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Abstract:

Background:

The worldwide increase of antimicrobial resistance in ESKAPE pathogens, which includes Enterococcus faecium, Staphylococcus aureus,
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp., constitutes a substantial public health hazard,
constraining treatment alternatives and elevating morbidity and mortality rates. As traditional antibiotics diminish in efficacy, phytochemicals are
capturing interest due to their varied antibacterial characteristics and decreased susceptibility to developing antibiotic resistance. Phytochemicals,
such as alkaloids, terpenes, phenolics, flavonoids, and organosulfur compounds, have multi-target processes that might provide innovative
strategies for addressing infections caused by ESKAPE pathogens.

Objective:

The investigation sought to evaluate the effectiveness and mechanisms via which different phytochemicals could hinder and destroy the resistance
pathways of ESKAPE bacteria, emphasizing their potential to serve as therapeutic agents in combating antimicrobial resistance.

Results:

Investigation demonstrates that some phytochemicals may disrupt many bacterial functions, such as cell wall production, membrane integrity,
quorum sensing, and biofilm development in ESKAPE pathogens. For example, carvacrol from essential oils has shown efficacy against S. aureus
by reducing staphyloxanthin synthesis and altering regulatory proteins, including SarA. Furthermore, conessine has altered resistance in A.
baumannii by inhibiting the AdelJK efflux pump. Flavonoids like resveratrol and curcumin have shown synergistic benefits with conventional
antibiotics by improving their effectiveness while minimizing toxicity. These chemicals address several resistance pathways, impairing the ability
of infections to build resistance.

Conclusion:

Phytochemicals provide an opportunity to facilitate the development of novel therapies targeting antimicrobial resistance in ESKAPE bacteria.
Extensive efficacy and distinctive multi-target mechanisms of phytochemicals provide them promising candidates for combination therapy,
possibly reinstating antibiotic effectiveness and decelerating the development of resistance. Additional investigation into the increase of
bioavailability and clinical usage is essential to fully exploring the medicinal potential of phytochemicals.
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1. INTRODUCTION nating them either by interfere with the synthesis of bacteria's

Over the past four decades, the pharmaceutical industry cell wall [1] or interfere with the synthesis of nucleic acids in

has created quite a large number of novel antibiotics, that are microorganisms [2] or inhibits the synthesis of proteins in the

work against organisms by preventing their growth or elimi- organisms [3] or work by blocking these organism's metabolic

pathways [4], changing an organism's membrane function [5],
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antimicrobial drug does not interfere with the growth or
survival of microorganisms [7]. Bacteria acquire this AMR
through  genetic mutations, plasmids, chromosomes,
transposons and other mobile genetic elements — a process
known as horizontal gene transfer (HGT) [8]. AMR is
exhibited by organisms through a variety of means, including
disruption of the mechanisms of action of antibiotics, structural
modifications of antibiotics, decrease in drug permeability,
resistance via efflux pumps, inactivation or decrease expression
of porin channel, alterations in enzymes, drug target site
mutation, target site bypass, and broader cellular adaptations as
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illustrated in Fig. (1) [9, 10]. Antibiotic resistance is among the
most significant health issues. Over the past ten years, the issue
of nosocomial infections has been accompanied by an increase
in the prevalence of antimicrobial-resistant bacteria in hospitals
and community settings [11].

A small group of bacterial species that are primarily
responsible for the majority of resistance issues in
contemporary hospitals called “ESKAPE” pathogens.
Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumoniae, baumannii,  Pseudomonas
aeruginosa, and Enterobacter species come together to form
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Fig. (1). Mechanism by which antimicrobial resistance can develop by various pathogens.
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the abbreviation ESKAPE (Fig. 2), these are also called
opportunistic pathogen because these microorganism causes
nosocomial infections in immunocompromised patients.
ESKAPE can develop multi drug resistance. According to data
from the National Healthcare Safety Network, The ESKAPE
pathogens are implicated in just over 40% of infections in
patients in intensive care units [12].

E. faecium is nearly always resistant to [-lactam
medicines, in the UK and Ireland, the frequency of total
resistance to ampicillin and imipenem reached 98.8% in 2006
[13]. Vancomycin-resistant Enterococcus (VRE) emerged in
North America in the late 1980s, with 61% of E. faecium
isolates resistant by 2002. European incidence rose from 20%
to over 30% between 2001 and 2006 [14]. Francey et al.,
reported nineteen instances of 4. baumannii infection in dogs
and cats Over a two-and-a-half-year period from an intensive
care unit (ICU) (urinary, wound, respiratory and bloodstream
infections). They showed that 4. baumannii can impair the
effectiveness of both routine treatments and intensive care, and
that it can lead small animals to contract potentially fatal
hospital-acquired illnesses. It also affected treatment results,
with a 100% fatality rate in patients with systemic infection
[15]. S. aureus has developed resistance to commonly used
antibiotics, with MRSA showing higher resistance. Significant
multidrug resistance (71.8%) was observed, raising serious
public health concerns in infection management [16].
According to Antoniadou et al., studied from November 2003
to August 2005, 18 K. pneumoniae isolates resistant to colistin
were identified in 13 patients. Most isolates produced
extended-spectrum beta-lactamase (ESBL) or metallo-beta-
lactamase (MBL). Thirteen cases involved colonization, while
five were infections which highlights the importance of
understanding this organism [17]. Because of P. aeruginosa’s
complex methods of antibiotic resistance, ability to build
biofilms, and propensity to cause persistent infections in both
human and animal hosts, P. aeruginosa presents a significant
problem in therapeutic settings. It may spread zoonotically
across animals, the environment, and human populations,
according to recent research, which emphasizes the need for
awareness of this organism [18]. Enterobacter aerogenes and
Enterobacter cloacae are opportunistic, multi-resistant
pathogens in hospitals, adapting efficiently to antibiotics
through regulatory cascades, mobile genetic elements, and
environmental adaptability, complicating infection control
[19]. Since ESKAPE pathogens are difficult to treat with
antibiotics due to high levels of resistance, phytochemicals are
being explored as alternative treatments for infections caused
by these pathogens.

Nature offers a rich repository of therapeutic substances,
many of which have been harnessed in contemporary medicine.
In developing nations, conventional medicine is one of the
most accessible forms of treatment. In some areas, it is
estimated that around 80% of humanity relies on traditional
medicine for their basic healthcare requirements [20]. Many
pharmacologically substances and new drug
developments originate from plants, as evidenced by the fact
that many popular drugs are in some way derived from them.
As of the beginning of the twenty-first century, the World
Health Organization (WHO) lists 11% of 252 medications as

active
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fundamental and necessary, these medications are the only
ones that came from flowering plants [21]. Conventional
medicinal plants comprise a diverse array of physiologically
active substances, making them a valuable source of medicinal
substances and most of them are act against ESKAPE
pathogens [22]. This review emphasizes on the usage of these
phytochemicals which can be employed as efficient anti-
ESKAPE medications.

