Skip to content
2000
Volume 6, Issue 4
  • ISSN: 1573-3955
  • E-ISSN: 1875-631X

Abstract

Tuberculosis (TB) accounts for an increasing morbidity and mortality across the world. Approximately 8.8 million new TB cases emerge and 1.6 million people die of this disease every year. Host defense against microbial pathogens involves an inflammatory reaction in which innate and adaptive immune mechanisms play an active role in its development. When the pathogen cannot be contained by the initial response, as usually occurs in TB, a systemic response characterized by multiple metabolic and neuroendocrine changes develops. Essential functions like defensive responses and metabolism are regulated by a series of molecules with pleiotropic effects, like pro-inflammatory cytokines, adrenal steroids, and adipocytokines; which affect both the regulation and/or redirectioning of energy sources and immune activity. Patients with TB, frequently displaying a consumption state, and their highly exposed close-household contacts (HHC) constitute “natural models” for analyzing this type of immune-endocrine-metabolic relation. We have shown the existence of an immune-endocrine imbalance in TB patients characterized by increased circulating levels of IFN-γ, IL-6, prolactin, thyroid hormones, cortisol, and growth hormone, accompanied by decreased concentrations of leptin and DHEA, and without significant differences in insulin-like growth factor-1. In contrast HHC coursing a latent subclinical infection, showed a modest decrease of DHEA in presence of increased amounts of leptin. In vitro studies showed that culture supernatants from M. tuberculosis-stimulated PBMC of TB patients inhibited DHEA secretion by a human adrenal cell line. It was also found that the unbalanced immune-endocrine relation of TB patients was associated to the weight loss they presented, which in turn accounted for the impairment on their specific in vitro cellular immune responses. The host response during TB results in an altered immune-endocrine communication, affecting essential biological functions, like the development of protective responses, control of tissue damage and metabolism, implied in a poorer disease course.

Loading

Article metrics loading...

/content/journals/cir/10.2174/1573395511006040314
2010-11-01
2025-09-07
Loading full text...

Full text loading...

/content/journals/cir/10.2174/1573395511006040314
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test