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Abstract: Existing evidence indicates that environmental factors might contribute up to
50% of the variance in autism spectrum disorder (ASD) risk. This structured narrative re-
view offers a comprehensive synthesis of current knowledge on environmental risk fac-
tors  in  ASD,  including  evaluation  of  conflicting  evidence,  exploration  of  underlying
mechanisms, and suggestions for future research directions. Analysis of diverse epidemi-
ological investigations indicates that certain environmental factors, including advanced
parental age, preterm birth, delivery complications, and exposure to toxic metals, drugs,
air pollutants, and endocrine-disrupting chemicals, are linked to an increased ASD risk
through various mechanisms such as oxidative stress,  inflammation,  hypoxia,  and its
consequences, changes in neurotransmitters, disruption of signaling pathways and some
others. On the other hand, pregnancy-related factors such as maternal diabetes, maternal
obesity, and caesarian section show a weaker association with ASD risk. At the same
time, other environmental factors, such as vaccination, maternal smoking, or alcohol con-
sumption, are not linked to the risk of ASD. Regarding nutritional elements data are in-
conclusive. These findings highlight the significance of environmental factors in ASD
etiology and emphasize that more focused research is needed to target the risk factors of
ASD. Environmental interventions targeting modifiable risk factors might offer promis-
ing avenues for ASD prevention and treatment.
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1. INTRODUCTION
Autism spectrum disorder (ASD) is a neurodevelop-

mental disorder that can significantly impair social, be-
havioral, and communication domains. ASD is charac-
terized  by  deficits  in  three  main  domains:  (1)  verbal
and nonverbal  communication,  (2)  social  interaction,
and (3) restricted and repetitive behaviors and interests
[1]. In 1943, Austrian-American psychiatrist Leo Kann-
er (1894-1981) first described autism as an innate ina-
bility to establish natural emotional connections with
others [1].

In 1983, the Diagnostic and Statistical Manual (DS-
M) did not include Asperger's syndrome or pervasive
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developmental  disorder-not  otherwise  specified  (PD-
D-NOS),  and  autistic  disorder  had  a  more  restrictive
criterion. The DSM-IV included Asperger's Syndrome,
autistic disorder, PDD-NOS, and childhood disintegra-
tive disorder, which resulted in inconsistent diagnoses.
Recognizing that there is still much to learn, the new
DSM-5  edition  consolidated  the  four  previous  disor-
ders  into  one  diagnosis,  ASD [2].  The  DSM-5 intro-
duced a change in which the criteria for social and com-
munication deficits were merged into a single domain,
and  it  also  introduced  a  rating  of  severity.  Further-
more,  the  DSM-5 introduced a  new diagnosis,  social
communication disorder, separate from ASD [2].

Individuals with ASD commonly experience impair-
ments in intellectual functioning, with approximately
30% of cases also exhibiting intellectual disability [3].
Attention deficits are also frequently observed, occur-
ring in about 30-40% of cases, along with sensory sen-
sitivities, gastrointestinal problems, anxiety, sleep dis-
turbances,  depression,  immune deficits,  and  other  is-
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sues [4, 5]. Furthermore, up to 15% of cases may be as-
sociated with genetic abnormalities such as fragile X
syndrome, Timothy syndrome, and tuberous sclerosis
[6].

Symptoms of ASD typically start to appear by age
three,  although  they  may  not  be  fully  present  until
school or later age. Some research has suggested that
symptoms can be detected as early as six to 18 months
of age [7]. However, milder cases are less likely to be
identified  and  diagnosed  younger  than  severe  cases
[8].

Early intervention is essential in promoting healthy
development and optimizing the potential benefits for
people with ASD throughout their lifespan. While ex-
tensive  research  has  been conducted  on  the  disorder,
the  etiological  factors  of  ASD  are  not  fully  unders-
tood—however, significant progress in the identifica-
tion of some of this condition's genetic and neurobio-
logical foundations. ASD has been found to have her-
itability, with environmental factors also playing an im-
portant role [9, 10].

This review aims to provide an overview of the ma-
jor environmental risk factors linked to ASD. Through
synthesizing  relevant  research  findings,  the  paper
seeks to increase the understanding of potential causes
and contributing factors to ASD development. By high-
lighting the key environmental risk factors, the review
may help inform future research and interventions to
prevent or manage ASD.

2. ASD PREVALENCE AND DEMOGRAPHICS
According to a paper that systematically reviewed

studies  published from 2012 to  2021,  the  global  me-
dian ASD prevalence in children is 1% [11]. However,
the reported figure may not accurately reflect the true
prevalence of ASD in low- and middle-income coun-
tries, which suggests that the actual prevalence might
be underestimated. A study performed in South Korea
in 2011 reported a prevalence rate of 2.6 percent [12].