2. ESKAPE PATHOGENS: A WORLDWIDE CONCERN

ESKAPE pathogens causing AMR, poses a worldwide risk
to public health. AMR can be caused by both Gram-negative
and Gram-positive bacteria. E. faecium, S. aureus is Gram
positive bacteria and K. pneumoniae, A. baumannii, P.
aeruginosa, Enterobacter sp. are Gram-negative bacteria. A
concerted global response is needed for microbial resistance
awareness because the ESKAPE pathogens' acquisition of
antibiotic resistance genes has decreased therapeutic option for
major infections, raised the load of illness, and raised the
mortality rates from unmet treatment.

2.1. Enterococcus Faecium

E. faecium is a Gram-positive spherical bacterium i.e.
coccus that grows in pairs or chains, live in intestine of both
humans and animals. It is typically the cause of nosocomial
septicaemia in patients with compromised immune systems.
Enterococci-caused nosocomial infections have spread widely
around the world. The main cause of enterococci's long-term
persistence in hospitals is their innate resistance to several
commonly used antibiotics as well as their resistance to newly
developed antibiotics caused by gene mutation or plasmid and
transposon transmission [11]. High level resistance (HLR)
enterococci have been found in meat and dairy products, and
additionally in strains that include vancomycin and have
numerous antibiotic resistances [23,24]. By producing low-
affinity PBPs, enterococci exhibit resistance to cephalosporins.
Glycopeptide antibiotics (e.g. Vancomycin) target the bacterial
D-Ala-D-Ala site. Transposon-mediated vancomycin resistance
in E. faecium, via the vanA and vanB operons on Tn1546 and
Tn5382, remains prevalent in clinical isolates, informing new
approaches required to treat vancomycin-resistant strains [12].
Bacteria's resistance to glycopeptides originates from operons
encoding enzymes that replace the final D-Ala with D-Ser or
D-Lac that have low affinity, as well as enzymes that eliminate
or inhibit the synthesis of the high-affinity native precursors
(Carboxypeptidases and D, D-dipeptidases). Among eight
characterized operons (van A, B, D, E, G, L, M, N), only van
A, B, D, M, and N are found in E. faecium [25]. Vancomycin-
resistant Enterococci (VRE) have a genetic material that may
encode a protein that helps the bacteria to develop thicker
biofilms [26]. As a result, infections like intra-abdominal
infections, urinary tract infections (UTI), endocarditis and
bacteraemia arise [27]. The primary method by which E.
faecium resists aminoglycoside is through the synthesis of
aminoglycoside-modifying enzymes (AMEs) like
aminoglycoside  nucleotidyltransferases, aminoglycoside
phosphotransferases and aminoglycoside acetyltransferases
(AAC(6')-1i)). Two chromosomal enzymes produced by E.
Sfaecium are AAC (6")-1i and EfmM, both are responsible for
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developing resistance against aminoglycoside specially to
kanamycin and tobramycin. EfmM is a 16S rRNA
methyltransferase that methylates the 16S rRNA, hindering the
binding of aminoglycosides to the bacterial ribosome [28].
Point mutations in the gyrA and parC genes, which encode the
subunits A of DNA gyrase and topoisomerase IV, cause
acquired resistance in E. faecium. Mutations in these genes
alter the target sites of fluoroquinolone antibiotics, reducing
their binding affinity and thereby conferring resistance to these
drugs [29].

2.2. Staphylococcus Aureus

The Gram-positive Staphylococcaceae family bacteria is S.
aureus [30]. Groups of cells which look like grapes make up
the S. aureus cluster. Skin flora contains this naturally
occurring component. This is usually segregated from area
beneath arm and from outside of the nose because of its easy
growing needs [13]. The most common bacteria found in pus
specimens is S. aureus (64.4%) [31]. S. aureus is known to
induce pyogenic lesions and tissue infection that affect several
organs [32]. By limiting drug uptake S. aureus can develop
AMR against glycopeptide (Vancomycin) and this AMR is
called Vancomycin resistant S. aureus, By drugs inactivation
develop AMR against Chloramphenicol, by producing (-
lactamase which hydrolyse B-lactam ring develop resistance
against B-lactams, by altered penicillin binding protein (PBP)
develop resistance against methicillin, by active drug efflux
develop AMR against Fluroquinolones and tetracyclines (by
tetA), by drug target modification develop AMR against 3-
lactams, lipopeptides, lincosamide, tetracyclines,
streptogramins, macrolides, oxazolidinone, fluroquinolones,
glycopeptides, aminoglycosides [33]. In S. aureus, various erm
genes provide resistance to macrolides, lincosamides, and
streptogramin B (MLSB antibiotics) through two patterns:
constitutive expression (MLSBc phenotype), with constant
resistance, and inducible expression (MLSBi phenotype),
activated by specific antibiotics. Additionally, the msrA gene
encodes an efflux pump (MS phenotype), expelling macrolides
and enhancing resistance [11]. Methicillin and oxacillin
resistance in S. aureus arises from acquiring a gene encoding
PBP2a. The production of PBP2a is controlled by two
regulatory systems ie. the mecRl/mecl operon and the
blaR1/blal B-lactamase regulon [34]. The transpeptidase active
site serine of PBP2a is deeply embedded, preventing B-lactam
antibiotics from binding effectively, allowing the bacteria to
continue building its cell wall even in the presence of these
antibiotics [35]. Cytoplasmic modifying enzymes are the
source of S. aureus resistance to aminoglycosides. Bifunctional
acetyltransferase A-phosphotransferase D is involved in
gentamicin and neomycin resistance, whereas
phosphotransferase A or adenyltransferase D enzymes are
involved in neomycin resistance [36]. In healthcare settings, S.
aureus frequently causes bloodstream infections, surgical site
infections, and pneumonia. It is a major contributor to
nosocomial infections. It spreads via direct contact, particularly
in susceptible patients, and is frequently resistant to several
medications, including methicillin (MRSA), making infection
treatment more difficult [37]. Gurung et al. found that S.
aureus was more common in inpatients (55.7%) compared to
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outpatients (44.3%). This suggests a higher risk of hospital-
acquired infections, including MRSA, among hospitalized
patients [16].

2.3. Klebsiella Pneumoniae

A Gram-negative rod-shaped bacterium i.e. bacillus is K.
pneumoniae. This microorganism is responsible for one-third
of all Gram-negative bacterial illnesses [38]. One of the main
causes of nosocomial infections, especially in individuals with
weakened immune systems, is K. pneumoniae. It presents
significant treatment and infection control issues, particularly
in intensive care units and among patients with invasive
devices, due to its propensity to acquire resistance to several
medications, including carbapenems [39]. They are
accountable for the development of endocarditis, pneumonia,
septicaemia, urinary tract infections, and cystitis. It can also
cause necrotizing pneumonia, endogenous endophthalmitis,
and pyogenic liver abscess. K. pneumoniae infections result in
increased mortality rates, extended hospital stays, and
extremely expensive treatment. It is known that strains of K.
pneumoniae resistant to carbapenem (CRKP) acquire -
lactamases, which renders them resistant to common antibiotics
like carbapenem [38]. By altering penicillin-binding proteins
(PBPs) K. pneumoniae resists B-lactam antibiotics. Thereby
PBP reduce their affinity for the drugs. The reason behind K.
pneumoniae's resistance to fluoroquinolones is point mutations
in particular regions of topoisomerase IV (parE genes and parC
genes) and DNA gyrase (gyrA genes and gyrB genes) [40].
The porins (OmpK36 and OmpK35) that the antibiotic
molecules must employ are altered or reduced in number,
which lowers the membrane's permeability. Quinolone
resistance can also be developed by active ejection pumps such
as OqxAB and AcrAB pumps are another frequently occurring
mechanism in K. pneumoniae strains [41, 42].

