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Abstract: Immunologic “immaturity” is often blamed for the increased susceptibility of newborn humans to infection, but 

the precise mechanisms and details of immunologic development remain somewhat obscure. Herpes simplex virus (HSV) 

and cytomegalovirus (CMV) are two of the more common severe infectious agents of the fetal and newborn periods. HSV 

infection in the newborn most commonly occurs after exposure to the virus during delivery, and can lead to a spectrum of 

clinical disease ranging from isolated skin-eye-mucous membrane infection to severe disseminated multiorgan disease, 

often including encephalitis. In contrast to HSV, clinically severe CMV infections early in life are usually acquired during 

the intrauterine period. These infections can result in a range of clinical disease, including hearing loss and 

neurodevelopmental delay. However, term newborns infected with CMV after delivery are generally asymptomatic, and 

older children and adults often acquire infection with HSV or CMV with either no or mild clinical symptoms. The reasons 

for these widely variable clinical presentations are not completely understood, but likely relate to developmental 

differences in immune responses. 

This review summarizes recent human and animal studies of the immunologic response of the fetus and newborn to these 

two infections, in comparison to the responses of older children and adults. The immunologic defense of the newborn 

against each virus is considered under the broader categories of (i) the placental barrier to infection, (ii) skin and mucosal 

barriers (including antimicrobial peptides), (iii) innate responses, (iv) humoral responses, and (v) cellular responses. A 

specific focus is made on recent studies of innate and cellular immunity to HSV and CMV. 
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INTRODUCTION 

 Herpesviruses infections of humans are very common 
and prevalent in the population. All herpesviruses establish 
latency in different tissues, and periodic reactivation can lead 
to transmission [1]. Although the majority of infections with 
herpes simplex virus (HSV) and cytomegalovirus (CMV) are 
clinically mild or even asymptomatic, primary infection in 
the fetal and perinatal periods can be neurologically 
devastating or fatal [2, 3]. The precise reasons for the 
increased severity of disease early in life are not clear, and 
may involve many aspects of immune defense. 

 Although both HSV and CMV generally initiate infection 
at mucosal surfaces, they have substantial differences in their 
biological characteristics which are relevant to the  
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understanding of immunity after infection with either agent. 
In immune-competent individuals, HSV generally infects a 
limited number of cell types, including mucosal and 
cutaneous epithelial cells and neurons, and may be clinically 
silent or cause ulcerative lesions [4]. Spread of the virus to 
other tissues is associated with an inability of the immune 
system to limit viral replication to the mucosa, and latent 
infection is largely restricted to neurons [4]. Conversely, 
CMV often causes a persistent primary infection, even in 
immune-competent adults [5], and remains latent in a variety 
of tissues [3]. However, although a mononucleosis-like 
syndrome is a recognized clinical presentation of primary 
CMV infection, severe disease due to CMV is almost 
exclusively restricted to immune-compromised individuals 
[3]. 

 HSV causes neonatal infection in between 1 in 2000 [6] 
and 1 in 8000 [7] live births in the United States, though for 
unclear reasons the reported incidence is much lower in other 
countries [8, 9]. Clinical syndromes of neonatal HSV include 
encephalitis (with or without skin or mucosal disease), 
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visceral dissemination (with or without encephalitis), and 
isolated skin-eye-mucous membrane disease [10]. Outcomes 
of neonatal HSV disease are associated with the clinical 
syndrome at presentation, but even with effective antiviral 
therapy infection neonatal HSV causes mortality in more 
than 15% of all infants and neurologic morbidity in more 
than two-thirds of survivors [11]. Despite the availability of 
antiviral agents and efforts to prevent HSV transmission 
during delivery (such as Caesarean delivery), a recent study 
in California noted that rates of neonatal disease and HSV-
associated mortality in newborns have remained stable over 
the past ten years [7]. Survivors of neonatal HSV-2 
encephalitis appear to be at increased risk of recurrent 
disease [12, 13], suggesting a lack of effective control of 
neuronal latency. 

 CMV is the most common known viral infection 
acquired in utero, occurring in up to 2.2% of live births in 
the United States [5, 14]. CMV is an important cause of fetal 
demise and intrauterine growth retardation [15]. About 90% 
of congenitally infected infants are asymptomatic [16]. 
Congenital CMV infection is the most common acquired 
cause of sensorineural hearing loss [17], which may occur in 
patients with either clinically symptomatic [18, 19] or 
asymptomatic [20, 21] congenital infection. Congenital 
CMV infection is also a major cause of subsequent 
developmental and neurologic abnormalities [20, 22]. 
Fulminant CMV disease in the newborn (cytomegalic 
inclusion disease) after intrauterine infection can lead to 
severe neurologic morbidity or mortality [3, 22]. Infants born 
prematurely who acquire CMV infection postnatally are also 
at high risk of symptomatic infection, including after 
ingestion of infected breast milk [23]. Term infants infected 
postnatally with CMV are generally asymptomatic, 
highlighting the importance of immune maturation in control 
of disease. 

 Relative to older children and adults, human fetuses and 
newborns have an increased susceptibility to infection with a 
variety of different pathogens [24]. The intrauterine 
environment is considered to have a general bias favoring 
immune tolerance [25], which may limit the ability of the 
fetus to fight infection [26]. During delivery, the newborn 
transitions from the normally sterile intrauterine milieu to an 
environment harboring numerous potential pathogens. 
Mechanical barriers to infection (skin and mucosa) may be 
less well developed in newborns relative to older children 
and adults [27]. Additionally, innate and adaptive immunity 
in the fetus and newborn has quantitative and qualitative 
differences from older children and adults, including in the 
numbers and function of immune cells, the function and 
levels of cytokines, and in the generation and levels of 
immune globulins [24]. Herpesviruses have evolved a 
variety of strategies for modulating human immune 
responses [28-30], which may have greater biological 
significance in the immunologically immature fetus and 
newborn. 

 We consider fetal and neonatal immunity in this review 
in the context of the important neonatal pathogens HSV and 
CMV, highlighting differences in disease caused by these 
viruses and in the responses generated. Emphasis is given to 
recent studies on the immunopathology of HSV and CMV 
infections. Although studies in both humans and mice are 

reviewed, we acknowledge that murine immune responses 
can differ from corresponding human responses, and data in 
mouse models may not directly extrapolate to humans. 

PLACENTAL AND AMNIOTIC IMMUNITY 

The Fetal-Maternal Interface 

 Many immune mechanisms have been described as 
contributing to maternal-fetal tolerance, including: (a) the 
lack of expression of the classical class I HLA molecules 
(HLA-A and HLA-B) by placental tissue [25], (b) the 
expression of non-classical HLA-C [31] and HLA-G [32], 
which may serve to inhibit maternal NK cells and induce 
regulatory T-cells (Treg) [33], (c) absence of class II 
expression in placental cells [34], (d) production of 
indoleamine 2,3-dioxygenase by placental cells, which may 
have direct inhibitory effects on maternal alloreactive T-cells 
[35] and indirect effects on antigen presenting cells and Treg 
[36], and (e) the presence at the placental interface of 
specialized maternal immune cells, including maternal Treg 
[37], CD16

-
 NK cells and perhaps other decidual granular 

leukocytes [38]. Another important function of the placenta 
relevant to fetal immunity is the active transport of maternal 
IgG into fetal blood, which is at least partly mediated by the 
high expression of the neonatal Fc receptor (FcR, or CD64) 
in placental tissue [39]. 

 Infections acquired in utero may result from ascending or 
transplacental viral spread. An understanding of 
developmental anatomy of the placenta is useful to 
understanding the mechanisms which may limit 
transplacental infection. The fetal-maternal interface is 
formed upon invasion of maternal uterine wall by fetally-
derived placental cells [40]. Cytotrophoblastic progenitor 
cells differentiate to form either multinucleated 
syncytiotrophoblasts which are bathed in maternal blood in 
the floating villi, or invade the decidua to create anchoring 
chorionic villi. Thus, depending on the stage of pregnancy, 
the most direct route from maternal blood to fetus requires 
crossing syncytiotrophoblasts and a variable number of 
cytotrophoblasts to reach fetal capillary endothelium and the 
fetal circulation. 