ASD is  a  condition  that  impacts  individuals  from
all ethnic and socioeconomic backgrounds [13]. Males
are affected by ASD about four times more often than
females, although this sex ratio decreases as the severi-
ty of the disorder increases [14]. However, this statistic
does not  consider  the presence of  ASD in gender-di-
verse populations, which have a higher prevalence of
ASD.  Minority  groups  are  often  diagnosed  later  and
less frequently [13, 15].

In  2016,  data  collected  by the  CDC's  Autism and
Developmental Disabilities Monitoring (ADDM) Net-
work indicated that about one in 54 US children (one

in 34 boys and one in 144 girls) had an ASD diagnosis.
This represents a ten percent rise from the rate of one
in 59 reported in 2014, a 105 percent rise from one in
110 in 2006, and a 176 percent rise from one in 150 in
2000 [16]. According to the last update by the CDC’s
ADDM Network one in 36 (2.8%) 8-year-old children
has been diagnosed with ASD. These most recent statis-
tics  surpass  the  findings  of  2018  which  was  1  in  44
(2.3%) [17]. However, comparing rates of autism over
the past few decades is challenging because of changes
in  the  diagnostic  ASD  criteria  outlined  in  the  DSM.
During  the  last  decade,  milder  ASD  cases  have  in-
creased  most  in  the  estimates  of  CDC,  while  less
change  has  been  seen  in  the  ASD  prevalence  along
with intellectual disability [18].

3. ECONOMIC BURDEN OF ASD IN THE UNIT-
ED STATES

ASD imposes a substantial economic burden on the
United States, with most costs attributed to adult ser-
vices. Estimates from 2014 show that adult services for
ASD  range  from  USD  175  to  USD  196  billion  per
year, three times higher than that for neurotypical chil-
dren, from USD 61 to USD 66 billion per year [19]. Th-
ese high costs can be attributed to the need for special-
ized services and therapies, increased healthcare utiliza-
tion,  and  long-term  care  and  support  for  individuals
with ASD throughout their lifespan.

ASD is not just a childhood condition [20]; it  has
lifelong  impairments  and  associated  comorbidities
such  as  injury  [21]  and  increased  mortality  risk  [22,
23]. Medical expenditures for children and adolescents
with ASD are 4.1 to 6.2 times bigger than those with-
out  ASD  [24].  Addressing  the  economic  burden  of
ASD requires a comprehensive approach that involves
early intervention, improved access to services, and in-
creased research to identify effective treatments and in-
terventions.

Mothers  of  children  with  ASD  often  take  on  the
role  of  case  manager  and  advocate  for  their  child,
which makes it less likely for them to work outside the
home. Compared to mothers of children with no health
limitations, these mothers work fewer hours per week
and earn 56 percent  less.  Furthermore,  they make 35
percent less than mothers of children with other disabil-
ities or disorders [25].

In 2015, the estimated direct and indirect costs of
providing care for individuals with ASD in the United
States were USD 268.3 billion, exceeding the costs of
stroke  and  hypertension.  These  costs  include  educa-
tion,  healthcare,  and  other  lifelong  services,  ranging
from USD 1.4 million to USD 2.4 million per year per
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Fig. (1). Interplay of autism spectrum disorder’s risk factors. (A higher resolution / colour version of this figure is available in
the electronic copy of the article).

individual with ASD [26]. Such high costs have signifi-
cant economic impacts and necessitate bigger invest-
ments  in  effective  interventions  and  support  systems
for individuals with ASD and their families.

4. ENVIRONMENTAL RISK FACTORS
Some studies suggest that genetic and non-genetic

factors contribute to ASD approximately equally [27].
Although  genetics  contribute  to  ASD,  the  genetic
heterogeneity and phenotypic of the disorder support a
multifactorial  etiology  (Fig.  1).  Identifying  environ-
mental  risk  factors  is  particularly  important  because
they are potentially preventable, unlike genetic ones.

5.  PRENATAL, PERINATAL, AND NEONATAL
FACTORS

There have been identified over 20 factors that oc-
cur  before,  during,  and  shortly  after  birth  linked  to
ASD  risk  [28-31].

6. PRENATAL RISK FACTORS
Prenatal risk factors that have been consistently as-

sociated with ASD include parental age, interpregnan-
cy interval, immune factors (such as autoimmune dis-
eases and infections during pregnancy), medication use

(especially  antidepressants,  anti-asthmatics,  and  an-
ti-epileptics),  maternal  metabolic  conditions  (such  as
diabetes,  gestational  weight  gain,  and  hypertension),
and maternal dietary factors (such as folic acid and re-
lated nutrients use, maternal iron (Fe) intake, maternal
vitamin D levels, and polyunsaturated fatty acid (PU-
FA) intake).

6.1. Parental Age
Advanced maternal and paternal age are consistent

prenatal  risk  factors  for  ASD [28,  32,  33]  (Table  1).
Meta-analyses by Wu et al. indicate that every 10-year
increase in maternal and paternal age raises the risk of
ASD in  the  offspring  by  18% and  21%,  respectively
[34].  The  risk  of  ASD  varied  depending  on  parental
age combinations, with the highest risk when both par-
ents  were older  [35,  36].  Studies  in  humans and ani-
mals  support  the  hypothesis  that  de  novo  mutations
contribute to the association between paternal age and
ASD while advancing maternal age is associated with
chromosomal changes and genomic modifications. Pos-
sible  mechanisms  underlying  these  associations  in-
clude epigenetic modification, pregnancy risks associat-
ed with age,  and social  factors  influencing reproduc-
tive age [35].