2.4. Acinetobacter Baumannii

A. baumannii is an aerobic, non-motile, pleomorphic
Gram-negative bacterium, responsible for about 2% of
nosocomial infections. It has been discovered that 45 percent of
the strains of this deadly opportunistic infection are multidrug-
resistant (MDR). Pneumonia related to ventilation and
bloodstream infections connected to central lines are most
common infections caused by it. Because of their capacity to
form biofilms, and possession of key pathogenic characteristics
like surface adhesions, secretion system and glycoconjugates,
A. baumannii can undergo extremely harsh environments [43,
44]. A. baumannii has been considered one of the most
efficient nosocomial pathogens because of its capacity to
endure in hospital settings. 4. baumannii, prevalent in clinical
settings, colonizes skin, hair, and various surfaces, adhering to
devices like catheters and respiratory [45]. Contaminated
objects such as mattresses, computers, gloves, and even pets
may spread the pathogen [46]. Resilient to disinfectants like
chlorhexidine, A. baumannii survives on dry surfaces, enduring
nutrient starvation by forming biofilms, complicating infection
control [47]. A. baumannii uses B-lactamases as a primary
method for resisting -lactam antibiotics. A. baumannii has the
AdeABC efflux pump and is resistant to aminoglycosides [48].
CraA and CmlA efflux pump are associated with
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chloramphenicol resistance [49]. Resistance towards
tetracycline is linked to TetA [50]. In A. baumannii, reduced
expression of a few porins—Omp37, Omp44, Omp47 is linked
to carbapenem resistance [51]. OXA-51-like carbapenemases
in A. baumannii Omp29 deletion causes increased imipenem
resistance [52]. OmpA is linked to resistance to nalidixic acid,
chloramphenicol, and aztreonam [53]. In A. baumannii, loss or
alteration of lipopolysaccharide (LPS) results in a reduction in
the integrity of the membrane and a spike in colistin resistance
[54]. Acetyltransferases, phosphotransferases and adenyl
transferases are examples of AMEs. They are the primary way
by which aminoglycoside resistance is imparted by A.
baumannii [55]. Imipenem resistance can only be brought on
by the upregulation of mutant PBPs having minimal imipenem
affinity [56].

2.5. Pseudomonas Aeruginosa

A gamma-proteobacterium that is Gram-negative is P.
aeruginosa, has an inherent resistance to a number of
antibiotics because of its multi-transport system and very
minimally permeable outer membrane. It can use a variety of
strategies, including f-lactamases, efflux pumps, porin channel
modification, point mutations in DNA gyrase or topoisomerase
IV and target alterations, to build resistance to antimicrobial
agents. Because this infection can cause blood clots and leave
behind persistent cells in the lungs, patients with cystic fibrosis
(CF) are more likely to contract it [S7]. P. aeruginosa exhibits
resistance against several antibiotics, such as [-lactams,
quinolones, and aminoglycosides. P. aeruginosa enhanced
resilience to gentamicin and polymyxin B due to stability of the
outer membrane caused by LPS modification. P. aeruginosa
produce B-lactamases enzyme which can hydrolyse p-lactam
ring of B-lactam antibiotics [58]. Absence of OprD porin
channel in P. aeruginosa increases resistance to carbapenems,
which are B-lactam antibiotics [59]. MexCD-Opr]J efflux pump
has the capacity to expel p-lactams, MexXY-OprM push out
aminoglycosides, MexEF-OprN can extrude
quinolones [60]. P. aeruginosa is less susceptible to quinolones
due to mutations in genome encoding topoisomerase IV (parE
and parC) and DNA gyrase (gyrA and gyrB) and which lower
the binding affinity of the encoded proteins to quinolones [61].
In many hospitals, ciprofloxacin's effectiveness against P.
aeruginosa has diminished due to the emergence of several
multidrug efflux pumps and the ensuing topoisomerase
mutations that generate a high degree resistance [12]. P.
aeruginosa is a common cause of nosocomial infections,
including pneumonia, surgical site infections, UTIs, and
bacteraemia. In ICUs, it causes 23% of infections,
predominantly respiratory-related, with rising prevalence.
Second only to S. aureus, P. aeruginosa was predicted to be
the source of 11% of all HAP (Healthcare-associated
pneumonia) and VAP (Ventilator-associated pneumonia)
among ICU patients considered to be at risk of developing
nosocomial pneumonia in prospective observational research of
28 ICUs in the USA [62].

whereas

2.6. Enterobacter sp.

Enterobacter sp. is a member of the Enterobacteriaceae
family of Gram-negative anaerobes. This pathogen primarily
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causes urinary tract infections or respiratory infections in
patients who are immunocompromised [63, 64]. The National
Nosocomial Infections Surveillance System estimates that
between 1976 and 1989, Enterobactersp. caused 5-7% of
hospital-acquired bacteremias in the US. Enterobacter was the
fourth most prevalent pathogen in surgical wounds, the fifth
most common pathogen in the bloodstream and urinary tract
and the third most common pathogen in the respiratory tract
among isolates in the ICU [65]. E. cloacae and E. aerogenes
exhibit nearly universal resistance to a vast range of antibiotics
including ampicillin, cefoxitin, cephalothin and other p-lactam
antibiotics [63]. Enterobacter sp. resists B-lactam antibiotics by
altering penicillin-binding proteins (PBPs), reducing their
affinity for the drugs [66]. Enterobacter sp. develop resistance
by reducing porin production and occasionally complete
cessation of partial porin production. Collectively,
Enterobacteriaceae family bacteria develop resistance against
carbapenems by lowering the number of porins [67].

3. PHYTOCHEMICALS FOR ESKAPE

Plant-sourced substances are predominantly secondary
metabolites, often formed through oxygen replacement or
derived from phenols. Such secondary compounds have a
variety of advantageous properties, such as antibacterial,
antifungal, antioxidant, anti-inflammatory properties. The main
groups of plant-derived chemicals with antibacterial properties
include quinones, tannins, terpenoids, saponins, phenolics,
flavonoids and alkaloids [68]. Plant extracts limit bacterial
growth by a synergistic impact of their active components. The
synergistic effect arises from various factors, such as the
activation of multi-target mechanisms the presence of
compounds that can inhibit bacterial resistance pathways, and
improvements in pharmacokinetic or physicochemical
properties, which lead to increased bioavailability, dissolution
and absorption rates and mitigation of side effects [69].

