Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2666-1845
  • E-ISSN: 2666-1853

Abstract

Ultrafine-grained (UFG) titanium, which is with high yield strength, biocompatibility and corrosion resistance, is widely used in biomedical and industrial applications. However, adiabatic shear localization (ASL) is often observed in UFG materials due to their worse deformation stability under impact loading. This instability will easily result in the formation of adiabatic shear bands (ASB), a narrow band located in the ASL zoom, and finally cause the fracture of the material. The main objective of this work is to study the adiabatic shear behavior of UFG titanium under impact loading, including macro- and micro-properties, temperature rise, ASB failure, .

A synchronization apparatus, which consisted of Kolsky bar system, high-speed camera system and high-speed infrared temperature measuring system, was set up to carry out the in-situ study of the mechanical properties, temperature rise, and adiabatic shear failure process of UFG pure titanium. Microstructure of the material was also analyzed in this work.

The critical strain of UFG pure titanium for adiabatic shear localization is about 0.37 and 0.69 for UFG Ti and CG Ti, respectively. The peak shear stress of UFG Ti is 500MPa. The propagation velocity of ASB in UFG titanium is 533~800m/s, and 160~320m/s for CG Ti. The temperature rsie within ASB of UFG titanium is 307~732°C, and 212-556°C for CG Ti. The intense temperature rise is after the peak stress and the initiation of ASB most of the time.

UFG Ti has good mechanical properties, however, it is easier to form ASB and cause adiabatic shear failure under impact loading when compared with CG Ti. Temperature rise may not play a major role in the formation of ASB in UFG Ti, but maybe the consequence of ASB. Results of this work will help researchers better understand the failure of UFG metals under impact loading.

Loading

Article metrics loading...

/content/journals/cmam/10.2174/2666184502666220307122558
2022-10-01
2025-08-27
Loading full text...

Full text loading...