 Ascending infection of a developing fetus requires 
pathogens to overcome a variety of anatomic and immune 
barriers. The cervical plug, maternal-fetal membranes, and 
antimicrobial peptides in these tissues and in the amniotic 
fluid may contribute to protection against vertical infection 
[41]. The degree to which some of these barriers 
(particularly antimicrobial peptides) may protect against 
ascending HSV or CMV infection is considered in further 
detail in subsequent sections. 

HSV Infection of the Fetus 

 HSV rarely causes infection of the fetus; only 5% of 
cases of neonatal HSV are attributed to infection in utero 
[10]. Cases of intrauterine HSV infection have been 
attributed to ascending infection after either viral reactivation 
[42] or first episode genital infection [43]. Microscopic 
placental involvement during intrauterine HSV infection has 
been described, but appears to be secondary to amnionitis 
[42, 43]. 
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 The lack of transplacental infection due to HSV (unlike 
CMV) may be related to the infrequency with which HSV 
causes viremia. Although it was long thought that primary 
HSV infection did not commonly lead to viremia, recent 
studies have identified HSV DNA in peripheral blood of 
24% of patients with primary genital HSV [44]. Viremia has 
not been described during recurrent HSV, and the relative 
lack of available virus compared to CMV may partly explain 
the rarity of transplacental HSV spread. Notably, HSV DNA 
has been detected in placental tissue derived from 
uncomplicated pregnancies electively terminated at different 
times in gestation [45, 46]. Although cellular receptors for 
HSV appear to be present in placental tissue [47-50], if virus 
manages to infect placental tissue, spread to the fetus appears 
generally to be controlled, likely by maternal immune 
mechanisms. 

 In addition to differences in transplacental control of 
viral spread, another potential important difference between 
HSV and CMV is the site of viral latency. HSV is not known 
to become latent in immune cells, while CMV (discussed 
below) may reactivate in uterine tissue from latently infected 
white blood cells [45]. Perhaps reactivation of latent virus at 
the fetal-maternal interface also contributes to the ability of 
CMV but not HSV to cause transplacental infection. 

 Less is understood about other contributions of maternal 
immune responses at the placental interface to resistance to 
HSV infection. Even in rare cases of disseminated maternal 
HSV disease late in pregnancy, the infant is not always 
affected [51-53]. An equally puzzling question is why HSV 
does not cause ascending infection more frequently than it 
does, since an estimated 2% of women acquire primary 
genital infection during pregnancy [54]. Antimicrobial 
peptides are discussed further below, but have not been 
directly demonstrated to control ascending spread of HSV. 

Cytomegalovirus Infection of the Fetus 

 In contrast to HSV, there is good evidence that CMV 
causes transplacental infection [55]. However, the precise 
mechanism for viral transit from mother to fetus is not 
known. Tissue tropism of CMV is a complex and active area 
of research [56]. CMV is known to infect and establish 
persistence within endothelial cells, smooth muscle cells, 
and myeloid cells [56, 57]. Circumstantial evidence supports 
the concept that CMV may cause fetal infection via an 
ascending route, though hematogenous spread to the placenta 
is also likely [58]. Guinea pigs have a similar placental 
morphology to humans, and guinea pig cytomegalovirus has 
been shown to spread hematogenously to infect the placenta 
[59]. In this study, virus continued to be detected in the 
placenta long after clearance from the maternal blood, but 
only about  of fetuses were infected, suggesting that the 
placenta may be both a site of persistent CMV infection and 
a barrier to viral transmission. Subsequent studies in human 
placentas support a similar route of viral transit from mother 
to fetus [60, 61]. 

 It has been speculated that the immunologic environment 
of the maternal-fetal interface may contribute to reactivation 
of latent CMV in cells residing in the uterine wall, analogous 
to CMV reactivation in transplant patients [60]. Fetal cells 
which invade the uterine wall to contribute to placenta 
formation secrete IL-10 [62], which may have some local 

immune-suppressive activity. Latently infected maternal 
macrophages and/or dendritic cells (DCs) may migrate to the 
uterine wall in response to the presence of other pathogens, 
in effect carrying virus to a site at which local immune 
suppression may lead to reactivation and subsequent 
transmission to the fetus [45]. 

 A recent study suggested that the neonatal Fc receptor 
may paradoxically facilitiate CMV transmission to the fetus 
[63]. In this model, low-avidity maternal anti-CMV 
antibodies bind virions via their variable regions and the 
neonatal FcR via the constant region, ultimately allowing 
FcR to transcytose complexes of virus and antibody across 
the syncytiotrophoblast to infect underlying cytotrophoblast 
cells, with subsequent viral spread to the fetus. 
Dysregulation of cytotrophoblast function in infected cells, 
including effects on cell adhesion molecules, may also 
contribute to viral dissemination to the fetus [64]. 
Conversely, in the presence of strongly neutralizing (high-
avidity) maternal anti-CMV titers, nucleocapsids are retained 
within vesicular compartments in syncytiotrophoblast cells 
without evidence of viral replication [63]. 

 Putative cell surface receptors for CMV include the 
epidermal growth factor receptor (EGFR) [65], the integrins 

2 1, 6 1, and V 3 [66, 67], and platelet-derived growth 
factor-  receptor (PDGFR- ) [68]. Cytotrophoblasts have 
been shown to express V 3 and EGFR (but not 2 1 and 

6 1) [64], and infection of cytotrophoblasts appears to 
depend on the expression of these receptors in a spatially 
regulated manner [69]. Decidual cells express PDGFR-  
[70], but their role in fetal infection has not been studied. It 
is tempting to speculate that virus which has successfully 
traversed the syncytiotrophoblast (either by an FcR-mediated 
process or some other mechanism) is capable of engaging 
viral receptors to allow subsequent spread to the fetus; 
indeed, prior authors have suggested that resistance to viral 
translocation across the placenta might be related to 
regulation of different viral receptors [69]. 

Other Aspects of Fetal-Maternal Immunity 

 The relative contributions of other immunologic aspects 
of maternal-fetal immunity to fetal protection against HSV 
or CMV infection are not well-described. Both HSV and 
CMV can downregulate HLA-C [71]; it could be speculated 
that this removes inhibition from maternal NK cells and 
allows for selective NK-mediated killing of virally infected 
cells. Indoleamine 2,3-dioxygenase (IDO) produced by 
placental cells is thought to contribute to maternal tolerance 
by degradation of the essential amino acid tryptophan, 
suppressing T-cell responses [35, 36]. In other settings, IDO 
is induced by IFN-  production and may have direct anti-
HSV and anti-CMV effects [72, 73]. Further research is 
needed to better understand how the maternal-fetal interface 
simultaneously allows allogeneic tolerance and protection 
against pathogens. 

Summary 

 Complex and incompletely understood mechanisms 
protect the developing fetus from transplacental or ascending 
infection (Table 1). Intrauterine infection with HSV is rare, 
and appears to be more likely secondary to ascending 
infection and amnionitis than transplacental transmission. 
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CMV infection of the fetus is much more common, and 
appears to most frequently occur transplacentally. CMV has 
several mechanisms which may contribute to its ability to 
cause transplacental infection, including direct effects on 
placental tissue. 

SKIN/MUCOSAL IMMUNITY 

 Both HSV [4] and CMV [5] typically initiate infection at 
muco-epithelial surfaces. Disease localized to the skin, eyes, 
and/or mucous membranes is a distinct clinical presentation 
of neonatal HSV [10]. HSV encephalitis in the neonate (in 
the absence of disseminated disease) is thought to be 
initiated by cutaneous or mucosal infection, followed by 
viral spread to the supplying sensory nerves and ultimately 
to the central nervous system [4]. Immunity at epithelial 
surfaces may be less relevant for transplacentally-acquired 
congenital CMV infection, but premature infants may 
acquire symptomatic infection via mucosal surfaces after 
exposure to infected breast milk. In older children and 
adults, CMV also generally initiates infection at mucosal 
sites, typically either via shedding in saliva or at genital 
mucosa [5]. 

