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Abstract: Recent immunotherapy depends largely on understanding of the molecular interactions between T cell recep-

tors (TCR) on cytotoxic T lymphocytes (CTL) and peptide/MHC class I complexes on tumor cells. Many tumor antigens 

identified by cDNA library expression cloning methods, especially from malignant melanoma, have greatly contributed to 

clarifying such mechanisms and led to peptide vaccination trials, mainly for patients with melanoma. Although the objec-

tive tumor regression rate mediated by peptide vaccination is still low compared to adoptive cell transfer therapy, anti-

genic peptide vaccination can cause a constant objective response generally evaluated as stable disease or decreased serum 

levels of tumor markers. In addition, recent trials in the adjuvant setting showed some suppressive effects against recur-

rence. Therefore, peptide vaccination still has potential for clinical benefits in patients with various cancers. For further 

improvement of peptide vaccination, we considered that (i) novel antigenic peptides, (ii) effective adjuvants, (iii) more 

sensitive immunological monitoring and (iv) drugs up-regulating HLA class I molecules might be important. 
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INTRODUCTION 

 Recent immunotherapy depends largely on understanding 
of the molecular interactions between T cell receptors (TCR) 
on cytotoxic T lymphocytes (CTL) and peptide/MHC class I 
complexes on tumor cells. Many tumor antigens identified 
by cDNA library expression cloning, especially from malig-
nant melanoma, have greatly contributed to clarifying such 
mechanisms and made feasible vaccinations, mainly for pa-
tients with melanoma. Various vaccination approaches, in-
cluding those with antigenic peptides [1], recombinant vi-
ruses encoding antigenic genes [2], dendritic cells and anti-
genic proteins [3] were reported. Recent adoptive transfer of 
ex vivo expanded autologous tumor-infiltrating lymphocytes 
following chemotherapeutic lymphodepletion combined with 
total body irradiation [4] and adoptive transfer of T lympho-
cytes in which antigen-specific TCR is genetically engi-
neered [5] resulted in strong clinical responses. Nevertheless, 
we are still focusing on peptide-based vaccination and have 
identified novel antigenic peptides by forward and reverse 
immunological approaches. In this review, we describe the 
recent status of the field of peptide-based vaccination immu-
notherapy and future perspectives on the basis of our work. 
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IDENTIFICATION OF TUMOR ANTIGENS FOR 
PEPTIDE VACCINATION 

 Many tumor-associated antigenic genes and peptides 
recognized by CTLs have been identified since 1991 when 
the first CTL-defined tumor antigen, MAGE, was found [6]. 
Mainly in melanoma studies, tumor antigens were cloned by 
cDNA library expression cloning using CTL lines reacting 
with autologous tumor cells. This strategy is called the ‘for-
ward immunological approach.’ The forward immunological 
approach can detect ‘true’ antigens naturally priming the 
cellular immune system of the patient. However, especially 
in non-melanocytic tumors, the establishment of autologous 
pairs of tumor cell-CTL lines is very difficult [7]. On the 
other hand, recent many antigenic tumor genes were 
screened by ‘the reverse immunological approach’, on the 
basis of the tumor-specific expression profiles obtained from 
cDNA microarrays and various bioinformatics databases, 
followed by in vitro stimulation of CTLs reacting with can-
didate antigen-derived peptides and natural tumor cells [8, 
9]. This approach does not require a CTL line reacting with 
autologous tumor cells and makes feasible identification of 
tumor antigens associated with various cancers. 

 From melanoma studies, tumor antigens were categorized 
on the basis of their expression profiles in tumor tissues and 
normal organs into five groups: (i) cancer-testis antigens, (ii) 
melanoma-melanocyte differentiation antigens, (iii) mutated 
(unique) antigens, (iv) shared overexpression antigens and 
(v) ubiquitous antigens. This categorization is also adaptable  
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for non-melanocytic tumors including antigens associated 
with epithelial cancer and sarcoma. The comprehensive da-
tabase of CTL-defined tumor antigens and peptides in the 
context of HLA class I and class II is constantly updated by 
the Ludwig Institute for Cancer Research, Brussels Branch, 
Belgium (available at http://www.cancerimmunity.org/links/ 
databases.htm). Considering the tumor-specific expression 
status of target antigens, CT antigens, differentiation anti-
gens and overexpression antigens can be used as target 
molecules. We are still focusing on the identification of 
novel tumor antigens and antigenic peptides by forward and 
reverse immunological approaches [10]. Candidate tumor 
antigens and peptides we previously identified are shown in 
Table 1 [11-19]. 