2348   Current Medicinal Chemistry, 2024, Vol. 31, No. 17 Yenkoyan et al.

6.2. Interpregnancy Interval
Numerous studies have reported an increased ASD

risk  with  both  short  (<12  months)  and  long  (>60-84
months)  interpregnancy  intervals  (IPIs),  while  an  in-
verse,  linear  relationship  between  IPI  and  observed
ASD  risk  [36-42]  (Table  1).  Research  has  shown  a
two-fold  or  three-fold  increase  in  ASD  risk  for  se-
cond-born children when IPIs are less than 12 months
compared to those with 36 months. Short and long IPIs
are also associated with perinatal  complications such
as preterm birth and low birth weight, which are risk
factors for  ASD. The underlying mechanisms for the
association between ASD and short and long IPIs may
differ, with maternal nutrient depletion, stress, infertili-
ty,  and  inflammation  being  possible  mechanisms  for
short IPIs. In contrast, infertility and related complica-
tions may be potential mechanisms for long IPIs [43].

6.3. Immunological Factors
Several  studies  have  linked  maternal  hospitaliza-

tion  due  to  infection  during  pregnancy  with  an  in-
creased ASD risk, including a large study of over two
million individuals who reported an elevated risk asso-
ciated  with  both  viral  and  bacterial  infections  during
the  prenatal  period  [44,  45]  (Table  1).  Previous  re-
search has shown that viral infections during the prena-
tal period can initiate ASD in some children. Cases of
ASD  have  been  reported  following  exposure  to
measles, rubella, and mumps during gestation, as well
as perinatal herpes simplex virus, congenital cytome-
galovirus, and congenital rubella infections. The study
results are consistent with animal models showing ma-
ternal immune system activation leading to phenotypes
resembling autism in their offspring [46]. Furthermore,
maternal antibodies from viruses or bacteria can pass
through  the  placenta,  leading  to  disturbances  in  fetal
neurodevelopment  via  molecular  mimicry  [47].
Studies have also reported that  ASD-associated copy
number variations (CNVs) modify the prenatal expo-
sure effect [48].

Increased risk of ASD linked to a familial history
of autoimmune disease [49, 50]. Maternal autoimmune
reactions  and  immune-mediated  conditions  [45,  51]
can also impact the risk of ASD through antibody trans-
fer and the impact of immune markers on the develop-
ing nervous system (Table 1). Maternal anti-fetal brain
antibodies were reported in some ASD cases in several
small-sample studies,  with no antibodies  observed in
controls [52].

Studies examining biomarkers have found an elevat-
ed ASD risk associated with changes in C-reactive pro-
tein  (CRP),  interferon-gamma  (IFN-γ),  interleukin-4
(IL-4), and interleukin-5 (IL-5) levels in maternal sera

[53,  54].  In  contrast,  the  estimated levels  of  immune
markers in newborn blood are more inconsistent [55,
56]. However, the methodological limitations of these
studies, including high correlation among variables, in-
dicate the need for further research.

6.4. Medication Use
Historically,  exposure  to  teratogenic  medications

has  been  associated  with  an  increased  risk  of  ASD
[57]. However, other studies have indicated that expo-
sure to  antidepressants,  anti-epileptics,  and anti-asth-
matics  (i.e.,  β-2  adrenergic  receptor  agonists)  during
prenatal development poses a risk (Table 1). Although
these  drugs  possess  different  pharmacological  activi-
ties, they can cross the blood-brain barrier and the pla-
centa and be transmitted to the child via breastfeeding.
Animal models have provided evidence of neurologi-
cal effects in prenatally exposed offspring [58, 59].

The  investigations  have  mainly  focused  on  selec-
tive  serotonin  reuptake  inhibitors  (SSRIs),  which  are
commonly prescribed as antidepressants. Still, the evi-
dence conflicts with some studies reporting an elevated
risk of ASD, while others say there is no association.
Conversely,  several  studies  of  anti-epileptics  [60-62]
and β-2 adrenergic receptor agonists [63] have consis-
tently reported autistic traits or elevated ASD risk [60,
62].

7. PERINATAL AND NEONATAL FACTORS
Much evidence suggests that various perinatal fac-

tors are associated with an increased risk of ASD. Th-
ese  factors  include  lower  gestational  age  or  preterm
birth [64-66], gestational small or large size [64, 66],
maternal metabolic conditions such as diabetes, gesta-
tional weight gain, hypertension, and the use of labor
and delivery drugs.