Physical Barriers to HSV and CMV Infection 

 Skin and mucosal epithelial cells can provide a physical 
barrier to infection. Intact skin serves as a barrier to HSV in 
the neonate, as shown indirectly by the observation that 
invasive monitoring is a risk factor for neonatal HSV [74]. 
The skin of a term newborn has similar structure to adult 
skin (including epidermis, dermis, and subcutaneous fat), but 
the epidermis is thinner [75]. All skin layers are less well-
developed in premature infants than term infants, conferring 
even higher risk for skin disruption secondary to trauma 
[76]. Even in a term infant, the barrier function of the 
stratum corneum differs from that of an adult, indicating 
maturation of skin barrier function in the days following 
birth [27]. Keratinocytes in the stratum granulosum and 
stratum spinosum and underlying dermal cells are the 
principal cell type infected by HSV, however DC in the 
epithelium (Langerhans cells) are also infected (Puttur FK, et 
al., unpublished observations). Disruption of the stratum 
corneum may allow virus access to these cells in the 
epidermis. 

 

Antimicrobial Peptides 

Tissue Distribution of Antimicrobial Peptides 

 In addition to serving as a mechanical barrier to 
infection, skin has innate antimicrobial functions. Skin and 
mucosal keratinocytes produce antimicrobial peptides and 
proteins which can be directly protective against infection 
[77, 78]. In addition, these peptides and proteins have less 
direct influences on immune responses, including promoting 
DC development and chemotaxis [79]. These molecules 
include lactoferrin, lysozyme, cathelicidin (also known as 
human cationic antimicrobial peptide hCAP-18 and as LL-37 
for the active 37-amino acid peptide) and the -defensins. 
Adult keratinocytes constitutively produce human -
defensin-1 (hBD-1). Production of hCAP-18 and hBD-2 and 
-3 can be induced during an inflammatory response [80]. 
Cathelicidins and defensins have also been detected in 
mucosal epithelia [81, 82], ocular epithelia [83-85], and 
saliva [81, 86]. 

 Newborn skin and mucosal epithelia are known to 
contain antimicrobial peptides. Cathelicidin and hBD-2 are 
constitutively expressed in human newborn skin [87], and 
lysozyme and lactoferrin have also been found in the stratum 
corneum of term newborns [88]. Lysozyme is present in 
newborn stratum corneum at 5-fold higher levels than in 
adults [88], and a murine homologue of cathelicidin is 
expressed in the skin of newborn and embryonic mice at 10- 
to 100-fold higher levels than found in adult mice [87]. Fetal 
and newborn mice also produce cathelicidin in oral mucosal 
tissue [89]. The precise roles of antimicrobial peptides in 
defense of the newborn against HSV or CMV have not been 
studied in detail, but these observations suggest that these 
mechanisms are present early in life. 

Cathelicidin and -Defensins 

 Cathelicidin may have antiviral activity against HSV. 
Indirect evidence of this comes from studies in patients with 
atopic dermatitis (eczema), who have diminished levels of 
cathelicidin in skin compared with normal subjects [90]. 
Skin of patients with atopic dermatitis may become 
secondarily infected with herpes simplex, leading to the 
clinical condition of eczema herpeticum [91]. 
Immunostaining analysis of skin biopsy samples from  
 

Table 1. Factors Influencing Fetal HSV or CMV Infection 

 

 HSV CMV 

Mechanical barriers 

Generally an ascending infection [42, 43] 

Transit may be limited by anatomic barriers (cervical 
plug; fetal membranes) and antimicrobial peptides [41]  

Generally a transplacental infection [55] 

Site of latency 
Resides in neurons (dorsal root ganglia); may not have 

access to uterine structures after reactivation 
May reactivate from white blood cells in uterine tissue [45] 

Effect of maternal antibody More relevant to neonatal disease (discussed below) 
Neonatal Fc receptor may facilitate transplacental transmission, 

especially in presence of low-avidity maternal antibody [63] 

Presence of viral receptors Not known to influence HSV infection of fetus 
Spatial regulation of putative CMV receptors may influence 

infection [69] 

Viral factors 
Latency is limited to neurons, which may influence 

likelihood of transplacental spread 
Infection may influence placental cell structure and function 

[64]. 
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individuals with atopic dermatitis and a history of eczema 
herpeticum demonstrates lower levels of LL-39 than biopsies 
from individuals with atopic dermatitis without this history 
[78]. In vitro assays have demonstrated the ability of LL-39 
to inhibit viral replication for both HSV-1 [83] and HSV-2 
[78]. HSV-2 in explanted skin from mice with a deficiency 
in the murine homologue of human cathelicidin replicates to 
significantly higher levels than in skin explants from wild-
type mice [78]. 

 Data are less available regarding the ability of human -
defensins to protect against HSV infection. In vitro studies 
fail to show an individual effect of hBD-1 or hBD-2 on 
binding, entry, or replication of HSV-2, although hBD-3 and 
several human -defensins have anti-HSV activity [92]. 
Keratinocytes are not known to produce -defensins, though 
these primarily leukocyte-derived peptides are produced in 
the human vaginal mucosa and contribute to the anti-HSV 
activity of cervicovaginal secretions [93]. The ability of 
combinations of natural human -defensins to provide 
protection against HSV infection has not been studied in 
detail, though there is much active research in the use of 
cationic oligomers (including homologues of - and -
defensins) [92, 94, 95] and non-human defensins [96] to 
inhibit HSV binding and replication [79]. 

 Compared with HSV, the antiviral activity of cathelicidin 
and the -defensins against CMV has received 
comparatively less attention. For congenital infection, these 
molecules may have less relevance overall. Antiviral activity 
against CMV has been shown for some -defensins [97], 
which may participate in limiting transplacental spread. 

Other Antimicrobial Peptides 

 Among the other skin and mucosa-associated 
antimicrobial peptides, lactoferrin and its peptic digestion 
product lactoferricin have received significant attention for 
their antiviral activity. Several in vitro studies testing activity 
of lactoferrin and/or lactoferricin against either herpes 
simplex or cytomegalovirus suggest inhibitory activity, 
possibly by interfering with cell surface binding [98-103]. 
The clinical significance of this activity is not known. It is 
worth noting that human breast milk contains many 
antimicrobial peptides, including lactoferrin in high 
concentrations [104], but that this activity does not fully 
prevent either HSV [105, 106] or CMV [104, 107] 
transmission via breast-feeding. 

Summary 

 Differences in skin and mucosal epithelial integrity may 
influence the susceptibility of the newborn to HSV and 
perhaps also CMV infection. Antimicrobial peptides may 
have activity against HSV, and are present in newborns, 
suggesting a possible role in protection against HSV 
infection. Lactoferrin in breast milk may help to limit CMV 
transmission by this route. 

INNATE IMMUNITY 

 Increased understanding of the interactions between 
innate and adaptive immunity has been among the most 
important advances in immunology in the past twenty years. 
Reviews addressing the innate response in neonatal HSV 
infection published in the mid- to late-1980’s focused on 

interferons, NK cells, antibody-dependent cellular 
cytotoxicity (ADCC), and the monocyte/macrophage lineage 
in terms of their effects on immune response to HSV [108-
110]. Many recent studies have added understanding of the 
importance of toll-like receptors and the downstream 
signaling produced through these molecules to neonatal HSV 
and CMV responses. 

Toll-Like Receptor Signaling 

 There are at least ten members of the toll-like receptor 
(TLR) family expressed in humans, which function to sense 
microorganisms through detection of pathogen-associated 
molecular patterns [111]. Signals transmitted through TLR3, 
TLR2, and TLR9 have been described as contributing to the 
antiviral response to herpesviruses, and are considered 
further below. 