CLINICAL STUDY: PEPTIDE VACCINATION AND 

ADOPTIVE CELL TRANSFER 

Adoptive Cell Transfer: Strong Clinical Response 

 Since the first vaccination trial of a tumor-associated 
antigenic peptide in 1995 [20], much work on identification 
of CTL epitopes derived from tumor antigens has been con-
ducted to promote clinical vaccination trials and immuno-
monitoring [1]. In the beginning, the immunological and 
clinical results suggested that peptide vaccination therapy 
was a promising modality against metastatic melanoma [21]. 
After one decade, Rosenberg et al. reviewed the past vacci-
nation trials and concluded that this strategy could hardly 
mediate the objective response [22]. Although this pessimis-
tic judgment of vaccination trials has been criticized [23, 
24], general attention shifted from peptide vaccination to 
adoptive transfer. Adoptive tumor-infiltrating lymphocyte 
(TIL) transfer therapy, which started from 1996, reached an 
objective response of 50% in patients with metastatic mela-
noma in combination with lymphodepletion chemotherapy 
[25, 26]. This approach was augmented by total body irradia-
tion for the further depletion of regulatory T cells and stimu-
lation of innate immunity via Toll-like receptor (TLR) 4 [27, 
28]. Moreover, adoptive transfer of T lymphocytes in which 
antigen-specific TCR was genetically engineered was per-

formed in patients with metastatic melanoma [5]. This ap-
proach could be applicable for non-melanocytic cancer, for 
which there is limited availability of ex vivo expanded TIL 
[29]. Adoptive transfer of T lymphocytes activated ex vivo 
showed that adequate effector status of T cells is essential in 
addition to a sufficient number of T cells to kill the solid 
tumor mass. At present, adoptive effector cell transfer might 
be the most effective strategy mediating the objective regres-
sion of solid tumors graded by the RECIST criteria [30]. 
However, the adoptive cell transfer strategy still has the fol-
lowing limitations: (i) lymphodepletion chemotherapy can 
cause severe infectious disease and (ii) the requirement for 
special institutes meeting the criteria of the GMP grade for 
handling the T lymphocytes ex vivo limits the popularization 
of this approach. 

Peptide Vaccination: Weak But Certain Clinical Re-
sponse 

 On the other hand, peptide vaccination trials are still con-
tinuing and attempts have been made to trigger immunologi-
cal responses and clinical responses. In addition to mela-
noma studies using the MAGE family and melanoma-
melanocyte differentiation antigens (gp100, tyrosinase and 
Melan-A/MART-1), many tumor-associated antigens identi-
fied from non-melanocytic cancers were targeted to elicit T 
cell proliferation and activation (Table 2) [31-47]. The target 
diseases for studies have also been expanded to non-
melanocytic cancers. Although the precursor frequency of 
anti-vaccine CTLs in peripheral blood was still low for in 
situ detection using tetramers, cytokine ELISA and ELIS-
POT, anti-vaccine CTL responses in vivo were detected in 
many clinical studies including non-melanocytic cancers. 
The rate of objective tumor regression (CR or PR) was also 
estimated to be low, though antigenic vaccination could 
cause certain objective responses against disseminated can-
cers, including reduction of tumor masses, which was gener-
ally evaluated as SD, and reduction of serum tumor markers 
from the beginning of the vaccination trial [21]. Peptide vac-
cines have some advantages compared with adoptive T lym-
phocyte  transfer  therapy: (i) side effects  more  than grade 3  

Table 1. Tumor-Associated Antigens and Candidate Peptides for Vaccination Trial 

 

Antigen Peptide HLA Disease Vaccination Trial Ref. 