References

  1. MeyersM.A. MishraA. BensonD.J. Mechanical properties of nanocrystalline materials.Prog. Mater. Sci.200651442755610.1016/j.pmatsci.2005.08.003
    [Google Scholar]
  2. WangY. ChenM. ZhouF. MaE. High tensile ductility in a nanostructured metal.Nature2002419691091291510.1038/nature0113312410306
    [Google Scholar]
  3. FangT.H. LiW.L. TaoN.R. LuK. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper.Science201133160241587159010.1126/science.120017721330487
    [Google Scholar]
  4. ZhuY.T. LiaoX. Nanostructured metals: Retaining ductility.Nat. Mater.20043635135210.1038/nmat114115173850
    [Google Scholar]
  5. BaiY.L. Thermal-plastic instability in simple shear.J. Mech. Phys. Solids198230419520710.1016/0022‑5096(82)90029‑1
    [Google Scholar]
  6. WrightT.W. The physics and mathematics of adiabatic shear bands. Cambridge University Press: Cambridge, New York.Madrid, Cape TownPort Melbourne2002
    [Google Scholar]
  7. AnB. LiZ. DiaoX. XinH. ZhangQ. JiaX. WuY. LiK. GuoY. In vitro and in vivo studies of ultrafine-grain Ti as dental implant material processed by ECAP.Mater. Sci. Eng. C201667344110.1016/j.msec.2016.04.10527287096
    [Google Scholar]
  8. XuY.B. ZhangJ. BaiY. MeyersM.A. Shear localization in dynamic deformation: Microstructural evolution.Metall. Mater. Trans., A Phys. Metall. Mater. Sci.200839A481184310.1007/s11661‑007‑9431‑z
    [Google Scholar]
  9. WeiQ. Strain rate effects in the ultrafine grain and nanocrystalline regimes-influence on some constitutive responses.J. Mater. Sci.20074251709172710.1007/s10853‑006‑0700‑9
    [Google Scholar]
  10. WeiQ. KecskesL. JiaoT. HartwigK.T. RameshK.T. MaE. Adiabatic shear banding in ultrafine-grained Fe processed by severe plastic deformation.Acta Mater.20045271859186910.1016/j.actamat.2003.12.025
    [Google Scholar]
  11. GuoY.Z. LiY.L. PanZ. ZhouF.H. WeiQ. A numerical study of microstructure effect on adiabatic shear instability: Application to nanostructured/ultrafine grained materials.Mech. Mater.201042111020102910.1016/j.mechmat.2010.09.002
    [Google Scholar]
  12. WeiQ. RameshK.T. MaE. KesckesL.J. DowdingR.J. KazykhanovV.U. ValievR.Z. Plastic flow localization in bulk tungsten with ultrafine microstructure.Appl. Phys. Lett.2005861010190710190910.1063/1.1875754
    [Google Scholar]
  13. WeiQ. KecskesL.J. RameshK.T. Effect of low-temperature rolling on the propensity to adiabatic shear banding of commercial purity tungsten.Mater. Sci. Eng. A2013578039440110.1016/j.msea.2013.04.109
    [Google Scholar]
  14. WeiQ. PanZ.L. WuX.L. SchusterB.E. KecskesL.J. ValievR.Z. Microstructure and mechanical properties at different length scales and strain rates of nanocrystalline tantalum produced by high-pressure torsion.Acta Mater.20115962423243610.1016/j.actamat.2010.12.042
    [Google Scholar]
  15. WeiQ. JiaoT. RameshK.T. MaE. Nano-structured vanadium: Processing and mechanical properties under quasi-static and dynamic compression.Scr. Mater.200450335936410.1016/j.scriptamat.2003.10.010
    [Google Scholar]
  16. PanZ. XuF. MathaudhuS.N. KecskesL.J. WeiQ. Microstructural evolution and mechanical properties of niobium processed by equal channel angular extrusion up to 24 passes.Acta Mater.20126052310232310.1016/j.actamat.2011.12.019
    [Google Scholar]
  17. LiJ.G. SuoT. HuangC. LiY. WangH. LiuJ. Adiabatic shear localization in nanostructured face centered cubic metals under uniaxial compression.Mater. Des.201610526226710.1016/j.matdes.2016.05.081
    [Google Scholar]
  18. LiZ.Z. WangB.F. ZhaoS.T. ValievR.Z. VecchioK.S. MeyersM.A. Dynamic deformation and failure of ultrafine-grained titanium.Acta Mater.201712521021810.1016/j.actamat.2016.11.041
    [Google Scholar]
  19. KuangL.J. ChenZ.Y. JiangY.H. WangZ.M. WangR.K. LiuC.M. Adiabatic shear behaviors in rolled and annealed pure titanium subjected to dynamic impact loadingMater. Sci. Eng. a-Struct. Mater. Properties Microstruct. Process.20176859510610.1016/j.msea.2017.01.011
    [Google Scholar]
  20. GuoY.Z. SunX.Y. WeiQ. LiY.L. Compressive responses of ultrafine-grained titanium within a broad range of strain rates and temperatures.Mech. Mater.2017115223310.1016/j.mechmat.2017.07.015
    [Google Scholar]
  21. SunJ.L. TrimbyP.W. YanF.K. LiaoX.Z. TaoN.R. WangJ.T. Shear banding in commercial pure titanium deformed by dynamic compression.Acta Mater.201479475810.1016/j.actamat.2014.07.011
    [Google Scholar]
  22. WrightT.W. Shear band susceptibility: Work hardening materials.Int. J. Plast.19928558360210.1016/0749‑6419(92)90032‑8
    [Google Scholar]
  23. BahadorA. UmedaJ. YamanogluR. AmrinA. AlhazaaA. KondohK. Ultrafine-grain formation and improved mechanical properties of novel extruded Ti-Fe-W alloys with complete solid solution of tungsten.J. Alloys Compd.202187516003110.1016/j.jallcom.2021.160031