Phytochemicals have the potential to serve as alternative or
complementary treatments to antibiotics for several key
reasons:  Antimicrobial = compounds  derived  from
phytochemical can suppress the bacterial growth, fungus,
protozoa and viruses through mechanisms that differ from
those of current antimicrobial agents. This unique mode of
action may offer substantial clinical benefits in treating
infections caused by resistant microbial strains [70]. They
possess diverse chemical structures and modes of action,
making it harder for microbes to develop resistance. Many
phytochemicals from various groups have effectively
demonstrated their inhibitory potential against AMR pathogens
by targeting bacterial membrane proteins, biofilms, efflux
pumps, and bacterial cell-to-cell communication. But with
prolonged use of antibiotics, bacteria can develop resistance
through a variety of methods, including target change,
decreased drug absorption, biofilm formation, and the
development of destructive enzymes [71,72]. Subsequently,
chemically complicated plant products offer significant
therapeutic potential since they have fewer adverse effects and
are less likely to develop resistance than synthesized
medications. Phytochemicals hold great promise for
discovering new bioactive compounds that can combat
resistant microorganisms. They have the ability to enhance the
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effectiveness of older antibiotics, potentially revitalizing their
clinical use and helping to mitigate the issue of resistance.
Certain active compounds exhibit intrinsic antibacterial
properties along with the ability to modify antibiotic resistance.
While some of these compounds may not act effectively as
antibiotics on their own, they can enhance the effectiveness of
antibiotics when used in combination, aiding in the fight
against antibiotic resistance in bacteria [73]. Alongside their
benefits, phytochemicals also have some limitations,
phytochemicals cannot be used as monotherapy because their
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MIC (minimum inhibitory concentrations) range from 100 to
5000 pg/ml, which is significantly higher than that of
antibiotics [74]. Similar to antibiotics, bacteria may acquire
resistance to single phytochemical targeting a particular
bacterial site [75]. The antimicrobial properties and mode of
action utilized by phytochemicals, specifically secondary
metabolite compounds, are explored in the following sections.
Table 1 provides an overview of the medicinal plants that work
against ESKAPE pathogens. A summarized depiction is
provided in Fig. (3).

Table 1. A concise summary of active components, their sources and mode of action of secondary metabolites against

ESKAPE.
Plant
S.No.[ Secondary Active Components Biological Source Target Pathogens Mode of Actions References
Metabolites
Tetrahydrosecamine and Rhazva stricta MRSA, Rupturing the bacteria's cell [166]
Streptanol 4 P. aeruginosa wall
1. Alkaloids Caffeine Coffea arabica P. aeruginosa interactions with QS proteins [167]
- . . . . effectively cure the antibiotic-
8-Epidiosbulbin-E-acetate Dioscorea bulbifera P. aeruginosa resistant R-plasmids [168]
MRSA,
Haloemodins Rheum species vancomycin-resistant E. block DNA gyrase [169]
faecium
Inhibits violacein production,
Malvidin Syzgium cumini K. pneumoniae biofilm formation, [170]
exopolysaccharide generation
Commiphora
leptophloeos,
Proanthocyanidins and Anadenanthera . . .
Hydrolysable tannins colubrina, P. aeruginosa Stop biofilm formation [171]
Myracrodruon
urundeuva
Biochanin A Brassica oleracea MRSA lowering the expression of the [84]
NorA protein
Pinostrobin Pinus strobus P. aeruginosa Inhibits the activity of NorA [172]
efflux pumps
Mpyricetin, Phloretin, Vitis vinifera, MRSA, m.hlblt bloﬁlm formation,
Hesperetin Citrus li Staphviococeus strains disruption of norA efflux [173]
2. | Polyphenols p itrus limon aphylococcus mechanism
Capparis spinosa lowering the generation of
Quercetin Polymnia fruticose, P. aeruginosa V1rule.nce factors ar}d the [174]
Ginkeo biloba expression of genes linked to
Sophoraflavanone B Desmodium MRSA mpturlng the. cell membre‘ine [175]
caudatum and causing internal leaking
N . . . suppresses the QS mechanism
Vitexin Vitex species plants P. aeruginosa by blocking a number of genes [176]
suppresses the generation of
. L . virulence agents as well as the
Wogonin Agrimonia pilosa P. aeruginosa expression of genes linked to [177]
Qs
Morusin Morus alba S. aureus disruption to the bacterial [178]
membrane
Norwogonin, Chebulinic acid, Sc.utellarl.a ..
oo . baicalensis, A. baumannii [179]
Chelagic acid and Terchebulin - -
Terminalia chebula
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(Table 1) contd.....
Plant
S.No.| Secondary Active Components Biological Source Target Pathogens Mode of Actions References
Metabolites
vancomycin- and inhibits the respiratory chain by
Cryptotanshinone Salvia miltiorrhiza | methicillin-resistant S. attacking type II [180]
aureus NADH:quinone dehydrogenase
Disruption in the metabolism of]
Oridonin Rabdosia rubescens MRSA protein and DNA, as well as [181]
permeation of the cell wall.
. Andrographis . Suppress the QS-controller
Andrographolide paniculata P. aeruginosa LasR and RhIR [182]
Thymoquinone Nigella sativa S. aur?us generation of refictlve oxygen [183]
3. Terpenes P. aeruginosa species
inhibits the action of amino
. Cinnamomum A. baumannii acid decarboxylase
Cinnamonaldehyde zeylanicum P. aeruginosa inhibits the formation of AHLs (118, 184]
and QS- regulated pyocyanin.
(4R)- (-)-Carvone Mentha viridis E. faecium _ [185]
. Chenopodium .
o-terpinene ambrosioides S. aureus Inhibits the efflux pump [186]
. L " . inhibit biofilm development
6-gingerol Zingiber officinale P. aeruginosa and pathogenicity [187]
Diallium sulfide and Diallium
disulfide MRSA - [188]
Diallium disulfide Allium sativum, P. aeruginosa suppressed the three QS [189]
. systems (rhl, pgs, and las)
Allium cepa
Allyl isothiocyanate, Benzyl
Organosulfur 4 Y i Yy
4. co%np ounds isothiogyanqte and Phenethyl Emg’jo:uicef: P Antibacterial activity [190]
isothiocyanate
Enterobacter sp.
Hirsutine Cocullus hirsutus 5 dureus anti-microbial activity [191]
P. aeruginosa
K. pneumoniae
3.1. Alkaloids formation of the Z-ring and promoting cell extension [81]. The