Toll-Like Receptor 3 

 Toll-like receptor 3 binds double-stranded RNA [112], 
which may be produced during viral replication [113]. The 
potential importance of TLR3 signaling to immune defense 
against HSV has been recently highlighted by the connection 
between this pathway and susceptibility to HSV encephalitis 
[113, 114]. These reports describe children with HSV 
encephalitis found to have polymorphisms in TLR3 [114] or 
UNC93B [113], a protein required for signaling through 
TLR3, TLR7, TLR8, and TLR9. This latter group of patients 
was found to have diminished IFN- , IFN- , and IFN-  
production in response to polyinosine-polycytidylic acid 
(poly(I:C)), a TLR3 agonist which mimics the natural TLR3 
ligand dsRNA [113]. 

 Studies of innate immunity in newborns suggest an 
overall general attenuation of responses to TLR ligands. 
Normally, ligation of TLR3 leads to DC production of type I 
interferons (IFN-  and IFN- ), DC maturation (including 
expression of MHC class II, adhesion, and costimulatory 
molecules), and production of proinflammatory cytokines 
such as IL-12 [115, 116]. Upon stimulation with poly(I:C), 
myeloid DCs (mDCs) isolated from human cord blood 
produce significantly lower levels of bioactive IL-12 and 
IFN-  and have diminished upregulation of the 
costimulatory molecules CD40 and CD80 when compared 
with DCs isolated from adult blood [117]. Diminished ex 
vivo production of IFN-  by newborn peripheral blood 
mononuclear cells (PBMCs) relative to adults has also been 
demonstrated after exposure to viruses [118], including HSV 
[119]. Although TLR3 is expressed in keratinocytes [120], 
genital mucosa [121], and the central nervous system 
(including fetal astrocytes) [122, 123], the relative responses 
of adult and neonatal cells other than DCs to TLR3 agonists 
have not been assessed. 

 In accordance with the above-mentioned relationship 
between TLR3 signaling and HSV encephalitis, several 
studies have further clarified potential roles for TLR3 in the 
immune response to HSV infection. Pretreatment of murine 
genital mucosa with the TLR3 ligand poly(I:C) protects 
against subsequent genital HSV-2 challenge, with no 
detectable mucosal replication of virus [124, 125]. This 
effect may be mediated by stimulation of IFN-  production, 
but does not appear to be due to production of IFN- , IFN- , 
or TNF-  [126]. Cultured human female genital epithelial 
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cells demonstrate a similar resistance to HSV-2 infection 
after pre-treatment with poly(I:C) [127]. The NT2-N cell 
line, which models postmitotic human neurons, also 
expresses TLR3 and responds to poly(I:C) with production 
of IFN-  [128]. Somewhat surprisingly, infecting NT2-N 
cells with HSV-1 does not lead to IFN-  production, though 
rabiesvirus infection does [128]. It is unclear whether this is 
due to HSV interference with dsRNA-sensing pathways; 
HSV is known to inhibit type I IFN production during acute 
infection, perhaps in part through expression of the virion 
host shutoff (vhs) protein [129, 130]. Also, acute neuronal 
infection may cause differing patterns of gene expression 
and different innate responses compared with latency or 
reactivation. Glial cells may also play a role in TLR3-
mediated innate protection of neurons from HSV infection. 
Murine microglia express multiple TLRs, and respond to 
TLR agonists with cytokine production and upregulation of 
costimulatory molecules [131]. TLR3 stimulation of 
astrocytes with poly(I:C) induces production of IDO [132], 
which as discussed below and in the section on placental 
immunity may have direct anti-HSV and anti-CMV activity 
[72, 73]. 

 TLR3 signaling is thought to be involved in control of 
CMV infection, at least in some tissues. Poly(I:C) treatment 
inhibits CMV replication in cultured human ectocervical 
tissue and foreskin fibroblasts in an IFN- -dependent 
manner [133]. Treatment of cultured human fetal astrocytes 
with poly(I:C) or IFN-  inhibits CMV replication, an effect 
that may be mediated by IDO production [132] or by the 
anti-viral protein viperin [134]. Studies of murine infection 
with the murine version of CMV (MCMV) have shown less 
anti-viral activity associated with TLR3 stimulation, since 
the absence of TLR3 does not increase MCMV replication 
[135] or susceptibility of mice to infection [136]. 

 It is not completely clear whether developmental 
differences in TLR3-mediated responses of newborn humans 
confer increased susceptibility to infection or disease after 
exposure to HSV or CMV. There are also no published 
studies which show increased susceptibility of TLR3 knock-
out mice to experimental HSV infection, nor are there in 
vitro studies in which cells expressing TLR3 have been 
shown to be less susceptible to infection with HSV or CMV. 
Redundancy in innate antiviral responses may in part explain 
the lack of any effects. 

Toll-Like Receptor 2 

 TLR2 was initially identified as a sensor of Gram-
positive bacterial lipopeptides [137]. TLR2 can form 
heterodimers with TLR1 or TLR6 to recognize various 
microbial components [138]. Although specific viral ligands 
for TLR2 have not been identified [139], recent studies 
suggest that TLR2 may be involved in innate responses to 
HSV and CMV infection. In contrast to TLR3, however, 
evidence suggests that TLR2 signaling may lead to increased 
pathology after HSV infection. These studies support the 
concept advanced by several investigators that the 
inflammatory response may exacerbate pathology in HSV 
encephalitis [140-142]. 

 Like TLR3, TLR2 signaling has been associated with 
susceptibility to central nervous system HSV infection. Mice 
deficient in TLR2 have a diminished cytokine response and 

reduced mortality from neurologic disease after 
intraperitoneal HSV-1 infection [143], with the difference in 
mortality more pronounced in newborn (4 day old) mice than 
adults. These observations were related to increased cytokine 
(IL-6) and chemokine production (MCP-1) in wild-type mice 
relative to TLR2 knockout mice; similar observations have 
recently been made in a murine model of HSV eye infection 
[144]. Kurt-Jones et al. also showed that PBMCs from 
newborn humans responded to HSV with increased 
production of pro-inflammatory cytokines (IL-6 and IL-8) 
compared with adult cells [145], a finding sometimes 
observed in other experimental systems comparing innate 
responses of newborn vs adult PBMCs [146-148]. The 
authors suggest that unlike the observation of dampened 
signaling through TLR3 in newborns relative to adults, there 
may be an enhanced response to signaling through TLR2, 
explaining the greater susceptibility of newborns to HSV 
disease. 

 Other studies support a role for TLR2 signaling in HSV 
infection. Polymorphisms in the human gene for TLR2 are 
associated with increased recurrences of HSV-2 genital 
lesions and increased viral shedding in humans [149]. As 
noted for TLR3 signaling, some murine glial cells also 
respond to HSV in a TLR2 dependent manner [150]. 

 The relative importance of TLR2 signaling in HSV 
infection has been called into question by the in vitro 
observation that clinical isolates are rarely detected by 
TLR2, and only certain laboratory HSV strains are detected 
[139]. This study found that clinical and some laboratory 
HSV isolates generally exist as a collection of subspecies of 
viral clones, most of which do not activate TLR2, and that 
TLR2 and TLR9 are sequentially engaged by HSV clones 
recognized by TLR2. A large fraction of this TLR2-
dependent recognition of HSV by DCs requires TLR9. 
Subspecies which do not stimulate TLR2 may still stimulate 
TLR9. It is also notable that in mice, delivery of TLR-2 
ligands (peptidoglycan) to vaginal mucosa is not protective 
against subsequent HSV-2 challenge [126]. Together, these 
observations highlight the redundancy in innate detection 
and suggest the possibility of greater importance for TLR9 
relative to TLR2 in detection of HSV. Importantly, control 
of murine infection in the brain may require synergistic 
activity of both TLR2 and TLR9 [151] (discussed further 
below). 