Gestational age, especially early gestational age, is
associated with adverse health outcomes, including de-
velopmental delays and later intellectual impairments
in  childhood and adolescence.  It  has  been associated
with  various  cognitive  and  psychiatric  difficulties  in
children, including speech and language problems, at-
tention problems, social  problems, hyperactivity,  and
learning disabilities. Low birth weight is a likely indica-
tor of fetal growth problems.

Maternal metabolic conditions such as diabetes, ges-
tational  weight  gain,  and  hypertension  have  been
linked to mechanisms relevant to ASD, such as oxida-
tive  stress,  fetal  hypoxia,  and  chronic  inflammation
(Table  1)  [67-72].  These  conditions  can  lead  to  pro-
longed or acute hypoxia in the fetus, which may be a
significant  risk factor for neurodevelopmental  distur-
bances.
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Table 1. Summary of prenatal, perinatal, and neonatal risk factors associated with ASD.

Prenatal Risk Factors Perinatal and Neonatal Risk Factors
Parental age Lower gestational age/preterm birth
Interpregnancy interval Small or large size of gestation
Immune factors (bacterial and viral infection during pregnancy, autoimmune diseases) Cesarean delivery
Medication use (antidepressants, anti-asthmatics, anti-epileptics) Assisted labor
Maternal dietary factors (folic acid and related nutrients, prenatal maternal iron intake, prenatal ma-
ternal vitamin D levels, prenatal polyunsaturated fatty acid intake)

Labor and delivery drugs

Maternal metabolic conditions (diabetes, gestational weight gain, hypertension) Assisted conception
Maternal lifestyle factors (alcohol, smoking) -

Recent studies have also suggested a possible asso-
ciation between the use of labor and delivery drugs and
the development of ASD [71, 73], particularly with the
increased rates of epidurals and labor-inducing medica-
tions in the past 30 years [72]. However, some studies
contradict such findings and suggest no association be-
tween using labor-inducing drugs and the risk of devel-
oping ASD [57, 71].

The risk of ASD with cesarean delivery is a topic
of ongoing debate [74, 75]. While a meta-analysis of
21 studies showed a little increased risk of ASD with
cesarean delivery [76], a recent animal study demons-
trated  experimentally  that  cesarean  delivery  induced
ASD-like traits in offspring mice [77]. A multi-nation-
al cohort study of five million births found that emer-
gency or planned cesarean delivery is consistently asso-
ciated with a mildly elevated risk of ASD from gesta-
tional  weeks  36  to  42  compared  to  vaginal  delivery
[78].

Assisted conception overall is not associated with a
significantly increased risk of ASD [79, 80]. However,
some specific treatments may increase the risk of ASD
[81-83], and adequately powered studies are necessary
to examine therapies and separate the influence of in-
fertility  conditions  from the  effect  of  medicine  itself
[84].

Taken together, perinatal factors play a significant
role in the development of ASD. Identifying and man-
aging these factors early on is essential to reduce the
risk  of  neurodevelopmental  disturbances.  Further  re-
search  is  necessary  to  understand  the  complex  inter-
play between perinatal factors and ASD.

8. MATERNAL DIETARY FACTORS
In recent years, there has been growing interest in

examining  the  relationship  between  maternal  dietary
factors during pregnancy and the risk of ASD. Mater-
nal prenatal diet significantly impacts fetal neurodevel-
opment, as established by several studies. For instance,

there  are  well-established  associations  between  folic
acid deficiency, neural tube defects, and other adverse
neurodevelopmental outcomes [85].

Studies have shown that certain minerals and trace
elements, such as zinc [86], magnesium [87], and sele-
nium (Se) [88], are essential for proper fetal brain de-
velopment. Inadequate intake of these nutrients during
pregnancy has been associated with an increased risk
of neurodevelopmental disorders, including ASD. Con-
versely, excessive maternal intake of certain nutrients,
such  as  Fe  [89]  and  copper  [86,  89],  has  also  been
linked to an increased risk of ASD in offspring. This
highlights the importance of maintaining a balance of
essential nutrients during pregnancy to ensure optimal
fetal brain development.

8.1. Prenatal Vitamins and ASD
The role of prenatal vitamins in reducing the risk of

ASD  has  been  investigated  in  several  studies.  Two
studies  in  the  United  States  and  Norway  reported  a
nearly 40% decline in ASD risk associated with prena-
tal vitamin use [90, 91]. The US study also found a sig-
nificant decrease in ASD risk with increasing mean dai-
ly folic acid intake [92]. However, a study conducted
in Denmark did not find any association between pre--
conceptional  and  prenatal  folic  acid  or  multivitamin
use  and  ASD  [93].  One  study  that  measured  folate
blood  concentrations  during  pregnancy  (at  11-21
weeks gestation) found no association with ASD traits.
It is important to note that differences in folate levels
and fortification practices across countries [94], genet-
ic mechanisms that affect the carbon pathway [91], and
the  timing  of  exposure  assessments  may  account  for
discrepancies in findings.