Alkaloids are secondary metabolites, found abundantly in
various medicinal plants, containing nitrogen in their chemical
ring. Alkaloids can be grouped into semi-synthetic and natural
categories [76]. Additionally, they can be classified by
heterocyclic ring and a non- heterocyclic ring [7]. Alkaloids are
distinctive in their bioactivity because they include nitrogen,
which may receive protons, and one or more hydrogen atoms
that donate to amines. These hydrogen atoms are typically
accompanied by functional [77]. Some significant Alkaloids
and their structure shown in Fig. (4). Sanguinaria canadensis
roots are the source of the benzophenanthridine alkaloid known
as sanguinarine. Sanguinarine has demonstrated antibacterial
action against methicillin-resistant S. aureus (MRSA), and the
mechanism behind this involves the induction of cell lysis,
which is facilitated by the discharge of autolytic enzymes [78].
Sanguinarine can cause oxidative stress in pathogenic bacteria
by creating reactive oxygen species. The buildup of ROS
(reactive oxygen species) disrupts essential biological
components, resulting in bacterial death. This oxidative attack
is specifically efficient against MRSA [79]. Sanguinarine's
structure comprises a planar, polycyclic benzophenanthridine
system that enables it to easily intercalate with bacterial DNA.
This intercalation can interfere with the activity of bacterial
DNA, especially MRSA [80]. Sanguinarine also revealed
antibacterial efficacy against S. aureus. Its work by interacting
with FtsZ, suppressing its GTPase activity, preventing the

alkaloid component conessine, which was extracted from
Holarrhena antidysenterica, inhibits the bacteria's efflux pump,
exhibiting strong inhibitory effect against P. aeruginosa.
Conessine enhances antibiotic action by blocking the MexAB-
OprM efflux pump system in P. aeruginosa [82]. By blocking
the AdelJK efflux pump, it has demonstrated the ability to
modify resistance in A. baumannii [83]. Tomatidine, a
naturally occurring steroidal alkaloid, is present in plants of the
Solanaceae family like potatoes, tomatoes, has demonstrated
significant antibacterial activity toward S. aureus either on its
own or in conjunction with aminoglycosides. Furthermore, it
has been demonstrated that tomatidine and aminoglycosides
work synergistically to combat antibiotic-resistant forms of S.
aureus. Consequently, tomatidine is considered a potential
enhancer for the effectiveness of several antibiotics, such as
gentamicin, ciprofloxacin, cefepime and ampicillin. Its
potential extends to treating infections caused by S. aureus, P.
aeruginosa [84]. Tomatidine prevents S. aureus by acting on
the bacterial ATP synthase subunit c, which results in
decreased ATP generation [85]. Combining ciprofloxacin with
piperine, an alkaloid of the piperidine type that originates from
Piper longum and Piper nigrum, prevents a mutant S. aureus
from developing. Moreover, the S. aureus MIC levels
significantly decline [86]. Piperine inhibits S. aureus and
MRSA through impeding the NorA efflux pumps [87, 88].
Piperine and gentamicin given together work well to treat
MRSA infections [87]. Piperine reduces the hydrophobicity of
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the cell membrane in MRSA, an important factor in biofilm
generation. It also inhibits microbial movement, indicating that
it interacts with QS components. Additionally, exposure to
piperine elevates intracellular ROS, improves permeability of
cell membranes, and reduces the release of different virulence
genes from MRSA [89]. Isoquinoline alkaloid berberine is
derived from numerous naturally occurring therapeutic plants
including Hydrastis canadensis, Coptis chinensis, Berberis
aristata, and Coptis japonica. Berberine cleaves bacterial DNA
and successfully disrupts the cell wall of drug-resistant A.
baumanii [90]. All investigated MRSA strains are susceptible
to berberine's antimicrobial action, with MIC levels fluctuating
between 32 to 128 pg/mL. Berberine has the ability to prevent
MRSA adherence and internal penetration in HGFs (Human
gingival fibroblasts) and to make beta-lactam drugs more
effective against MRSA [91]. Berberine inhibits MRSA
biofilm generation by disrupting the self-assembly of PSMs
(phenol-soluble modulins) into amyloid fibrils, hence
increasing antibiotic bactericidal action [92]. By inhibiting the
MexXY-OprM efflux pump system, berberine works
synergistically with the carbapenem antibiotic to restore the
sensitivity of imipenem resistant P. aeruginosa [93]. A dose of
63.5 g/ml of berberine inhibits the formation of biofilms in a
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large number of pathogenic strains of K. pneumoniae [94].
Reserpine, an indole alkaloid extracted from Rauwolfia
serpentina, exhibits inhibitory efficacy against K. pneumoniae
biofilms with a MIC level of 15.6 g/ml [95]. Reserpine makes
K. pneumoniae more susceptible to antibiotics by blocking the
efflux pump [96]. Reserpine can inhibit and destroy the biofilm
of S. aureus at various sub-inhibitory doses. Reserpine interacts
with S. aureus biofilm- and virulence-controlled proteins,
resulting in a reduction in the pathogenicity [97]. Reserpine
also supresses the efflux pump mechanism of S. aureus [98].