 TLR2 has been demonstrated to play a role in detection 
of CMV infection [152], and signaling of TLR2 in response 
to CMV is strongly enhanced by the co-receptor CD14. 
Interaction with TLR2, likely in heterodimeric form with 
TLR1, involves the CMV envelope glycoproteins gB and gH 
[153]. Clinically, a TLR2 polymorphism in liver transplant 
patients is associated with elevated CMV replication, and 
homozygosity for this polymorphism confers increased risk 
of CMV disease [154]. Treatment of cultured human 
ectocervical tissue with the TLR2 agonist lipoteichoic acid 
leads to inhibition of CMV replication in an IFN- -
dependent manner, but similar treatment in foreskin 
fibroblasts (which do not express TLR2) did not demonstrate 
inhibition [133]. In vitro, the TLR2-induced response to 
human CMV was recently shown to specifically lead to the 
production of inflammatory cytokines, while the type I 
interferon response was independent of TLR2 signaling 
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[155]. A role for TLR2 signaling in fetal infection is 
supported by the demonstration of a TLR2-dependent 
inflammatory response after exposure to CMV in an in vitro 
model of human syncytiotrophoblast, which was 
independent of DNA transcription [156]. The importance of 
TLR2 in controlling CMV infection has also been shown for 
mice: deficiency of TLR2 leads to elevated MCMV 
replication in vivo, which may be related to NK cell 
recruitment, proliferation, or sensitivity to apoptosis [157]. 

Toll-Like Receptor 9 

 TLR9 recognizes double-stranded DNA unmethylated at 
CpG motifs [158]. The relative importance of TLR9 in 
overall human response to HSV or CMV infections is 
unclear, though the lack of signaling through TLR9 by itself 
does not appear to produce clinically significant 
susceptibility to viral disease [159]. Signaling through 
several of the toll-like receptors, including TLR9, involves 
the adaptor molecule IL-1R-associated kinase 4 (IRAK-4) 
[111]. Humans with IRAK-4 deficiency are at increased risk 
for infections with some bacteria [160, 161], but do not 
appear to be predisposed to severe viral infection [159], 
again suggesting redundancy in human innate anti-viral 
sensing. Fibroblasts and PBMCs from patients with IRAK-4 
deficiency produce identical levels of type I IFNs in 
response to HSV (and other viruses) ex vivo compared with 
controls [159]. Despite this, PBMCs from these patients 
produce no type I IFNs in response to the TLR9 agonist CpG 
[159]. The authors note that although this evidence suggests 
that IRAK-4 deficiency (and therefore signaling though 
TLR9) may not by itself predispose to severe viral infection, 
very few patients have been diagnosed with IRAK-4 
deficiency, leaving open the possibility that more serious 
viral infections may have occurred in undiagnosed cases. 

 Circulating human plasmacytoid dendritic cells (pDCs) 
detect both HSV-1 and CMV, presumably through TLR9 
[162]. Cord blood pDCs stimulated with these viruses were 
found to produce less IFN-  than their adult counterparts, 
which was not attributable to lower expression of TLR9 on 
cord blood pDCs [162]. In mice, viral DNA from both HSV-
1 [163] and HSV-2 [163, 164] is detected by pDCs and 
conventional DCs (myeloid; cDCs) through TLR9. As noted 
above, in conventional DCs TLR9 appears to detect 
subspecies of HSV which may or may not be detected by 
TLR2 [139]; pDCs do not express TLR2 [165], and therefore 
appear to primarily use TLR9 to sense HSV. Recent studies 
suggest that pDCs provide the bulk of the early IFN-  
response to HSV infection via TLR9 detection, while at later 
times other cell types produce IFN-  and IFN-  by TLR9-
independent mechanisms [166]. TLR9-deficient mice are 
more susceptible than wild-type mice to genital challenge 
with HSV-2, with a significant impairment of local mucosal 
responses observed in the absence of TLR9 [167]. 
Synergistic responses via TLR2 and TLR9 after herpes 
simplex infection were recently demonstrated after HSV 
infection in mice [151]. In this study, mice lacking both 
TLR2 and TLR9 had lower titers of virus in the brain but not 
the liver after intraperitoneal infection with HSV-2, relative 
to single knockout mice or wild-type mice. Similarly, 
TLR2/9 double knockout mice were more susceptible to 
intravaginal infection than wild-type mice, and had higher 
viral titers in brain but not in vaginal washes or spinal cords. 

Synergy in cytokine production was not associated with the 
expression of TLR2 or TLR9 within different cells types, 
leading the authors to suggest that both receptors are 
necessary and act through multiple cell types for a complete 
response to HSV infection [151]. 

 Susceptibility of mice to MCMV is associated with 
TLR9 deficiency. As noted above, in vivo recognition of 
MCMV depends on TLR9, although multiple pathways, both 
TLR-dependent and independent, are important in 
establishing adaptive immunity to MCMV [135]. Control of 
CMV infection in mice is related to combined signaling 
through TLR3 and TLR9, with TLR9-deficient mice more 
susceptible to mortality after MCMV infection than TLR3-
deficient or wild-type mice [168]. TLR9-dependent cytokine 
production stimulates viral clearance by a specific 
population of NK cells expressing a receptor recognizing 
MCMV [169]. More recent studies suggest that some of the 
redundancy in innate sensing of MCMV may be mediated by 
TLR7, which has not previously been implicated in sensing 
of DNA viruses [170]. 

 In addition to the observation that redundant antiviral 
sensing pathways may potentiate susceptibility to severe 
infection in individual patients, the above data are consistent 
with the possibility that TLR-mediated control of viral 
infection has differential effects within different tissues. 
Supporting this possibility is a recent study showing that 
TLR9 was necessary for IFN-  production in spleens but not 
livers of mice infected with MCMV [171]. Absence of TLR9 
did not affect MCMV titers in liver compared with control 
mice, while MCMV titers in spleen were significantly higher 
in TLR9 knockout mice relative to wild-type. 

Other Innate Sensors of Viral Infection 

 Increasing evidence implicates other innate sensing 
mechanisms capable of recognizing RNA in the antiviral 
response. The cytosolic RNA helicases retinoic acid-
inducible gene I (RIG-I) and melanoma-differentiation-
associated gene 5 (MDA5) induce type I IFN expression in 
response to RNA, through the mitochondrial antiviral 
signaling protein (MAVS) adaptor [166]. Activation of the 
MAVS pathway has been suggested to be important in the 
type I IFN responses of murine embryonic fibroblasts and 
perhaps macrophages after HSV infection [166], and has 
also been shown to affect the expression of the anti-MCMV 
protein viperin [172]. Innate sensors of cytosolic DNA have 
also been recently described [173], but their relevance to 
HSV and CMV infections remains to be determined. 

Interaction of HSV Glycoproteins with Immune Receptors 

 The viral determinants of innate immune signaling have 
not been well described for HSV or CMV, but recent work 
suggests that at least for HSV envelope glycoproteins are 
detected by innate sensors. Conventional DCs were 
demonstrated to become activated and produce IFN-  and 
IL-10 in response to a combination of the four essential HSV 
glycoproteins gD, gB, and the heterodimer gH-gL [174]. 
Although these proteins are involved in viral entry [175], this 
maturation process was independent of membrane fusion or 
the interaction of gD with its known receptors. Previous 
work suggested that HSV envelope glycoproteins may 
induce type I interferon secretion through interactions with 
the chemokine receptors CCR3 and CXCR4 [176]. Further 
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work is needed to understand precisely how herpesvirus 
glycoproteins stimulate innate immune responses, and 
whether these processes are altered in the newborn. 

Cytokine Production 

 Effective control of viral infection in fetuses and 
newborns may be related to lower cytokine production 
relative to adults. DCs and other antigen-presenting cells 
from cord blood generally produce lower levels of cytokines 
than comparable adult cells to various stimuli ex vivo 
(reviewed in [177]). In both premature and term infants, 
fewer PBMC produce IFN-  in response to HSV stimulation 
than adults, and lower levels of IFN-  are produced on a per 
cell basis [119]. However, most investigators report an 
increased number of pDCs in cord blood relative to adult 
blood samples [177]. 