One study suggested that  attention deficits,  rather
than ASD, were associated with lower prenatal mater-
nal  vitamin  D  levels  [95]  (Table  1).  According  to
Zhong et al. (2020), adequate prenatal intake of folic
acid and vitamin D were each associated with a lower
possibility of having offspring with ASD [96]. Saad et
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al. (2015) conducted a cross-sectional analysis on 122
Egyptian ASD children to assess their vitamin D status
and the relationship between vitamin D deficiency and
autism severity. 57% of the patients had vitamin D defi-
ciency. Lower vitamin D levels were associated with
severe  autism  and  vitamin  D  supplementation  im-
proved outcomes in 80.72% of participants in an open-
label  trial  [97].  El-Ansary  et  al.  (2018)  analyzed  28
Saudi males with ASD for the correlation between vita-
min D levels, inflammation/oxidative stress biomark-
ers, and ASD presence/severity. The study discovered
that Saudi ASD children had lower vitamin D and high-
er hs-CRP/8-OH-dG levels than neurotypical controls.
CYP1B1  and  25(OH)D3  biomarkers  correlated  with
ASD severity on the Childhood Autism Rating Scale
(CARS), and all four biomarkers displayed good sensi-
tivity and specificity for early ASD diagnosis. Howev-
er,  further research is required to validate these find-
ings.

8.2. Polyunsaturated Fatty Acids
Due to  their  essential  role  in  these  processes,  po-

lyunsaturated fatty acids (PUFAs) are a key area of in-
terest in studying brain development and function. Spe-
cifically,  both  omega-3  and  omega-6  PUFAs  have
been extensively researched in this area. Maternal fish
intake  is  a  source  of  PUFAs  and  mercury  (Hg),  a
known neurotoxicant. Lyall et. al (2013) found a signif-
icant decrease in the risk of ASD with higher prospec-
tively  reported  prenatal  PUFA intake  [97]  (Table  1).
Fish oil supplements have not been consistently associ-
ated with ASD, although statistical power was limited
in some studies [90, 98]. Further investigation is neces-
sary to examine all maternal dietary factors using rigor-
ously designed prospective studies.

9. MATERNAL LIFESTYLE FACTORS

9.1. Alcohol and Smoking
Although smoking and alcohol consumption during

pregnancy  are  well-known  to  have  adverse  neonatal
consequences, several studies have reported no associa-
tion between maternal prenatal use of these substances
and ASD risk [99, 100]. Although fewer studies have
been  conducted  regarding  maternal  prenatal  alcohol
consumption,  the  largest  study  found  no  association
[101].  However,  a  recent  meta-analysis  from the  US
found that maternal smoking from six months before
conception  until  delivery  was  persistently  associated
with an increase in autism-related symptoms [102].

Given the current lack of conclusive evidence, it is
difficult to establish a clear association between mater-
nal alcohol consumption or smoking and the develop-

ment of ASD. Therefore, further research is needed to
fully  assess  the  potential  impact  of  these  factors  on
ASD risk.

10. ENVIRONMENTAL CHEMICALS
The  impact  of  environmental  chemicals  on  fetal

neurodevelopment  is  an  area  of  growing  concern.
Many of these chemicals can cross the placenta and the
blood-brain  barrier,  accumulating  in  the  developing
brain and disrupting normal neurodevelopment. Addi-
tionally, certain chemicals can interfere with hormone
or  inflammatory  pathways,  further  exacerbating  the
detrimental  effects  on  neurodevelopment.

In recent years, there has been an increase in epi-
demiological  research investigating the potential  link
between environmental chemicals and ASD risk. Spe-
cifically, research has focused on two main areas: air
pollution and endocrine-disrupting chemicals (EDCs).
By understanding the role that these environmental fac-
tors play in ASD development, it may be possible to de-
velop strategies to minimize their impact and improve
neurodevelopmental outcomes.

Neurodevelopmental  disorders  such  as  ASD  may
be linked to widespread neurotoxicant exposure, and th-
ese  disorders  have  a  male  preponderance  [103].  Re-
search suggests that males may be more vulnerable to
toxic exposures than females due to several factors, in-
cluding a greater neuroinflammatory response and re-
duced vulnerability to oxidative stress in females. Addi-
tionally, females have greater glutathione availability,
sulfate-based detoxification capacity, and neuroprotec-
tive effects from female hormones. The neurotoxicants
that  exhibit  consistent  gender-specific  effects,  with
males  being  more  affected,  include  lead  (Pb),
Thimerosal/ethyl Hg, some organochlorine pesticides,
and air pollution [103].