Forward Immunological Approach 

c98 YSWMDIITIC A31 Gastric cancer  [11] 

PBF CTACRWKKACQR B55 Osteosarcoma  [12] 

 AYRPVSRNI A24 Osteosarcoma Planned [13] 

 ALPSFQIPV A2 Osteosarcoma Planned [14] 

Reverse Immunological Approach 

Survivin AYACNTSTL A24 Lung, gastric, colorectal, pancreatic and breast cancers Ongoing [15] 

Livin KWFPSCQFLL A24 Lung cancer  [16] 

Recoverin QFQSIYAKFF A24 Lung cancer  [17] 

SYT-SSX GYDQIMPKK A24 Synovial sarcoma Ongoing [18] 

 GYDQIMPKI* A24 Synovial sarcoma Ongoing [19] 

*Aggretope-substituted peptide. 
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Table 2. Phase I/II Clinial Trials of Antigenic Peptide Vaccination Since 2004 

 Anti-Vaccine  
CTL Response 

Clinical Response  

Target  
Antigen 

Peptide  
Vaccine 

HLA  
Restriction 

Adjuvant Disease n Method Response Criteria Response Adverse 
Effect ‡ 

Correlation† Ref. 

NY-ESO-1 SLLMWITQV* A2 IL-2 Melanoma 37 ELISA 100% RECIST PR; 3% 2% ND [31] 

 
WITQCFLPVFLA 

QPPSGQRA 
DP4           

gp100 
GRAMLGTHT 

MEVTV 
A2, (DR53, 

DQ6) 
IFA Melanoma 28 Tetramer 57% RECIST SD; 4% None No [32] 

   GM-CSF          

gp100 IMDQVPFSV A2 IL-2 Melanoma 26 ELISPOT 65% RECIST SD; 31% 27% No [33] 

      Tetramer 31%      

hTERT YLFFYRKSV * A2 IFA NSCLC 22 ELISPOT 88% RECIST SD; 36% None Yes [34] 

 RLFFYRKSV A2    Pentamer 90%      

hTERT YLFFYRKSV * A2 IFA Various 19 Tetramer 93% WHO SD; 21% None ND [35] 

 RLFFYRKSV A2           

WT1 CMTWNQMNL A24 IFA Various 26 Tetramer 50% 
Tumor  
marker 

Reduction; 
76% 

12% Yes [36] 

 CYTWNQMNL*     
Intracellular 

FACS 
 

Number  
of blast 

cells 
    

Survivin AYACNTSTL A24 None 
Colorectal  

cancer 
15 Tetramer 50% RECIST MR; 7% None ND [37] 

        Tumor marker 
Reduction; 

40% 
   

Survivin AYACNTSTL A24 IFA 
Breast  
cancer 

14 Tetramer 50% RECIST SD; 14% None ND [38] 

      ELISPOT       

SYT-SSX GYDQIMPKK A24 None 
Synovial  
sarcoma 

6 Tetramer 50% RECIST SD; 17% None No [39] 

CA9 EYRALQLHL A24 IFA RCC 23 ELISA 76% WHO PR; 13% None Yes [40] 

 AYEQLLSRL        SD; 26%    

 RYFQYEGSL            

Multiple  
(12 antigens) 

Multiple  
(48 peptides) 

A2, A24 IFA RCC 10 ELISA 5% RECIST SD; 60% None ND [41] 

Multiple  
(9 antigens) 

Multiple  
(16 peptides) 

A24 IFA 
Prostate  
cancer 

16 ELISA 57% 
Serum PSA 

 level 
Reduction; 

100% 
None ND [42] 

Multiple  
(7 antigens) 

Multiple  
(14 peptides) 

A24 IFA 
Prostate  
cancer 

10 ELISA 50% 
Serum PSA 

 level 
Reduction; 

20% 
None No [43] 

Multiple  
(8 antigens) 

Multiple  
(16 peptides) 

A2 IFA 
Prostate  
cancer 

10 ELISA 40% 
Serum PSA  

level 
Reduction; 

30% 
None No [44] 

Adjuvant setting 

NY-ESO-1 SLLMWITQC A2 IFA 
Ovarian  
cancer 

9 
Tetramer 
ELISPOT 

78% 
Recurrence- 

free rate at 22 
months 

33% None No [45] 