3.2. Phenolic Compounds

Plant phenolics have a broad spectrum of pharmacological
activity and potent pharmacological impacts making them
significant bioactive substances [99]. Phenols generated from
plants have an aromatic ring configuration with a number of
hydroxyl groups and can exist in simple or polymerized
variants [100]. Phenolic substances are classified into different
categories depending on their molecular structure [101]. These
different groups include simple phenols, flavonoids, phenolic
acids, stilbenes, quinones, lignans and tannins [102]. Phenolics
generated from plants have shown antibacterial efficacy against
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a range of microbes by increasing their susceptibility to
antibiotics and acting as potent inhibitors of the efflux pump to
decrease efflux pump activity [99]. Some significant Phenolic
compounds and their structure shown in Fig. (5). Due to
varying numbers of hydroxyl substituents on their aromatic
rings, the flavonols galangin, quercetin, myricetin and
kaempferol may prevent the primary replicative DnaB helicase
of K. pneumoniae (KpDnaB) from binding to deoxyribonucleic
acid (dNTP). This helicase is a vital part of the cellular
replication machinery that is necessary for the survival of
bacteria [103]. The hydroxyl groups of phenolic substances
establish hydrogen bonds with the amino acid sequences of
DnaB helicase. Phenolic chemicals interact with several
bacterial cell locations due to their hydroxyl groups [104]. The
helicase S. aureus PriA (SaPriA), which is necessary for DNA
replication and crucial for bacterial viability, is inhibited by
kaempferol [105]. A naturally occurring kaempferol derivative
from Persea lingue termed kaempferol rhamnoside may up to
eight times block the NorA efflux pump of the S. aureus strain,
hence increasing the antibacterial action of ciprofloxacin [106].
Flavone baicalein is mostly extracted from Scutellaria
baicalensis Georgi. It works by blocking NorA efflux pumps,
which makes antibiotics like B-lactams, ciprofloxacin, and
tetracycline more effective against MRSA [107]. Baicalin
strengthens the bactericidal properties of several common
antibiotics while inhibiting the development of P. aeruginosa
biofilms. Furthermore, baicalin reduces the quorum sensing
(QS)-regulated virulence characteristics in P. aeruginosa in a
dose-dependent manner [108]. Baicalein inhibits P.
aeruginosa-induced cytokine release, including IL-8, IL-6,
IL-1B and TNFa. It also inhibits the P. aeruginosa-induced
activation of NFkB and MAPK signalling pathways in
macrophages [109]. Another class of phenolic compounds with
health advantages is the catechin gallates, which include
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epigallocatechin gallate. These compounds also show strong
antibacterial activity against organisms that are resistant to
antibiotics, such MRSA. These substances only slightly impede
the NorA efflux pump [110]. The development of MRSA
strains is significantly inhibited by tea catechin extracts, with a
minimal inhibitory dose of 0.1 g/L. Tea catechin hinder the
formation of biofilms by repressing the fnbA and fnbB
(fibronectin-binding proteins A and B) [111]. Naringenin is a
flavanone commonly present in tomatoes and citrus fruits.
Naringenin greatly diminishes the generation of elastase and
pyocyanin in P. aeruginosa, yet it does not influence bacterial
growth. Naringenin inhibits the activity of QS-controlled genes
in P. aeruginosa, including lasA, lasB, lasl, asR, phzAl, rhlA,
rhll, and rhIR. Additionally, it significantly lowers the levels of
the N-butanoyl-L-homoserine lactone (C4-HSL) and
acylhomoserine lactones N-(3-oxododecanoyl)-L-homoserine
lactone (3-oxo-C12-HSL) [112]. Naringin reduces biofilm
development by up to 57%. It significantly decreases biofilm-
related features such as EPS (exopolysaccharides) and alginate
formation [113]. Both gallic acid and ferulic acid exhibit
noteworthy antimicrobial properties against P. aeruginosa and
S. aureus. Their mechanism of action is attributed to the
leakage of potassium ions, modification of the hydrophobicity
of the cell surface, and loss of cell membrane integrity. Ferulic
acid achieves MICs of 500 mg/mL for P. aeruginosa and 1750
mg/mL for S. aureus, while gallic acid shows antimicrobial
efficacy of 1100 mg/mL for S. aureus and 100 mg/mL for P.
aeruginosa against the microorganisms [114]. Curcumin,
which is widely distributed in Curcuma longa L., has been
shown to exhibit antimicrobial properties towards S. aureus.
This antibacterial activity is ascribed to curcumin's ability to
permeate into the bilayer and increase the permeability of the
membrane [115]. a-Hemolysin (Hla) is a key virulence factor
secreted by S. aureus. Curcumin effectively inhibits hemolysis
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induced by Hla, potentially reducing infection severity [116].
Curcumin inhibits the production of S. aureus PBP2a protein
and disrupts protein synthesis by disrupting RNA. It inhibits
early biofilm formation genes, affects QS-dependent virulence,
interferes with the SOS response, and hampers bacterial DNA
damage repair processes [117]. Curcumin shows anti-infective
efficacy against P. aeruginosa infections by impacting
virulence, disrupting QS, and inhibiting the initiation of biofilm
formation [115]. Curcumin exhibits minimal antibacterial
efficacy against A. baumannii strains Its antibacterial effects
stem from multiple mechanisms, such as bacterial cell division
and interruption of the folic acid biosynthesis pathway [118].
Curcumin decreases pellicle production and surface mobility in
A. baumannii and exhibits antibiofilm action against A.
baumannii [119]. Clinical specimens of A. baumannii are
susceptible to the antibacterial effects of the polyphenol
theaflavin found in black tea. Theaflavin's antibacterial effect is
believed to be mediated by membrane interaction. The activity
of theaflavin against A. baumannii can be enhanced by
epicatechin. It's likely that epicatechin enhances the
antibacterial activity of flavin by blocking its oxidation [120].
The primary phenolic component of Magnolia officinalis is
magnolol. Antibacterial efficacy of magnolol against S. aureus,
especially drug-resistant strains with MIC level between 8 and
16 ppm. Magnolol displays a strong affinity for the cell
division protein FtsZ [121]. Magnolol inhibits MRSA by
upregulating mecRI and repressing mecA and mecl [122].
Lonicera japonica contains a flavonoid called lonicerin. At
sub-MIC concentrations, Lonicerin considerably decreases
alginate production (25 pg/mL) and biofilm generation (12.5
png/mL) without affecting alginate secretion protein (AlgE)
expression or P. aeruginosa proliferation. This suggests that
licorerin directly inhibits AIgE [123]. One of the primary active
ingredients in pomegranate peel, punicalagin, has a wide range
of documented benefits, including immunosuppressive,
antiviral, antibacterial, and antioxidant effects. Punicalagin

HO HO

Quercetin Kaempferol

Naringenin

Fig. (5). Some potent phenols that used against ESKAPE pathogens.

Ghosh et al.

significantly inhibits the production of S. aureus biofilms. MIC
of 0.25 mg/mL for punicalagin indicates strong
antistaphylococcal activity. Punicalagin treatment at 2xMIC
causes an increase in the release of potassium in the cells. The
cell membrane is structurally disrupted by punicalagin [124].
Sortase A (SrtA), an enzyme located on the surface of S.
aureus, is essential for bacterial virulence while not impacting
bacterial viability. Punicalagin effectively inhibits SrtA
activity, with a low IC50 value of 4.23 pg/mL. Additionally,
punicalagin reduces the virulence-associated function of SrtA
by limiting the attachment of S. aureus to fibrinogen, limiting
the expression of protein A (SpA) and suppressing biofilm
generation [125]. Aloe vera, Cassia occidentalis, and
Polygonum multiflorum can all be used to extract aloe-emodin,
a naturally occurring anthraquinone derivative and active
component. Aloe-emodin inhibits MRSA at 16 pug/mL, P.
aeruginosa at 256 pg/mL, and S. aureus at 32 pg/mL. Aloe
emodin-treated cells exhibit modifications in the genes
responsible for sulfur metabolism, biofilm formation, and the
manufacture of L-lysine and peptidoglycan [126]. Natural
polyphenolic chemical resveratrol can be found in significant
quantities in red wine, peanuts, grapes, and other plant sources.
It has strong antibacterial activity, and recent research has
shown that it can significantly enhance the effectiveness of
aminoglycoside medicines, including tobramycin, amikacin,
gentamicin and netilmicin, against P. aeruginosa biofilms.
Resveratrol has the ability to disable ATP synthase, increasing
S. aureus's susceptibility to polymyxin B. Resveratrol has a
capacity to make polymyxin B more effective in killing MDR-
K. pneumoniae by increasing its sensitivity to the antibiotic.
Resveratrol may break down the bacterial cell envelope, which
would make it possible for polymyxin B to attach to greater
targets in the outermost layer of the membrane [127].
Resveratrol can regulate norfloxacin resistance by inhibiting
the NorA efflux pump, which increases the antibiotic's efficacy

against S. aureus [128].
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3.3. Terpenes

