligand complex with
only the static structure. Also, by learning features of

local frustration from known binding sites, FrustraPoc-
ket can identify potential protein-ligand binding sites
only from the unbound forms. Moreover, the calcula-
tions  of  binding  specificity  and  local  frustration  are
contingent upon the precision of the interaction poten-
tials  between  atoms  or  residues.  AI-based  potentials
have not only demonstrated greater accuracy but also
exhibited  a  significantly  faster  computing  speed
[75-77]. Given the advancements in the integration of
AI and traditional approaches in quantifying the bind-
ing specificity and local frustration, it is reasonable to
expect that an AI-powered prediction model will accel-
erate the drug discovery process and improve the suc-
cess rate.

CONCLUSION
Funneled energy landscape theory has proven suc-

cessful in explaining the thermodynamics and kinetics
of biomolecules, such as the processes of protein fold-
ing and binding. In light of the minimal frustration prin-
ciple  of  the  theory,  the  global  binding  specificity  of
protein-ligand interactions and local frustration index
across  the  whole  protein  structure  can  be  quantified
computationally.  This  provides  potential  promises  in
developing algorithms for computer-aided drug discov-
ery. Traditional strategies of drug discovery, both in sil-
ico  and  in  vitro,  mainly  concentrated  on  the  binding
affinities  as  the screening criteria.  In this  review, we
have introduced the development of another screening
criteria in silico, i.e., quantified binding specificity, for
structure-based drug screening. With the incorporation
of binding specificity, two-dimensional drug screening
strategies were proposed and validated. Further, we re-
viewed  algorithms  for  the  identification  of  binding
sites with quantified local frustrations. The local frus-
tration indexes were found to be effective in discover-
ing the drug-binding sites on the protein surface.

This  review proposes  three  potential  directions  to
further improve the accuracy of these algorithms and
enhance their applications in structure-based drug dis-
covery. Firstly, the growing accessibility of multi-state
structures and their dynamic motions offers greater op-
portunities  to  elucidate  the  mechanisms  of  specific
binding. This, in turn, provides more avenues for the
development of highly specific inhibitors with binding
specificity analysis.  Secondly,  targeting binding sites
identified through local frustration analysis presents a
wealth of promising opportunities for uncovering cryp-
tic ligand-binding sites. These cryptic sites could serve
as druggable sites for undruggable targets. Thirdly, AI
algorithms  can  analyze  vast  amounts  of  data  quickly
and identify patterns that might be overlooked by tradi-
tional methods. In addition, AI-based potentials have
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demonstrated  advantages  in  accuracy  and  computing
speed. We expect that this review will motivate more
integrations of these algorithms with the latest AI ad-
vances, thereby improving the success rate of hit com-
pounds.
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