10.1. Air Pollution
Numerous studies in the United States suggest that

prenatal exposure to air pollution may be a risk factor
for ASD [104-114]. These studies have mainly focused
on air toxics, criteria air pollutants (including nitrogen
dioxide  (NO2),  ozone,  and  particulate  matter  (PM)),
and traffic exposure (Table 2). For example, one study
conducted in Northern California found moderately in-
creased risks of ASD with several metals and chlorinat-
ed solvents [105]. Other studies in several regions have
reported  risks  from  additional  toxicants  such  as  Pb,
Hg,  cadmium  (Cd),  solvents,  methylene  chloride,
styrene,  and diesel  particulate  matter  [106,  107,  109,
112]. Two Californian studies have suggested associa-
tions with criteria air pollutants such as NO2,  PM2.5,



Risk Factors in Autism Spectrum Disorder Current Medicinal Chemistry, 2024, Vol. 31, No. 17   2351

and  PM10 [104,  110].  In  contrast,  studies  conducted
over larger regions in the United States have reported
increased ASD risk with elevated PM10 and PM2.5 ex-
posure [108, 114].

Table 2. Summary of environmental chemicals associat-
ed with ASD*

1. Hazardous air pollutants (solvents, methylene chloride, styrene,
diesel particulate matter, etc.)

2. Criteria air pollutants (nitrogen dioxide, ozone, particulate mat-
ter less than 2.5 or 10 μm in diameter, etc.)

3. Endocrine-disrupting chemicals (organophosphate pesticide,
trans-nonochlor pesticide, organochlorine pesticide, polychlori-
nated biphenyls, etc.)

4. Heavy metals (lead, cadmium, mercury, etc.)

5. Vaccines
Note: * The association between each category and ASD in the studies can-
not be definitively categorized due to data complexities and limitations.

Exposure  assignment  for  these  studies  was  based
on linkages to the Air Now network, which monitors
near-roadway air pollution, focusing on traffic density,
dispersion models, and distance to roadways. Two of
these studies particularly mentioned the third trimester
of pregnancy as the most important exposure window
[105, 114]. One study also found susceptibility to NO2

exposure to be increasingly associated with a genetic
variant  near  the  MET  gene  locus  [115].  However,
studies conducted outside the United States have report-
ed conflicting results. For example, an analysis of four
European birth cohorts found no association between
NO2 exposure and ASD traits [116]. Null results were
also  registered  by  examination  of  the  air  pollu-
tion-autistic traits relationship in a Swedish twin sam-
ple [117]. In contrast, analysis of a large cohort from
Taiwan indicated elevated ASD risk with higher expo-
sures to four pollutants, ozone and NO2 [118].

Several factors could contribute to the discrepancy
in findings on ASD or related traits outside the United
States.  One  possible  explanation  is  that  international
studies often use different assessment methods and ex-
amine  individuals  of  different  ages  than  most  US
studies.  Additionally,  the  correlation  between  social
factors  and  air  pollution  with  ASD  status  might  be
more confounding in US studies, especially those rely-
ing on community-acquired ASD diagnoses.  Further,
although these studies examined similar criteria pollu-
tants,  their  mixture,  and  levels  differ  across  regions
and countries, making the exposures incomparable.

Further studies to better understand the associations
between ASD risk and air pollution are needed [119].
For further investigation, epidemiologic research will
be required to address outcome and exposure measure-
ment  issues  and  potential  residual  confounding.  Re-
searchers should also carefully consider the effects of
mixtures  of  highly  correlated  air  pollutants  and  ex-
amine  windows  of  vulnerability.  In  vivo  and  in  vitro
studies  have  begun  exploring  potential  mechanisms
considering indirect  (i.e.,  oxidative  stress  or  immune
activation) and direct (i.e., small particle deposition in
the  developing  nervous  system)  effects.  Finally,  one
study suggests that prenatal air pollution exposure is as-
sociated  with  early-life  cognitive  and  behavioral  im-
pairment,  further  highlighting  the  importance  of  ad-
dressing this issue [120].

10.2. Endocrine-Disrupting Chemicals
The current evidence from epidemiologic studies in-

vestigating the association between early life exposure
to  endocrine-disrupting  chemicals  (EDCs),  including
environmentally persistent organic pollutants and cer-
tain non-persistent chemicals, and ASD risk is scarce
and  uncertain.  However,  EDCs warrant  investigation
due to their ability to interfere with hormone activity,
which can impact neurodevelopment [121]. Additional-
ly, EDCs have been linked to a wide range of neurode-
velopmental outcomes [122], and exposure to EDCs is
widespread in developed countries [123].

Several  studies  have  explored  the  association  be-
tween prenatal pesticide exposure and ASD traits. One
study found an association between maternal concentra-
tions  of  a  marker  of  organophosphate  (OP)  pesticide
exposure and pervasive developmental disorder traits
[124]. Another study reported an association between
exposure to trans-nonochlor,  an organochlorine (OC)
pesticide, and ASD symptoms [125]. However, a third
study did not find significant associations between pre-
natal levels of two OC pesticides and ASD [126]. Two
studies  reported  an  association  between  residential
proximity  to  OC  pesticide  applications  during  early
gestation [127] or in mid to late pregnancy [128] and
ASD, but the results were not consistent.