HER2/neu KIFGSLAFL A2, A3 GM-CSF 
Breast  
cancer 

186 
Immuno- 
globlin  

dimer assay 
ND 

Recurrence- 
free rate at 20 

months 

Vaccinated 
group;  
94.4% 

   

         

 
 

Non- 
vaccinated  

group;  
85.8% 

2% ND [46] 

Multiple  
(6 antigens) 

Multiple 
(4 peptides) 

A1, A2, A3 

IFA tetanus 
helper 

 peptide  
GM-CSF 

Melanoma 52 ELISPOT 87% 
Overall  

survival at 24 
months 

89% 37% Yes [47] 

*Aggretope-substituted peptide. 
†Correlation between immunological response and clinical response. 
‡The proportion of reactions scaled as more than grade 3, according to the National Cancer Institute Common Toxicity Criteria. 
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are merely observed and generally tolerable, (ii) there is no 
requirement for special institutes, and (iii) costs for manufac-
turing and vaccination are relatively low. Recent studies of 
adjuvant vaccination with MAGE3 protein increased the 5-
year survival rate in patients with non-small-cell lung cancer 
(NSCLC) [48, 49]. In addition, peptide vaccination trials in 
the adjuvant setting were also performed [45-47]. These re-
sults have encouraged many researchers. 

Peptide Vaccination: Current Problems 

(i) Status of Circulating Anti-Vaccine CTLs: Function and 

Frequency 

 Discrepancies between immunological responses and 
clinical responses remain unsolved. With regard to the im-
munological aspect, we support the idea that thorough moni-
toring is still required to detect the immunological status 
provoked by vaccination and to improve the current vaccina-
tion strategy for the next generation [23, 24]. In cases in 
which anti-vaccine CTLs positively detected by tetramers, 
cytokine ELISPOT or ELISA could not mediate tumor re-
gression, the functional status of CTLs in vivo was altered 
from effector-memory or memory to effector by manipula-
tion with in vitro stimulation. Adoptive T lymphocyte trans-
fer studies also supported the idea that adequate ex-vivo acti-
vated T cells could reject large tumor masses. Speiser et al. 
reported that ex-vivo five-cell PCR of sorted tetramer-
positive cells from peripheral blood showed that cytokine 
profiles affecting the natural status were provoked by vacci-
nation [50, 51]. 

 On the other hand, immunosuppressive cells might affect 
the effector function of CTLs. Regulatory T cells (Treg) 
have been reported and reviewed in detail as the critical sup-
pressive factor in peripheral blood and the tumor microenvi-
ronment in patients bearing cancer [52]. Several drugs de-
pleting Treg, including denileukin diftitox (ONTAK), the 
anti-cytotoxic T-lymphocyte antigen-4 (CTLA-4) antibody 
and anti-folate receptor 4 antibody have been shown to have 
potential for the enhancement of anti-vaccine CTLs in in 
vivo studies [53-55]. Recently, myeloid-derived suppressor 
cells (MDSC) were focused on with regard to immune es-
cape. In the peripheral lymphoid organs, MDSC present an-
tigens to antigen-specific T lymphocytes and induce nitration 
of TCR and CD8 molecules on the T-lymphocyte surface. 
This results in conformational changes in these molecules 
and induces loss of their ability to bind to the peptide-MHC 
complex on tumor cells [56]. The blockade of peroxynitrite 
generation, which could induce nitration, might have the 
possibility to enhance the anti-tumor immunity. 

 Considering that antigenic peptides are derived from self-
antigens, most anti-vaccine CTLs might have low- or mod-
erate-affinity TCR because of clonal deletion of T lympho-
cytes reacting to self-antigens with high affinity TCR in the 
thymus, which is called central tolerance. Recently, Janicki 
et al. reported that CTLs having high affinity TCR could 
form tumor-infiltrating lymphocytes, although they lose ef-
fector function. Meanwhile, T lymphocytes recognizing self-
antigens could become tolerant as a result of the conforma-
tional change of TCR modified by addition of inhibitory or 
removal of activating molecules [57]. This suggests that ex-
pansion of the anti-vaccine CTLs having adequate character-
istics of TCR by active peptide vaccination is still difficult. 