 The importance of type I IFN signaling to control of 
HSV infection may be inferred by the observation that HSV 
inhibits type I IFN signaling at several levels [178, 179]. 
Signaling through the IFN /  receptor involves activation of 
Tyk2 and JAK1, which leads to phosphorylation of STAT2 
and formation of a STAT1-STAT2 heterodimer, which 
translocates to the nucleus and associates with additional 
proteins to stimulate transcription of interferon-inducible 
genes [180]. JAK1 and STAT2 are depleted in cells infected 
with HSV-1 in vitro, due partly to the viral vhs protein [178] 
and to increased expression of endogenous inhibitors [179]. 
Human deficiency in STAT1 (which is also involved in 
response to type II IFN, such as IFN- ) confers susceptibility 
to severe HSV infection; a patient with homozygous Stat1 
mutation died from disseminated HSV with recurrent 
encephalitis [181]. A patient with a homozygous Tyk2 
mutation was described as having recurrent skin and oral 
mucosal lesions caused by HSV [182]. In mice, the absence 
of receptors for type I IFNs [183] and the lack of Stat1 [184] 
leads to increased HSV replication in the nervous system and 
cornea. 

 The type I IFN response is also important to the control 
of CMV infection. Like HSV, both human [185] and murine 
[186] CMV express proteins inhibiting type I IFN 
production. Human CMV expresses a protein which 
complexes with the STAT1-STAT2 heterodimer to prevent 
binding to promoters of IFN-responsive genes [185], while 
MCMV expresses a protein which despite selectively 
binding STAT2 interferes with both type I and type II IFN 
activity [186]. In vivo, control of viral replication is impaired 
in mice lacking the receptor for type I IFN (IFN / R

-/-
) 

[186, 187] and in mice lacking Tyk2 [188], relative to wild-
type mice. Intracranial injection of MCMV into either 
newborn or adult mice leads to much higher type I IFN 
expression in adult brains than in newborns, and exogenous 
IFN- , IFN- , or IFN- , or poly (I:C) protected human brain 
tissue against CMV infection and cell death in vitro [189]. 
Together, although relative deficiencies in TLR signaling 
and type I IFN may contribute to the susceptibility of 
newborns and fetuses to HSV and CMV, the complexity and 
interrelatedness of these signaling pathways suggests that it 
is likely that additional host-virus adaptations and occasional 
susceptibility mutations remain to be discovered. 

 Numerous other cytokines are thought to be important for 
effective control of HSV and CMV infections. As alluded to 

in the previous section, IFN-  is involved in control of acute 
neuronal infection, and has also been shown to be critical to 
the recall response in murine intravaginal HSV-2 infection 
[190] and for maintaining neuronal latency (reviewed in 
[191]). Additional cytokines implicated in immune control of 
HSV and CMV infection include TNF-  [192, 193], IL-12 
[194-197], IL-18 [196], IL-23 [194], and IL-1  [193]. Again, 
relative roles for these cytokines in the predisposition of the 
fetus and newborn to HSV or CMV infection have not been 
clearly delineated. Recently, production of IL-6 and TNF-  
were found to be reduced in newborn murine skin after 
infection with HSV (Jones CA, unpublished observations). 
Human mutations in genes involved in some cytokine 
signaling pathways can predispose to severe disease from 
HSV, including mutations in NF- B essential modulator 
(NEMO) [198]. However, patients receiving anti-TNF-  
therapy are not generally thought to be at increased risk for 
herpesvirus reactivation [199], despite case reports of severe 
CMV [199] and HSV [200] disease. Studies have not been 
reported which assess whether patients receiving anti-TNF-  
treatment shed virus more frequently or in higher amounts. 
Humans with mutations leading to deficiencies in IL-12 or 
IL-23 [201] are also not known to be at increased risk of 
severe HSV or CMV disease. 

Dendritic Cells (DCs) 

 The understanding of virus-dendritic cell interactions has 
been an intense area of research, and recent reviews have 
highlighted some of the complex interactions between 
certain populations of DCs and HSV [202, 203] or CMV 
[204]. HSV can infect immature human cDCs but not pDCs 
efficiently in vitro [205, 206], impairing their maturation 
[206, 207] and inducing apoptosis [205, 208]. Apoptosis of 
murine DCs after HSV infection has also been demonstrated, 
and appears to be induced more rapidly by HSV-2 than 
HSV-1 [209]. Impairment of maturation in immature 
neonatal murine DCs after HSV-2 infection was greater than 
in corresponding adult cells [209]. Murine studies have 
shown that infected Langerhans cells and dermal cDCs do 
not directly stimulate CD4

+
 and CD8

+
 T-cell responses after 

HSV-1 infection, but carry antigen to draining lymph nodes 
where different DC subsets act to cross-present antigen to 
promote T-cell activation [210, 211]. Similar mechanisms of 
direct DC infection with subsequent apoptosis and cross-
presentation of antigen by uninfected lymph node-resident 
DCs have been proposed for CMV [204]. Along with B cells 
(and to a lesser extent other APCs), mucosal cDCs are also 
important in recall responses to mucosal challenge in mice 
[190]. 

 Recent experiments in mice have shown that neonatal 
DC take up HSV, perhaps with greater propensity than adult 
DCs (Jones CA, unpublished observations). Neonatal DC 
maturation is also impaired after HSV infection, and these 
cells migrate out of skin to the draining lymph nodes more 
slowly than adult DCs (Jones CA, unpublished 
observations). Little is known about the cDC response in 
human newborns, particularly after HSV or CMV infection. 

 Plasmacytoid DCs are known to respond to viral 
infection by producing significant amounts of IFN-  and 
developing antigen-presenting function to stimulate antigen-
specific T cell proliferation [165, 212]. Recent work has 
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shown that human pDCs, which are not normally found in 
skin, migrate to dermis in response to recurrent genital HSV 
[213]. These cells remain resistant to HSV infection, and 
participate in the proliferation of HSV-specific lymphocytes. 
A specific role for pDCs in neonatal HSV or CMV infection 
has not been as well-studied, though the importance of TLR9 
to both pDC responses [165] and to control of HSV and 
CMV infection (discussed above), and the relative deficiency 
in IFN-  production by neonatal pDCs [162], suggests that 
attenuated pDC responses may contribute to fetal and 
neonatal susceptibility to these viruses. Willems et al. [214] 
have recently reviewed differences in DC function between 
neonates and adults, and note the importance of the type I 
IFN/Flt3L signaling pathways to neonatal DC activation. 

Natural Killer (NK) Cells 

 Deficiencies in NK cell responses of newborns have been 
proposed to be a major contributor to the severity of neonatal 
HSV disease [215]. These deficiencies may either be 
intrinsic, or related to the diminished production of type I 
IFNs and other NK cell-activating cytokines in newborns 
[216]. The activation of NK cells is complex, involving 
dendritic cells and cytokines such as type I IFNs, IL-12, and 
IL-18 [217]. Studies in mice and case reports in humans 
suggest that deficiencies in at least some components of NK 
activation may confer susceptibility to herpesvirus infection 
[217]. 

 Although isolated human NK cell deficiency is rare, 
defects in NK number or function are commonly associated 
with susceptibility to herpesvirus infection [218]. A patient 
with altered expression of the Fc receptor for IgG type IIIA 
(also known as Fc RIIIA or CD16-II) was reported as 
suffering from recurrent infections, particularly with herpes 
simplex [219]. This mutation was associated with a marked 
reduction in spontaneous NK cell activation. A patient with 
apparent isolated NK deficiency had severe interstitial 
pneumonia associated with CMV infection, and 
subsequently required IV antiviral therapy after primary 
HSV infection [220]. 