The association  between prenatal  exposure  to  po-
lychlorinated biphenyls (PCBs) and ASD risk has been
examined (Table 2).  One study reported a suggestive
association between total PCBs and ASD [129]. At the
same time, another found an inverse association with
PCB-178  and  no  significant  associations  with  other
PCB  congeners  for  autistic  behaviors  [125].  A  third
study found an increased risk of ASD with two PCB
congeners and suggestions of higher risk with several
other congeners [126].
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For other EDCs, evidence is more limited. Studies
investigating prenatal exposure to levels of phthalates,
bisphenol  A  (BPA),  polybrominated  diphenyl  Ethers
(PBDEs), and perfluorinated compounds (or surrogates
of exposure) associated with ASD [125, 130, 131].

Future studies should address the limitations of pre-
vious research by expanding the sample size, incorpo-
rating data on exposure during different potential etio-
logic  windows,  and  considering  exposure  mixtures.
This will help to clarify the association between early
life exposure to EDCs and ASD risk and enable the de-
velopment of effective prevention strategies.

10.3. Toxic Metals and ASD
Toxic metals, including Hg and Pb, are well-known

neurotoxicants  that  can  negatively  impact  cognitive
and developmental outcomes. Metals like Pb, Hg, alu-
minum (Al), and arsenic (As) cause harm by inducing
neuroinflammation, elevating cytokine levels, and acti-
vating nuclear factor kappa B (NF-κB) [132]. With pol-
lution levels on the rise globally, it is imperative to in-
vestigate the impact of these pollutants on neurodevel-
opmental  disorders,  taking  into  account  genetic  sus-
ceptibility and polymorphism. Understanding how tox-
ic metals affect neurodevelopment is crucial for devel-
oping effective  therapeutic  interventions  and preven-
tive  strategies  for  ASD.  Additionally,  some  metals
may  act  as  endocrine-disrupting  chemicals  (EDCs)
[133, 134]. However, the evidence on low-level expo-
sure to Pb in relation to ASD is limited.

Mostafa et al. (2016) measured blood Pb (BPb) lev-
els and serum anti-ribosomal P protein antibodies in 60
ASD children and 60 neurotypical children. The chil-
dren  with  ASD  in  the  study  had  significantly  higher
BPb levels and a higher frequency of seropositivity of
anti-ribosomal P antibodies. These findings suggest a
potential relationship between BPb and autoimmunity
in ASD children [135]. Neurokinin A is a pro-inflam-
matory  neuropeptide  that  may play  a  role  in  autoim-
mune neuroinflammatory diseases like ASD. Mostafa
et  al.  (2016)  conducted  a  study  involving  84  Saudi
ASD children and 84 neurotypical children as controls.
The study found that  ASD children had significantly
higher levels of serum neurokinin A than neurotypical
children.

Additionally, the study revealed a positive correla-
tion between CARS scores, serum neurokinin A, and
blood Hg (BHg) levels. A positive correlation was ob-
served between serum neurokinin A and BHg levels in
children with moderate and severe ASD. Research indi-
cates  an  association  between  Hg  concentration  and
ASD [136]. One potential protective element is seleni-

um (Se), which can form non-toxic complexes with Hg
and act as an antioxidant [137, 138]. In a study by El-
Ansary et  al.  (2017),  the Pb,  Hg,  and Se levels  were
measured  in  the  red  blood  cells  (RBCs)  of  35  Saudi
children  with  ASD  and  30  age-  and  gender-matched
neurotypical  children  using  atomic  absorption  spec-
trometry.  Receiver  operating  characteristics  (ROC)
analysis was conducted to determine the predictive val-
ue of their absolute and relative concentrations. The re-
sults showed a significant increase in Hg and Pb levels
and  a  decrease  in  Se  levels  in  the  RBCs  of  children
with ASD compared to the healthy controls. The Se to
Pb and Hg ratios were also significantly altered, indi-
cating  heavy  metal  neurotoxicity  in  the  ASD  group.
The study also suggests that Se may be important for
preventing and/or treating heavy metal neurotoxicity in
individuals  with  ASD  [139].  Sulaiman  et  al.  (2020)
conducted  a  systematic  review  and  meta-analysis,
which  reported  significant  associations  between  Al,
Cd, and Hg and ASD. Still,  the associations were in-
consistent  [140].  More research is  needed to identify
the critical  period when exposure may alter  develop-
ment, to examine the longitudinal effects of these toxic
metals on the risk of ASD, and to investigate potential
factors that may heighten or lessen the impact of met-
als.

10.4. Vaccines and ASD
To  date,  no  significant  epidemiologic  evidence

shows  an  elevated  ASD  risk  with  vaccines  [141].  A
2004 Institute of Medicine (IOM) report investigated
the evidence and found no support for a causal associa-
tion between vaccines and ASD [142]. However, there
were  some limitations,  including  small  sample  sizes,
lack of control groups, confounding and/or the utiliza-
tion of specific clinical samples, and shortcomings of
confounder-adjusted  statistical  analyses  in  a  limited
number of small studies that reported positive results,
IOM reports and independent reviews of studies in the
United  States  and  other  countries  consistently  stated
that there is not enough evidence to support an associa-
tion between vaccines, including the Measles, Mumps
and  Rubella  (MMR)  vaccine  or  the  preservative
thimerosal,  and  ASD  [141,  143,  144].