Terpenes, or isoprenoids, represent the most diverse class
of natural products [129]. They are intriguing because they are
found in nearly all forms of life and serve a broad array of
functions, from fundamental to functional [130]. These
substances are made from isopentenyl pyrophosphate, a five-
carbon precursor unit, and its functional isomer, dimethylallyl
pyrophosphate [131]. They are also widely present in flowers,
vegetables, and fruits. In general, they are concentrated in large
amounts in the leaf and reproductive systems of plants during
and right after flowering. Many plants have distinctive scents,
which are caused by terpenes, that are the main constituents of
resins. Terpenes have a greater effect on Gram-positive
bacteria than on Gram-negative ones. The lipophilic
characteristics of terpenes are intimately linked to their
antimicrobial action. The frameworks of the cell membrane are
mostly affected by monoterpenes, which change the topology
of its proteins, increase fluidity and permeability, and disrupt
the respiration chain [132]. Some significant Terpenes and
their structure shown in Fig.6. Carvacrol is frequently present
in Thymus vulgaris and Origanum vulgare essential oils.
Carvacrol is considered a broad-spectrum antibiotic that works
well against fungi, yeasts, and bacteria. Additionally, it exhibits
antibiofilm activity against S. aureus. Carvacrol has the ability
to break bacterial membranes, resulting in the leaking of
internal K" ions as well as ATP, consequently leading to cell
death [133]. Carvacrol decreases the production of the
antioxidant molecule staphyloxanthin and its derivatives in
MRSA by attacking the key regulatory protein SarA
(staphylococcal accessory regulator A) and the new
antivirulence substrate CrtM (4,4'-diapophytoene synthase)
[134]. By blocking LasI activity and concurrently lowering the
levels of lasR, biofilm, and swarming movement, carvacrol
decreases P. aeruginosa's pathogenicity [135]. Biofilm
inhibition may disrupt QS by reducing the synthesis of
pyocyanin and violacein in P. aeruginosa [136]. Carvacrol
inhibits 4. baumannii by compromising the integrity of the cell
membrane, hindering DNA synthesis, and decreasing enzyme
activity. Carvacrol is effective at suppressing twitching
motility, which is a critical step in biofilm generation [137].
Thymol, a volatile monoterpenoid phenol found naturally, is
the primary active ingredient of oil derived from the Thymus
vulgaris L. species. Antibiotics and thymol together
demonstrate a potent synergistic effect that inhibits the
production of K. pneumoniae biofilms and destroys preexisting
ones [138]. Thymol increases the penetration of lytic agents
across the outer membrane of K. pneumoniae, especially for
SDS (sodium dodecyl sulfate) and Triton X-100. At a
concentration of 300 pg ml ', thymol makes bacterial cells
more susceptible to lysis by SDS and Triton X-100 [139].
Moreover, thymol inhibits S. aureus by reversing the efflux
pump's function [140]. Thymol disturbs the intracellular
balance of S. aureus by altering ATP and NADPH levels and
inducing lipid peroxidation [141]. Thymol suppresses MRSA
by limiting biofilm development and eliminating mature
biofilms by inhibiting PIA (polysaccharide intercellular
adhesin) production and releasing eDNA (extracellular DNA).
Nonetheless, the combination of thymol and vancomycin is
more effective in eradicating MRSA biofilms [142]. Ocimum
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tenuiflorum is the source of linalool and eugenol. The
generation of QS proteins including lasA and lasB, along with
virulence elements such as rhamnolipids and pyocyanin, may
be impacted by eugenol and linalool, which significantly
impair P. aeruginosa's ability to build biofilms [143]. Eugenol
demonstrates effectiveness in suppressing and eliminating
biofilms generated by S. aureus. Eugenol prevents the
phosphorylation of enzyme I in the bacterial PTS
(phosphotransferase system), as well as critical carbon
metabolism enzymes such as succinyl-CoA synthetase and
glucose-6-phosphate isomerase. Moreover, eugenol suppresses
AgrA phosphorylation, which reduces the production of agr
transcriptional units and virulent genes [144]. Furthermore, it is
also discovered that eugenol's ability to downregulate the
expression of genes involved in A. baumannii biofilm creation
significantly contributes to inhibiting biofilm formation and
damaging biofilm framework [145]. Ursolic acid (UA), which
exhibits antibacterial effect against some pathogens. At a MIC
of 0.8 mg ml", UA is efficient against CRKP. UA inactivates
CRKP cells encased in biofilms, disturbs the integrity of the
CRKP cell membrane, and shows potent inhibitory effects
against the formation of biofilms and biofilm-related gene
expression. For treating MDR-K. pneumoniae infections, UA
therefore shows potential when used in conjunction with other
antibiotics [146]. Fruits contain betulinic acid, a lupane-type
triterpenoids that have been shown to have a number of
pharmacological properties, such as antibacterial. The MIC of
betulinic acid for P. aeruginosa and S. aureus is 256 pg/mL.
Bacterial cells exposed to betulinic acid produce a considerable
increase in superoxide anion radical generation and the ratio of
NAD+/ NADH increases dramatically in bacteria. After
betulinic acid treatments, P. aeruginosa and S. aureus show a
significant drop in reduced glutathione levels along with an
increase in malondialdehyde, glutathione disulphide and
fragmented DNA [147]. Sesquiterpene alcohols having an
aliphatic carbon chain, such as nerolidol and farnesol, exhibit
antibacterial action against a range of S. aureus strains,
including MRSA. These terpene alcohols affect the bacterial
cell membrane by measuring intracellular K+ ion leakage. The
antibacterial effectiveness of the substances that perturb the
membrane is reflected in the release of K+ into the cells. The
overall amount of K+ leakage is assessed for antibacterial
activity, but the initial pace of leakage is recognized as causing
harm to the cell membranes [148]. The leaves and distal
branches of Melaleuca alternifolia are steam-distilled to make
tea tree oil (TTO), which is currently used in conventional
medicine. TTO possesses antibacterial properties against
MRSA, K. pneumoniae, A. baumannii, and P. aeruginosa, both
when used alone and in conjunction with other antimicrobials.
The antibacterial activities of TTO are demonstrated by its
capacity to suppress bacterial respiration, break microbial
membrane structures' permeability barrier, and induce
potassium ion leakage into Gram-positive as well as Gram-
negative bacteria [149]. A number of plants, including
marjoram, lavender, Mexican giant hyssop and thyme, contain
the terpene linalyl anthranilate (LNA). By creating ROS and
oxidative stress, which rupture the bacterial membrane through
lipid peroxidation, LNA destroys K. pneumoniae cells that
produce carbapenemase [150]. The essential oil of Rosmarinus
officinalis and one of its main constituents, eucalyptol (1,8-
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cineole), show excellent antibacterial efficacy against MDR
strains of P. aeruginosa and A. baumannii, as well as a
synergistic effect with ciprofloxacin. The investigation using
flow cytometry shows that the natural chemicals work by
causing permeabilization of the cell wall and inhibiting the
activity of the efflux pumps [151]. The MDR-K. pneumoniae is
effectively inhibited by 1,8-cineole, which is also able to break
up the biofilms that these bacteria generate [152].