 The importance of the NK response in murine CMV 
infection has been well-described, and has been recently 
reviewed [221]. Resistance of different strains of mice to 
MCMV infection reflects the effectiveness of their NK response 
to infection [222]. Although NK cell-mediated killing of HSV- 
and CMV-infected cells is associated with downregulation of 
class I MHC molecules on the surface of the infected cell [223], 
NK cell control of MCMV infection also involves direct 
recognition of the viral m157 protein by the NK activation 
receptor Ly49H [224]. The expression of Ly49H on NK cells 
varies among different mouse strains, in direct relation to the 
susceptibility of these strains to MCMV infection [225]. A 
human parallel to this observation has not been identified. In 
addition to Ly49H, other host genetic factors influencing NK 
cells are also involved in resistance to MCMV [226-228]. 
Although several studies support the concept that neonatal 
susceptibility to herpesvirus infections may be related to NK 
cell deficits [216, 229-235], the molecular details of these 
findings remain to be elucidated. The importance to neonatal 
and congenital disease of a subpopulation of NK cells known as 
NKT cells in early control of HSV [236-238] and CMV 
infection [239] also remains to be further defined. 

Summary 

 Numerous aspects of the innate immune response 
influence immunity to HSV and CMV infections, any of 
which may contribute to some degree to neonatal 
susceptibility to disease (Table 2). Many innate responses 
appear to be redundant, making elucidation of their relative 
importance challenging. Data in mice and humans suggests 
that cytokine production mediated by TLR2 may influence 
immunopathology of neonatal HSV infection [143, 145]. 
TLR2 signaling may be important to congenital CMV 
infection as well [152, 156]. A general dampening of 
cytokine production in newborns may affect their response to 
infection [177]. Neonatal dendritic cell and NK cell function 
may differ from adults after HSV (Jones, CA, unpublished 
observations) or CMV infection. 

ADAPTIVE IMMUNITY 

Humoral Immunity 

 The importance of passive antibody protection to HSV 
and CMV disease in the fetus and newborn is well-described, 
and will only receive brief mention here. Pre-existing 
maternal humoral immunity to HSV [240] or CMV [241] is 
partially protective against the development of disease in 
utero or in the perinatal period. In addition to serostatus, the 
avidity of anti-HSV maternal antibodies is correlated with 
neonatal disease [242]. The human fetus can respond to in 
utero CMV infection with antibody production [243], but it 
is not clear to what degree (if any) these responses provide 
protection against disease. 

 Circulating antibodies may provide partial protection 
against neonatal HSV disease by limiting HSV 
dissemination in the newborn. Infants with disseminated 
disease were less likely to have detectable neutralizing 
antibody titers in the first week of illness than those with 
other clinical presentations of HSV disease [244]. Studies in 
mice showed that maternal immunization with a replication-
defective virus reduced visceral dissemination in their pups 
after oral challenge, supporting the role of maternal IgG in 
limiting viral dissemination [245]. Adult mice can be 
protected against HSV disease with passive antibody transfer 
[246], but neutralizing activity did not correlate with 
protection against HSV disease in a mouse model of 
encephalitis [247]. Human vaccine studies have also shown 
that high titers of neutralizing antibody are unable to protect 
against sexual transmission [248], though this may have 
different pathogenesis than neonatal disease. It is also 
noteworthy that antibodies per se are not required for 
adequate control of HSV or CMV infections. Patients with 
primary antibody deficiencies [249], including 
agammaglobulinema (including X-linked 
agammaglobulinemia) [250, 251], common variable immune 
deficiency [252], or complete IgA deficiency [252], are not 
known to be at risk for severe herpesvirus infections. 

Cellular Immunity 

 Early studies suggested that neonatal cellular immunity 
was intrinsically biased toward antigenic tolerance [253, 
254]. However, responses to antigenic challenge in the 
newborn may under certain conditions behave like those of 
the adult [255, 256]. Ridge et al. showed that the balance 
between the antigen dose and the number of antigen-
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presenting cells at the site of T-cell activation influences the 
TH1-TH2 bias [255], and Sarzotti et al. demonstrated that 
infection with high doses of a murine retrovirus biased 
murine newborn T-cells towards a TH2 cytokine pattern 
[256]. Neonatal cellular immune responses often show a 
strong TH2 bias [257-259], particularly with secondary 
stimulation [260]. Selective apoptosis of TH1 cells generated 
during the primary response may contribute to this bias 
([261] and Jones CA, unpublished observations). 

 Older studies of HSV-specific responses in neonatal HSV 
infection have suggested diminished HSV-specific 
lymphocyte proliferative responses [244, 262], associated 
with decreased IFN-  production [262]. These studies were 
done by bulk stimulation with HSV antigen, and responses at 
the single cell level have not been measured in detail in 
pediatric patients using flow cytometric techniques. More 
recently, neonatal mice have been demonstrated to generate a 
paucity of both TH1 and TH2 cytokines relative to adult mice 
in response to infection with a replication-defective strain of 
HSV-2 [263]. Studies of the human newborn T-cell response 
to CMV have been conducted on cord blood samples [264-
266], and although these responses can in some cases 
resemble those of adults, they do not correlate well with 
presence of disease [267]. 

CD4
+
 T-Cells 

 Investigations of the role of T-cells in the human 
newborn response to HSV show diminished proliferation and 
cytokine production in response to stimulation with HSV 
antigen [244, 262]. Burchett et al. compared responses of 
circulating lymphocytes between individuals with primary 
HSV infection, including 13 newborn infants, three 
parturient women, and nine nonparturient adults [262]. 
Lymphocyte proliferation and IFN-  (but not TNF- ) 
production were specifically diminished in response to 
stimulation with HSV antigen in newborn and parturient 
patients compared to nonparturient adults. These responses 
became comparable to those of nonparturient adults only 
three to six weeks after symptom onset, leading the authors 
to suggest that delayed acquisition of specific cellular 

immunity may predispose to more severe clinical disease 
[262]. 

 In mice, somewhat consistent with the observations of 
Ridge et al. [255], Evans and Jones found that neonatal mice 
could develop TH1-biased CD4

+
 T-cell responses in draining 

lymph nodes at lower levels of HSV challenge [263]. 
However, although TH2-biased responses could be generated 
in adult mice at high infectious doses of replication-
incompetent or inactivated virus, newborn responses (TH1 or 
TH2) were attenuated relative to the adult responses at the 
same conditions [263]. Notably, newborn mice infected with 
a strain of HSV-1 capable of only a single replicative cycle 
were protected against subsequent challenge, and generated 
antibodies, CD4

+
 T-cells, and CD8

+
 T-cells which responded 

to virus and were each separately protective against 
challenge with wild-type virus in transfer experiments [268]. 

 CD4
+
 T-cell responses to CMV in children differ from 

those in adults. Relative to adults, young children have lower 
IFN-  and IL-2 production by CD4

+
 T-cells on a per-cell 

basis, as assessed by intracellular cytokine staining in 
response to CMV antigen [265]. These cells also express 
lower levels of CD154 (CD40 ligand) than adult cells [265]. 
The development of this response in young infants was 
recently followed in a prospective cohort study in the 
Gambia; this study supported the above observations, but 
also noted no differences in responses between congenitally 
infected infants and those acquiring CMV postnatally [267]. 
Despite these observations, none of the infected children in 
this study were found to have CMV disease. Further studies 
are needed to understand the role cellular immunity may play 
in explaining the different clinical presentations of CMV 
disease and asymptomatic infection. 

