Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-1845
  • E-ISSN: 2666-1853

Abstract

Carbon nanotubes (CNTs) reinforced structures are the main elements of structural equipment. Hence a wide range of investigations has been performed on the response of these structures. A lot of studies covered the static and dynamic phenomenon of CNTs reinforced beams, plates and shells. However, there is no study on the free vibration analysis of a doubly-curved nano-size shell made of CNTs reinforced composite materials.

This work utilized a general third-order shear deformation theory to model the nanoshell where the general strain gradient theory is used in order to capture both nonlocality and strain gradient size-dependency. The Navier solution solving procedure is adopted to solve the partial differential equations (PDEs) and get the natural frequency of the system which is obtained through the Hamilton principle.

The current study shows the importance of small-scale coefficients. The natural frequency increases with rising the strain gradient-size dependency which is because of stiffness enhancement, while the natural frequency decreases by increasing the nonlocality. In addition, the numerical examples covered the CNTs distribution patterns.

This work also studied the importance of shell panel’s shape. It has been observed that spherical shell panel has a higher frequency compared to the hyperbolic one. Furthermore, the frequency of the system increases with growing length-to-thickness ration.

Loading

Article metrics loading...

/content/journals/cmam/10.2174/2666184501999201005211608
2020-10-05
2025-10-03
Loading full text...

Full text loading...