However, we think that novel tumor antigens, epitopes and 
vaccination have some possibility to induce effective CTLs 
having such TCR. Adjuvants also might be able to alter the 
clonal diversity of TCR repertoire [58]. 

 If anti-vaccine CTLs cannot be detected by standard 
monitoring procedures in spite of positive clinical responses, 
more sensitive procedures are required to detect them at ex-
tremely low frequencies. Limiting dilution (LD)/mixed lym-
phocyte peptide culture (MLPC) followed by tetramer-based 
frequency analysis is the most sensitive method now avail-
able [59-62]. Collected peripheral blood mononuclear cells 
(PBMCs) are stimulated with antigenic peptides in vitro un-
der limiting dilution conditions (200,000 cells/well of 96-
well microculture plates), followed by detection of tetramer-
positive anti-vaccine CTLs. With many internal negative 
pools, the positive pools including tetramer-positive cells are 
carefully identified. This procedure could provide the sensi-
tivity to detect anti-vaccine CTLs under the 10

-7
 level in non-

vaccinated patients and healthy donors. Moreover, the sensi-
tivity might be increased by increasing the amount of 
PBMCs. We analyzed the precursor frequency of CTLs 
against osteosarcoma antigen papillomavirus binding factor 
(PBF)-derived peptide in the context of HLA-A24 and A2 by 
LD/MLPC/tetramer analysis [13, 14]. Among non-vaccinated 
patients with osteosarcoma, the peripheral frequency of anti-
PBF CTLs was detected at between 5x10

-7
-7x10

-6
 and 2x10

-

7
-5x10

-6
 in HLA-A*2402-positive patients and HLA-

A*0201-positive patients, respectively. In addition, the fre-
quency of anti-PBF CTLs was detected at between 8x10

-7
-

5x10
-6

 and 1x10
-7

-5x10
-7

 in HLA-A*2402-positive and 
HLA-A*0201-positive healthy donors, respectively (Tsuka-
hara et al. unpublished observation 2008). However, this 
procedure requires intensive laboratory work [63, 64]. 

(ii) Status of Tumor Cells: The Loss of Antigens and HLA 

Class I Molecules 

 With regard to tumor biology, the problem of tumor es-
cape after vaccination remains. Tumor escape results from 
the loss of antigens and the loss of antigen-presenting HLA 
class I molecules. The loss of antigens is easy to resolve by 
using multiple peptides or targeting molecules essential for 
tumor cell survival. We performed vaccination trials target-
ing the inhibitor of apoptosis protein survivin, which plays a 
key role in resistance to various apoptotic stimuli [15, 37, 
38]. As described above, we consider that intensive labora-
tory work to identify novel tumor-associated antigens and 
related peptides is still required. The loss or down-regulation 
of HLA class I molecules is another classic but important 
problem. It is well known that tumor cells can lose HLA 
class I molecules on the cell surface and escape from im-
mune pressure [65-67]. We observed that the loss or down-
regulation of HLA class I molecules occurred in 100% and 
45% of non-responders and responders to survivin-derived 
peptide vaccination, respectively (Torigoe et al. unpublished 
observation 2007). Although the sample size was very small, 
the expression of HLA class I was negative in 3 of 3 syno-
vial sarcoma specimens. The propensity of synovial sarcoma 
cells to lose HLA class I may also serve as an obstacle for 
immunotherapeutic trials such as one we undertook using 
SYT-SSX fusion gene-derived peptide vaccine [39]. We also 
observed that epigenetic silencing of beta2-microglobulin 
was the key point to explain the loss or down-regulation of 
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HLA class I. Moreover, oral administration of the histone 
deacetylase inhibitor valproic acid caused retrieval of the 
HLA class I expression on xenograft tumors in mouse mod-
els (Torigoe et al. unpublished observation 2007). In addi-
tion, the correlation between the loss or down-regulation of 
HLA class I molecules and poor prognosis in renal cell can-
cer [68], NSCLC [69] and osteosarcoma [70] also supports 
the important role of HLA class I expression in the immune 
escape of various tumors. 