    [Google Scholar]
  24. PolyakovA.V. RaabG.I. SemenovaI.P. ValievR.Z. Mechanical properties of UFG Titanium: Notched fatigue and impact toughness.Mater. Lett.202130213036610.1016/j.matlet.2021.130366
    [Google Scholar]
  25. EreminA.V. PaninS.V. SharkeevY.P. Fatigue behaviour of CG and UFG titanium: DIC and fractography studies.IOP Conf. Series Mater. Sci. Eng.201951101201210.1088/1757‑899X/511/1/012012
    [Google Scholar]
  26. LiJ.G. GuoY.Z. SuoT. Preparation of UFG-Ti by ECAP at the normal temperature and research of mechanical properties. Xiyou Jinshu Cailiao Yu Gongcheng.Rare Met. Mater. Eng.2015443681687
    [Google Scholar]
  27. SunX.Y. GuoY.Z. WeiQ. LiY.L. ZhangS.Y. A comparative study on the microstructure and mechanical behavior of titanium: Ultrafine grain vs. coarse grain.Mater. Sci. Eng. A201666922624510.1016/j.msea.2016.05.093
    [Google Scholar]
  28. XuZ. DingX. ZhangW. HuangF. A novel method in dynamic shear testing of bulk materials using the traditional SHPB technique.Int. J. Impact Eng.20171019010410.1016/j.ijimpeng.2016.11.012
    [Google Scholar]
  29. XuZ. LiuY. SunZ. HuH. HuangF. On shear failure behaviors of an armor steel over a large range of strain rates.Int. J. Impact Eng.2018118243810.1016/j.ijimpeng.2018.04.003
    [Google Scholar]
  30. MeyersM.A. XuY.B. XueQ. Pérez-PradoM.T. McnelleyT.R. Microstructural evolution in adiabatic shear localization in stainless steel.Acta Mater.20035151307132510.1016/S1359‑6454(02)00526‑8
    [Google Scholar]
  31. PeirsA.J. VerleysenA.P. DegrieckA.J. CogheB.F. The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti-6Al-4V.Int. J. Impact Eng.201037670371410.1016/j.ijimpeng.2009.08.002
    [Google Scholar]
  32. ClosR. SchreppelU. VeitP. Experimental investigation of adiabatic shear band formation in steels.J. Phys. IV200010PR925726210.1051/jp4:2000943
    [Google Scholar]
  33. ClosR. SchreppelU. VeitP. Temperature, microstructure and mechanical response during shear-band formation in different metallic materials.J. Phys. IV200311011111610.1051/jp4:20020679
    [Google Scholar]
  34. ChenW.W. SongB. Split Hopkinson (Kolsky). BarSpringer2011
    [Google Scholar]
  35. ZehnderA.T. RosakisA.J. On the temperature distribution at the vicinity of dynamically propagating cracks in 4340 steel.J. Mech. Phys. Solids199139338541510.1016/0022‑5096(91)90019‑K
    [Google Scholar]
  36. ZhuangZ. LiuZ. CuiY. Dislocation Mechanism-Based Crystal Plasticity: Theory and Computation at the Micron and Submicron Scale.USAAcademic Press2019
    [Google Scholar]
  37. TaylorG. Thermally-activated deformation of BCC metals and alloys.Prog. Mater. Sci.199236296110.1016/0079‑6425(92)90004‑Q
    [Google Scholar]
  38. WeiQ. ChengS. RameshK.T. MaE. Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: Fcc versus bcc metals.Mater. Sci. Eng. A20043811717910.1016/j.msea.2004.03.064
    [Google Scholar]
  39. DoddB. BaiY. Width of adiabatic shear bands.Mater. Sci. Technol.198511384010.1179/mst.1985.1.1.38
    [Google Scholar]
  40. CulverR.S. Thermal instability strain in dynamic plastic deformation. Metallurgical Effects at High Strain Rates.New YorkPlemun Press197351953010.1007/978‑1‑4615‑8696‑8_29
    [Google Scholar]
  41. LiZ.Z. ZhaoS.T. WangB.F. CuiS. ChenR.K. ValievR.Z. MeyersM.A. The effects of ultra-fine-grained structure and cryogenic temperature on adiabatic shear localization in Titanium.Acta Mater.201918118110.1016/j.actamat.2019.09.011
    [Google Scholar]
  42. LiuY.G. ZhangS.B. HanZ.H. ZhaoY.J. Influence of grain size on the thermal conduction of nanocrystalline copper.Acta Phys. Sin.2016201665
    [Google Scholar]
  43. JiangM.Q. DaiL.H. On the origin of shear banding instability in metallic glasses.J. Mech. Phys. Solids20095781267129210.1016/j.jmps.2009.04.008
    [Google Scholar]
  44. GuoY. RuanQ. ZhuS. WeiQ. ChenH. LuJ. HuB. WuX. LiY. FangD. Temperature rise associated with adiabatic shear band: Causality clarified.Phys. Rev. Lett.2019122101550310.1103/PhysRevLett.122.01550331012723
    [Google Scholar]
  45. GuoY.Z. RuanQ.C. ZhuS.X. WeiQ. LuJ.N. HuB. WuX.H. LiY.L. Dynamic failure of titanium: Temperature rise and adiabatic shear band formation.J. Mech. Phys. Solids202013510381110.1016/j.jmps.2019.103811
    [Google Scholar]
  46. BaiY. Adiabatic shear banding.Res Mechanica1990312133203
    [Google Scholar]
  47. WalleyS.M. Shear localization: A historical overview.Metall. Mater. Trans., A Phys. Metall. Mater. Sci.200738112629265410.1007/s11661‑007‑9271‑x
    [Google Scholar]
/content/journals/cmam/10.2174/2666184502666220307122558
Loading
/content/journals/cmam/10.2174/2666184502666220307122558
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test