References

  1. QianD. DickeyE.C. AndrewsR. RantellT. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites.Appl. Phys. Lett.200076202868287010.1063/1.126500
    [Google Scholar]
  2. MotezakerM. EyvazianA. Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs.Steel Compos. Struct.2020342289297
    [Google Scholar]
  3. KaramiB. ShahsavariD. JanghorbanM. LiL. Elastic guided waves in fully-clamped functionally graded carbon nanotube-reinforced composite platesMater. Res. Express2019690950a910.1088/2053‑1591/ab3474
    [Google Scholar]
  4. KaramiB. JanghorbanM. ShahsavariD. DimitriR. TornabeneF. Nonlocal buckling analysis of composite curved beams reinforced with functionally graded carbon nanotubes.Molecules20192415275010.3390/molecules2415275031362407
    [Google Scholar]
  5. KaramiB. ShahsavariD. JanghorbanM. A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates.Aerosp. Sci. Technol.20188249951210.1016/j.ast.2018.10.001
    [Google Scholar]
  6. EringenA.C. EdelenD. On nonlocal elasticity.Int. J. Eng. Sci.197210323324810.1016/0020‑7225(72)90039‑0
    [Google Scholar]
  7. Papargyri-BeskouS. PolyzosD. BeskosD. Wave dispersion in gradient elastic solids and structures: a unified treatment.Int. J. Solids Struct.200946213751375910.1016/j.ijsolstr.2009.05.002
    [Google Scholar]
  8. YangF. ChongA. LamD.C.C. TongP. Couple stress based strain gradient theory for elasticity.Int. J. Solids Struct.200239102731274310.1016/S0020‑7683(02)00152‑X
    [Google Scholar]
  9. AskesH. AifantisE.C. Gradient elasticity and flexural wave dispersion in carbon nanotubesPhys. Rev. B80192009.19541210.1103/PhysRevB.80.195412
    [Google Scholar]
  10. BaratiM.R. ShahverdiH. Hygro-thermal vibration analysis of graded double-refined-nanoplate systems using hybrid nonlocal stress-strain gradient theory.Compos. Struct.201717698299510.1016/j.compstruct.2017.06.004
    [Google Scholar]
  11. KaramiB. JanghorbanM. TounsiA. Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles.Steel Compos. Struct.2018272201216
    [Google Scholar]
  12. NorouzzadehA. AnsariR. Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity.Physica E20178819420010.1016/j.physe.2017.01.006
    [Google Scholar]
  13. LiL. HuY. Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects.Int. J. Mech. Sci.201712015917010.1016/j.ijmecsci.2016.11.025
    [Google Scholar]
  14. LiL. HuY. LiX. Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory.Int. J. Mech. Sci.201611513514410.1016/j.ijmecsci.2016.06.011
    [Google Scholar]
  15. LiL. HuY. LingL. Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory.Compos. Struct.20151331079109210.1016/j.compstruct.2015.08.014
    [Google Scholar]
  16. KaramiB. ShahsavariD. JanghorbanM. LiL. Wave dispersion of mounted graphene with initial stress.Thin-walled Struct.201812210211110.1016/j.tws.2017.10.004
    [Google Scholar]
  17. NorouzzadehA. AnsariR. RouhiH. An analytical study on wave propagation in functionally graded nano-beams/tubes based on the integral formulation of nonlocal elasticity.Waves Random Complex Media202030356258010.1080/17455030.2018.1543979
    [Google Scholar]
  18. AdaliS. Variational principles for multi-walled carbon nanotubes undergoing buckling based on nonlocal elasticity theory.Phys. Lett. A2008372355701570510.1016/j.physleta.2008.07.003
    [Google Scholar]
  19. AnsariR. OskouieM.F. GholamiR. Size-dependent geometrically nonlinear free vibration analysis of fractional viscoelastic nanobeams based on the nonlocal elasticity theory.Physica E20167526627110.1016/j.physe.2015.09.022
    [Google Scholar]
  20. AifantisE.C. On the gradient approach-relation to Eringen’s nonlocal theory.Int. J. Eng. Sci.201149121367137710.1016/j.ijengsci.2011.03.016
    [Google Scholar]
  21. ZiaeeS. Linear free vibration of graphene sheets with nanopore via Aifantis theory and Ritz method.J. Theor. Appl. Mech.201755382383810.15632/jtam‑pl.55.3.823
    [Google Scholar]
  22. KaramiB. JanghorbanM. On the mechanics of functionally graded nanoshellsInt. J. Eng. Sci.20201532020.10330910.1016/j.ijengsci.2020.103309
    [Google Scholar]
  23. KaramiB. JanghorbanM. RabczukT. “Forced vibration analysis of functionally graded anisotropic nanoplates resting on Winkler/Pasternak-foundation”, CMC-Comp.Mater. Continua202062260762910.32604/cmc.2020.08032
    [Google Scholar]
  24. KaramiB. JanghorbanM. RabczukT. Dynamics of two-dimensional functionally graded tapered Timoshenko nanobeam in thermal environment using nonlocal strain gradient theory.Compos., Part B Eng.1822020.10762210.1016/j.compositesb.2019.107622
    [Google Scholar]
  25. AnjomshoaA. ShahidiA.R. HassaniB. JomehzadehE. Finite element buckling analysis of multi-layered graphene sheets on elastic substrate based on nonlocal elasticity theory.Appl. Math. Model.201438245934595510.1016/j.apm.2014.03.036
    [Google Scholar]
  26. MiandoabE.M. PishkenariH.N. Yousefi-KomaA. HoorzadH. Polysilicon nano-beam model based on modified couple stress and Eringen’s nonlocal elasticity theories.Physica E20146322322810.1016/j.physe.2014.05.025
    [Google Scholar]
  27. MatoukH. Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory.Adv. Nano Res.202084293305
    [Google Scholar]
  28. ShenH-S. Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells.Compos., Part B Eng.20124331030103810.1016/j.compositesb.2011.10.004
    [Google Scholar]
  29. ShenH-S. Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part I: Axially-loaded shells.Compos. Struct.20119382096210810.1016/j.compstruct.2011.02.011
    [Google Scholar]
  30. LiewK. LeiZ. YuJ. ZhangL. Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach.Comput. Methods Appl. Mech. Eng.201426811710.1016/j.cma.2013.09.001
    [Google Scholar]
  31. AnsariR. TorabiJ. Numerical study on the buckling and vibration of functionally graded carbon nanotube-reinforced composite conical shells under axial loading.Compos., Part B Eng.20169519620810.1016/j.compositesb.2016.03.080
    [Google Scholar]
  32. SafarPourH., Ghanbari. B, and Ghadiri. M, “Buckling and free vibration analysis of high speed rotating carbon nanotube reinforced cylindrical piezoelectric shell.Appl. Math. Model.20196542844210.1016/j.apm.2018.08.028
    [Google Scholar]
  33. KianiY. DimitriR. TornabeneF. Free vibration of FG-CNT reinforced composite skew cylindrical shells using the Chebyshev-Ritz formulation.Compos., Part B Eng.201814716917710.1016/j.compositesb.2018.04.028
    [Google Scholar]
  34. DindarlooM.H. LiL. Vibration analysis of carbon nanotubes reinforced isotropic doubly-curved nanoshells using nonlocal elasticity theory based on a new higher order shear deformation theory.Compos., Part B Eng.2019.10717017510.1016/j.compositesb.2019.107170
    [Google Scholar]
  35. SahmaniS. FattahiA. Nonlocal size dependency in nonlinear instability of axially loaded exponential shear deformable FG-CNT reinforced nanoshells under heat conduction.Eur. Phys. J. Plus2017132523110.1140/epjp/i2017‑11497‑5
    [Google Scholar]
  36. FattahiA. SahmaniS. Nonlocal temperature-dependent postbuckling behavior of FG-CNT reinforced nanoshells under hydrostatic pressure combined with heat conduction.Microsyst. Technol.201723105121513710.1007/s00542‑017‑3377‑x
    [Google Scholar]
  37. ShenH-S. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments.Compos. Struct.200991191910.1016/j.compstruct.2009.04.026
    [Google Scholar]
  38. HanY. ElliottJ. Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites.Comput. Mater. Sci.200739231532310.1016/j.commatsci.2006.06.011
    [Google Scholar]
  39. WangA. ChenH. HaoY. ZhangW. Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets.Results Phy.2018955055910.1016/j.rinp.2018.02.062
    [Google Scholar]
  40. KaramiB. ShahsavariD. On the forced resonant vibration analysis of functionally graded polymer composite doubly-curved nanoshells reinforced with graphene-nanoplatelets.Comput. Methods Appl. Mech. Eng.2020.11276735910.1016/j.cma.2019.112767
    [Google Scholar]
  41. EringenA.C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves.J. Appl. Phys.19835494703471010.1063/1.332803
    [Google Scholar]
  42. EringenA.C. Nonlocal Continuum Field Theories.Springer Science & Business MediaUSA2002
    [Google Scholar]
  43. AskesH. AifantisE.C. Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results.Int. J. Solids Struct.201148131962199010.1016/j.ijsolstr.2011.03.006
    [Google Scholar]
  44. Phung-VanP. LieuQ.X. Nguyen-XuanH. WahabM.A. Size-dependent isogeometric analysis of functionally graded carbon nanotube-reinforced composite nanoplates.Compos. Struct.201716612013510.1016/j.compstruct.2017.01.049
    [Google Scholar]
  45. KaramiB. JanghorbanM. On the dynamics of porous nanotubes with variable material properties and variable thickness.Int. J. Eng. Sci.2019136536610.1016/j.ijengsci.2019.01.002
    [Google Scholar]
/content/journals/cmam/10.2174/2666184501999201005211608
Loading
/content/journals/cmam/10.2174/2666184501999201005211608
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test