CD8
+
 T-Cells 

 The studies discussed above showing that stimulation of 
circulating lymphocytes from HSV-infected newborns with 
HSV antigen leads to diminished lymphocyte proliferation 
compared to adults were likely measuring primarily CD4

+
 

responses [244, 262]. Information on HSV-specific CD8
+
 T-

Table 2. Influence of Innate Immune Responses on Relative Susceptibility of Newborns to HSV or CMV Infection 

 

 HSV CMV 

Toll-like receptors   

Ex vivo production of IFN-  in response to HSV is diminished in 
newborn PBMCs relative to adults [119] 

 
TLR3 

Poly(I:C) stimulation of cord blood mDCs induces lower cytokine responses than adults [117] 

TLR2 
TLR2-/- mice less susceptible than wild-type to mortality after 

HSV-1 infection, with difference more pronounced in neonates 
than adults [143] 

Inflammatory response to CMV in human placental cells 
in vitro depends on TLR2 [156]  

TLR9 Cord blood pDCs stimulated with HSV-1 or CMV produce less IFN-  than adults [162] 

Pro-inflammatory 
cytokines 

IL-6 and IL-8 production increased in newborn PBMCs exposed 
to HSV relative to adults [145], but IL-6 and TNF-  are reduced 
in newborn murine skin (Jones, CA, unpublished observations) 

IFN-  production by neonatal PBMCs is lower after stimulation 

with HSV than adult PBMCs [119] 

Type I IFNs are produced in lower amounts in newborn 
mice than adults after intracranial injection [189] 

Dendritic cells Maturation of neonatal murine DCs infected with HSV is 
impaired more than in adults [209], and migration to draining 
lymph nodes is slower (Jones, CA, unpublished observations) 
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cell responses is largely limited to studies in mice. Newborn 
mice infected with HSV develop a delayed CD8

+
 T-cell 

response in draining lymph nodes compared with adult mice, 
with a lower peak activity [269]. This response is 
independent of HSV dose, in contrast with the findings for 
HSV-specific CD4

+
 T-cells [263]. Despite the delayed and 

attenuated HSV-specific response, neonatal CD8
+
 T-cells 

were observed to upregulate expression of activation markers 
in vivo earlier than adults, but expression of these markers 
was not sustained [269]. It is possible that dysregulation of 
the early antigen-specific CD8

+
 T-cell response in newborns 

contributes to their relative difficulty in controlling HSV 
infection. 

 In CMV infection of young children, CMV-specific 
CD8

+
 T-cells are present in identical frequencies and have 

detectable intracellular IFN-  perforin expression at identical 
levels as adults, despite persisting high concentrations of 
virus in urine [264]. CMV infection in utero leads to 
detectable CMV-specific CD8

+
 T-cells as early as 28 weeks 

gestation, and CMV-specific CD8
+
 T-cells from congenitally 

infected infants produce cytokines in response to antigen and 
can lyse target cells loaded with CMV peptide [266]. Despite 
a seemingly functional anti-CMV CD8

+
 T-cell response in 

the 28-week old fetus, symptomatic CMV disease was 
apparent [266], suggesting that CD8

+
 T-cell responses alone 

do not explain the different presentations of symptomatic 
CMV disease vs asymptomatic infection. Notably, the 
functional responses measured in this study represent recall 
responses on secondary antigenic stimulation, and would not 
measure relative defects in primary induction of CD8

+
 

responses in newborns and fetuses relative to adults. 

Regulatory T-Cells (Tregs) 

 Regulatory T-cells (Tregs) are a population of CD25
+
 

CD4
+
 T-cells involved in establishing and maintaining 

immunologic tolerance [270]. During infection, these cells 
may function to limit associated tissue damage [271]. This 
has been shown in a mouse model of HSV eye infection, 
where depletion of Tregs led to significant worsening of 
stromal keratitis, both by minimizing induction of HSV-
specific CD4

+
 T-cells and by limiting the migration of CD4

+
 

T-cells to the site of infection [272]. Tregs have also been 
shown to attenuate HSV-specific CD8

+
 T-cell responses in 

the murine footpad model of HSV-1 infection [273]. In 
contrast, recent studies in the murine HSV-2 vaginal 
challenge model show increased mucosal pathology and 
morbidity in mice depleted of Tregs during the acute phase 
of infection [274], suggesting that the influence of Tregs 
may depend on the site of initial infection. 

 Newborn humans and mice appear to have Tregs in the 
same proportions as adults. T-cells with a Treg phenotype 
(CD4

+
CD25

+
) are detected in the thymus of a human fetus as 

early as 13 weeks gestation, and extrathymic CD4
+
CD25

+
 

cells are detected after 14 weeks gestation [275]. The overall 
percentage of Tregs in newborn humans is comparable to 
that of adults, and consists of between about 3 and 7% of the 
total CD4

+
 T-cell population [276]. In mice, Tregs comprise 

between 5 and 10% of the CD4
+
 population; unlike humans, 

murine Tregs are not detected in the periphery before day 3 
of life [275]. Peripheral lymphoid Tregs reach adult levels in 
mice by about day 7 of life [277]. 

 A subpopulation of human Tregs with a naïve surface 
phenotype has recently been described which is less 
susceptible to CD95L (Fas ligand)-mediated apoptosis [276]. 
These cells constitute a minority of the Treg population in 
adults and appear to decrease in frequency with increasing 
age. In cord blood, almost all Tregs belong to this naïve 
apoptosis-resistant subpopulation. This suggests the 
possibility that Tregs in newborns may dampen the acute 
response to infection more effectively than adults, a 
potentially detrimental effect in some infectious settings. 

 The attenuated HSV-specific CD4
+
 and CD8

+
 T-cell 

responses observed in neonatal mice may be related to Tregs 
[277]. Consistent with prior studies in adult mice [273], 
HSV-specific IFN-  production by T-cells is enhanced in 
both neonatal and adult mice depleted of Tregs before 
infection. However, in the absence of Tregs the expansion, 
activation, and cytotoxicity of HSV-specific CD8

+
 T-cells 

four days after infection is enhanced only in neonatal mice. 
Treg depletion also leads to reduced HSV titers in draining 
lymph nodes and brain in neonates, suggesting that Treg-
mediated suppression of the antiviral response may 
contribute to the enhanced virulence of this virus in 
newborns [277]. However, a separate study in adult mice 
showed increased morbidity and mortality in association 
with increased viral titers with ablation of Tregs during the 
acute phase of genital HSV-2 infection [274]. Although 
higher levels of IFN-  and IFN-  were measured in the 
draining lymph nodes of Treg-deficient mice, levels of pro-
inflammatory cytokines were lower in the mucosa, and 
corresponded to a decrease in the inflammatory infiltrate, 
suggesting a role for Tregs in coordinating cell trafficking 
during acute infection [274]. 

 Regulatory T-cell suppression of anti-CMV responses 
has also been described [278]. Depletion of Tregs from adult 
human PBMC led to increased IFN-  production by anti-
CMV CD8

+
 T-cells ex vivo, an effect which was reversed by 

adding back the depleted Tregs. Specific relevance of this 
finding to newborn or fetal CMV responses has not been 
demonstrated, but it may be speculated that the relative 
absence of Tregs in early gestation may contribute to 
immunopathology associated with congenital infection. 

Summary 

 The cellular immune response of the newborn to viral 
infection appears to be a complex balance of various effector 
cells, antigenic load, and perhaps other factors (Table 3). 
Overall, newborns infected with HSV appear to demonstrate 
attenuated cellular immune responses, with both 
proliferation and cytokine production affected. CMV 
infection may also lead to some attenuation in CD4

+
 

responses in young children, though no obvious differences 
in CD8

+
 T-cell responses have not been found between 

newborns, young children, and adults after CMV infection. 
The influence of Tregs on newborn responses to either HSV 
or CMV infection is only beginning to be understood, but 
immunopathology in the fetus and newborn may be 
influenced by the presence of Tregs. 

CONCLUSIONS AND FUTURE DIRECTIONS 

 The newborn display both quantitative and functional 
differences to older children and adults in their immune 
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response to HSV and CMV. These differences appear in all 
arms of the immune response. Some but not all newborn 
responses to herpesviruses are attenuated or delayed, 
resulting in impaired induction of protective adaptive 
responses and memory (e.g. HSV CD8

+
 T-cell responses). 

Other neonatal responses are heightened (e.g. CNS responses 
to TLR2, or Treg responses), resulting in greater 
immunopathology. Differences between the newborn 
response to HSV and CMV to the immunocompetent and 
between each virus provide important lessons about the 
requirements for protective immunity to both viruses and 
about the immunobiology of HSV and CMV. 
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