3.4. Organosulfur Compounds

Organosulfur compounds are those that have sulfur atoms
bound to carbon. Two principal plant groups with organosulfur
properties are Allium species Alliaceae family (garlic, onion,
etc.) containing S-alk(en)yl-l-cysteine sulfoxides and
cruciferous plants of Brassicaceae family (cabbage, kale,
broccoli, cauliflower, Brussels sprouts etc.) including Eruca
(rocket salad), containing S-methyl cysteine-1-sulfoxide [153].
Organosulfur compounds are categorized based on the
functional group bonded to sulfur [154]. Crucial organosulfur
compounds include sulfide, thiol, disulfide, thiosulfates,
sulfones, isothiocyanate and sulfoxide. Antibacterial properties
of these organosulfur compounds have been found against both
Gram-positive and -negative microorganisms [155]. Some
significant Organosulfur compounds and their structure shown
in Fig. (7). An organosulfur compound is allicin (diallyl
thiosulfinates) found in plants of the allium genus mostly in
garlic (Allium sativum). When garlic is chopped, smashed, or
chewed, it releases allicin, which is not present in fresh,
undamaged cloves of garlic [156]. Allicin is created by the
autocondensation of the appropriate sulfenic acid intermediate
in the aqueous phase, which is obtained by the enzymatic
catalysis of alliinase [157]. Allicin is effective against S.
aureus, including MRSA strains, even those that have
developed resistance to mupirocin [158]. Allicin penetrates
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Gram-positive cell walls, reacting with conserved proteins and
causing thiol specific oxidative and sulfur stress in S. aureus.
According to Loi ef al., allicin treatment results in S-
thioallylation of 57 proteins, which bacteria are unable to resist
via adaptation or mutation [159]. Crushed garlic means allicin
as active constituent effective against normal strains of E.
faecium species and MDR enterococci [160]. Ajoene (4,5,9-
trithiadodeca-1,6,11-triene-9-oxide) is produced through the
process of allicin S-thiolation and the addition of 2-
propenesulfenic acid [161]. It was extracted from an ether
fraction of garlic extract. Ajoene (disulfide) inhibit QS thereby
effective in infection caused by P. aeruginosa and MRSA
[162, 163]. Sulforaphane and erucin are obtained from
glucosinolate glucoraphanin, which is present in cruciferous
vegetables like kale, broccoli and Brussels sprouts. The
enzyme myrosinase changes glucoraphanin in these veggies
into sulforaphane and when it is chopped or chewed and erucin
is the thioether analogue of sulforaphane. Sulforaphane and
erucin both are isothiocyanate compound [164]. Sulforaphane
and erucin (deoxy precursor of sulforaphane) both are
efficiently binds LasR (LuxR autoinducer binding site receptor,
transcriptional regulator) to block QS activation in P.
aeruginosa [165].

4. ASSESSMENT OF THE ANTIMICROBIAL
EFFECTIVENESS OF PHYTOCHEMICAL EXTRACTS

A variety of assessment techniques are now being used to
determine the potential antibacterial activity of new therapeutic
plant extracts [192]. The different antimicrobial susceptibility
tests (ASTs) may result in variations in the obtained outcomes
[73]. The results achieved will be impacted by the scientific
standards utilized in selecting the plant material, the choice of
solvent and extraction method, the methodology applied,
growth medium composition, and the microorganisms chosen
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Fig. (7). Some potent organosulfur compounds that used against ESKAPE pathogens.

for the study [193,194]. Recent standard methods for
antimicrobial susceptibility testing, generally classified into
diffusion and dilution techniques, may not be suitable for plant
extracts and require specific modifications [195,196]. A
significant issue with diffusion and dilution-based AST
involves the accessibility of active principles, which can be
affected by the test compound's solubility [197]. Diffusion
methods provide qualitative information on the existence or
nonexistence of antimicrobial agents. Diffusion tests were
commonly used in investigations due to their simplicity and
convenience of use, however lack of standardization led to
inaccurate as well as non-reproducible outcomes [195].
Dilution procedures are quantitative techniques utilized to
determine the MBC (minimum bactericidal concentration) or
MIC of antimicrobial substances [198,199]. These approaches
have benefits over diffusion methods, such as increased
sensitivity for lower extract amounts, quantitative analysis, and
differentiation between bactericidal and bacteriostatic effects
[200]. In the broth microdilution technique, assays are
conducted using small amounts of the test antibiotic,
facilitating rapid assessment of bacterial susceptibility. The
method's main drawback is the need for human manipulation of
antimicrobial solutions, which might lead to errors during
preparation. Agar dilution provides several benefits, including
the ability to test multiple biological isolates at once,
observation of diverse populations or multiple cultures, and
versatility in choosing samples and concentration ranges for
testing. Etest, a commercial AST that combines agar dilution
and disc diffusion methods, exhibits minimal variation, good
reproducibility, and is comparable to established MIC
approaches [201].

CONCLUSION

Phytochemicals are now recognized as prospective
therapeutic options in the fight against AMR, notably ESKAPE

infections, which pose substantial threats to world health. This
study focuses on a wide range of phytochemicals with
antimicrobial properties, including alkaloids, phenolic,
terpenoids and organosulfur compounds, proving their ability
to limit the growth of these tenacious pathogens. The findings
imply that phytochemicals can be useful replacements or
adjuncts to traditional antimicrobial agents, potentially
circumventing the restrictions given by increasing resistance
rates.Integrating scientifically verified phytochemicals into
healthcare facilities could make treatment alternatives more
accessible, especially in low-resource areas where access to
antibiotics may be limited. Through the provision of alternative
treatments for mild infections, phytochemicals contribute to
antibiotic stewardship by reducing unnecessary application of
antibiotics. The effectiveness of present antibiotics should be
maintained by public health programs that support research
into phytochemical-based formulations as complements to
existing medications.

Particularly in low-income communities where access to
medications is limited, phytochemicals made from readily
available plants provide affordable substitutes. Their
accessibility is essential for tackling AMR since it offers
feasible treatment options for infections. Incorporating
phytochemical knowledge into public health education could
encourage communities to adopt more secure and sustainable
antimicrobial methods, reducing reliance on conventional
antibiotics. public health policies may foster research into the
antimicrobial properties of traditional medicinal plants,
ensuring that phytochemicals are potent, thoroughly examined
for efficacy and safety, and integrated into healthcare strategies
to improve the management of resistant infections.

Despite these promising findings, some gaps in current
understanding require more exploration. To begin, the
mechanisms behind the antibacterial effect of different
phytochemicals against ESKAPE infections are not well
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characterized. Future research should focus on elucidating
these pathways using molecular and cellular investigations,
which will lead to the creation of tailored phytochemical-based
medicines. Furthermore, thorough invivo investigations are
required to examine the therapeutic value of these molecules
within complex biological systems, as well as their safety
profiles, to ensure that they do not cause side effects or interact
unfavourably with existing drugs. Furthermore, investigating
the combined effects of phytochemicals and traditional
antibiotics is an intriguing area of research. Identifying
combinations that improve antibiotic efficacy could help
develop novel techniques for combating resistant illnesses.
While the therapeutic value of phytochemicals in combating
AMR is clear, specific research initiatives are necessary to
fully exploit their advantages.
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