11. FURTHER RESEARCH DIRECTIONS
While significant progress has been made in identi-

fying environmental risk factors for ASD, several ar-
eas still  require further investigation. Future research
should  aim to  expand our  understanding of  the  com-
plex interplay between environmental factors and ASD
development  and  explore  additional  risk  factors  that
may contribute to the disorder's etiology.
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Future studies should adopt  a  developmental  psy-
chopathology approach to investigate the dynamic and
interactive processes that underlie the development of
ASD. This approach recognizes the importance of con-
sidering developmental trajectories, individual differ-
ences,  and  the  influence  of  environmental  factors  at
various  stages  of  development.  Longitudinal  studies
that follow individuals from early childhood to adoles-
cence and adulthood can provide valuable insights into
how  environmental  risk  factors  interact  with  genetic
and neurobiological factors over time.

To establish a causal relationship between environ-
mental factors and ASD, prospective study designs are
essential.  Prospective  cohort  studies  that  collect  de-
tailed information on environmental exposures before
and  during  pregnancy,  as  well  as  throughout  early
childhood, can help overcome the limitations of retro-
spective studies and provide stronger evidence for the
impact of specific risk factors. These studies should al-
so consider the potential cumulative effects of multiple
exposures and interactions between different environ-
mental factors.

Accurate measurement of environmental exposures
is  crucial  for  robust  research  in  this  field.  Future
studies should employ advanced methods for assessing
exposure  levels,  including  biomonitoring  techniques,
environmental  monitoring,  and  validated  question-
naires. This will ensure more precise and reliable expo-
sure estimates, minimizing potential misclassification
and measurement errors that can weaken associations
between environmental factors and ASD.

Understanding the critical periods of vulnerability
is essential for identifying the timing and duration of
exposures that significantly impact ASD risk. Future re-
search should investigate the sensitive windows of de-
velopment  during  which  environmental  factors  exert
the most influence on neurodevelopment and ASD sus-
ceptibility.  This  knowledge  can  help  inform  public
health  interventions  and  targeted  strategies  for  ASD
prevention and early intervention.

Elucidating the molecular mechanisms underlying
the  relationship  between  environmental  factors  and
ASD is a key research priority. Future studies should
investigate  the  specific  biological  pathways  through
which environmental risk factors influence neurodevel-
opment  and  contribute  to  the  pathogenesis  of  ASD.
This  may  involve  assessing  biomarkers  of  exposure
and  exploring  how  environmental  factors  modulate
gene  expression,  epigenetic  modifications,  immune
function,  oxidative  stress,  and  neural  connectivity.

Given the complex nature of ASD, research should
investigate  gene-environment  interactions  to  unders-

tand better how genetic susceptibility interacts with en-
vironmental factors to influence ASD risk. Identifying
genetic variants that modify the effects of environmen-
tal exposures can provide valuable insights into individ-
ual differences in vulnerability and resilience. Large-s-
cale  genome-wide  association  studies  (GWAS)  and
gene-environment interaction studies are needed to un-
ravel the complex interplay between genes and the en-
vironment in ASD etiology.

Identifying modifiable risk factors is crucial for de-
veloping effective preventive strategies and interven-
tions for ASD. Future research should focus on explor-
ing  environmental  factors  amenable  to  intervention,
such as dietary modifications, reduced exposure to tox-
ic  substances,  and  improved  air  quality.  Intervention
studies should assess the effectiveness of targeted envi-
ronmental  interventions  in  reducing  the  risk  of  ASD
and improving outcomes in individuals  already diag-
nosed with the disorder.

CONCLUSION
The evidence presented in this paper suggests that

certain factors, such as vaccination, maternal smoking,
and alcohol consumption, are not linked to ASD risk.
However, parental age and preterm birth are consistent-
ly  associated  with  an  elevated  risk  of  ASD.  While
other pregnancy-related factors, such as maternal dia-
betes,  maternal  obesity,  and  caesarian  section,  have
shown a  weaker  association  with  ASD risk,  delivery
complications  related  to  trauma  or  hypoxia  have
shown a stronger association. Conflicting results exist
regarding the association between ASD risk and cer-
tain dietary components, such as folic acid, polyunsatu-
rated  fatty  acids,  vitamin  D,  and  maternal  Fe  intake.
Additionally, some studies suggest a potential link be-
tween ASD and toxic metals, such as Pb and Hg. Expo-
sure  to  endocrine-disrupting chemicals,  air  pollution,
infectious diseases, and other factors may also increase
ASD risk.

Further  research  is  needed  to  identify  additional
risk factors and fully understand the complex interplay
of environmental factors in ASD development. Future
studies should take a developmental psychopathology
approach, use prospective designs, accurate exposure
measurement, and reliable timing of exposure related
to critical developmental periods.
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