Peptide Vaccination in the Future: Augmentation with 
TLR Agonists 

 To strengthen the vaccine-mediated immunological re-
sponse, novel adjuvant drugs are highly desirable. Some 
candidates were already described above. On the basis of 
studies regarding TLR signaling in innate immunity, TLR 
agonists were introduced as adjuvants for the activation of 
antigen-presenting dendritic cells by vaccination. Many 
drugs, including TLR agonists, were reviewed and scored in 
the NCI Immunotherapy Workshop Proceedings (available at 
the NCI-Frederick web site; http://web.ncifcrf.gov/research/ 
brb/workshops.asp). In addition to CpG (a TLR9 agonist) 
and poly I:C (a TLR3 agonist), monophosphoryl lipid-A 
(MPLA; a TLR4 agonist) was introduced as a novel adjuvant 
candidate. MPLA is a low-toxicity derivative of lipopolysac-
charide (LPS; a component of the bacterial wall) and could 
trigger production of type I interferon (interferon-alpha and -
beta) and T cell proliferation equal to LPS [71]. We used 
interferon-alpha as an adjuvant in peptide vaccination trials 
and found a strong immune response and clinical response 
(PR graded by RECIST) in one patient with recurrent pan-
creatic cancer (Iwayama et al. unpublished observation, 
2007). Although it is still unclear what adjuvant is optimal to 
activate and expand anti-vaccine T lymphocytes, the finding 
of additional novel TLR agonists as adjuvants is anticipated. 

OUR FUTURE PERSPECTIVES 

 Our further projects are composed of (i) a PBF-derived 
peptide vaccination trial for patients with osteosarcoma, and 
(ii) peptide vaccination with heat-shock protein as a novel 
adjuvant. As described above, without these further ap-
proaches, it seems to be difficult to enhance anti-vaccine 
CTLs having adequate TCR avidity and effector function. 
The adjuvant effects of TLR ligands, drugs depleting Treg 
and cytokines should be clinically assessed. Nevertheless, in 
the future, we believe that antigenic peptide vaccination with 
strong adjuvants will provoke immune responses and objec-
tive responses against cancer. 

New Target: Osteosarcoma Antigen PBF 

 Osteosarcoma is a high-grade malignancy originating 
from mesenchymal cells. Before 1970, the 5-year survival 
rate of patients with osteosarcoma was less than 10%. To 
develop new treatment modalities, vaccination trials for os-
teosarcomas were initially conducted for patients with os-
teosarcoma during 1970s [72]. Surprisingly, autologous tu-
mor lysate vaccination showed some effect to increase the 
survival rate [73]. However, during the same period, 
multidrug adjuvant chemotherapy including high dose 
methotrexate was demonstrated to raise the 5-year survival 
to 60-70% [74, 75]. Although vaccination could not outper-
form chemotherapy, its potential to trigger the host immune 

system and reject tumor cells conferring metastasis, espe-
cially in the adjuvant setting, is certainly present. As the first 
step, we identified osteosarcoma-associated antigen PBF 
using an autologous pair comprised of an osteosarcoma cell 
line and a CTL clone [12, 76]. PBF is a nuclear-cytoplasmic 
shuttling transcription factor that regulates apoptosis [77]. 
PBF protein was expressed in 92% of primary osteosarcoma 
tissues. Moreover, PBF-positive osteosarcomas conferred a 
poorer prognosis than those with negative expression of PBF 
[13]. Therefore, PBF might be a candidate target for peptide 
vaccination clinical trials. As the next step, we analyzed the 
frequency and function of anti-PBF CTLs in peripheral 
blood of patients with osteosarcoma [13, 14]. Among non-
vaccinated patients with osteosarcoma, the peripheral fre-
quency of anti-PBF CTLs was between 5x10

-7
-7x10

-6
 and 

2x10
-7

-5x10
-6

 in HLA-A*2402-positive patients and HLA-
A*0201-positive patients, respectively. The low frequency of 
anti-PBF CTLs might support the evidence that spontaneous 
regression of osteosarcoma is extremely rare [78, 79]. Now 
we are planning a phase I study of PBF-derived peptide vac-
cination with IFA or interferon-alpha in end-stage patients 
with osteosarcoma. Although strong objective clinical re-
sponses in many peptide vaccination trials for various can-
cers could hardly be observed, vaccination targeting a novel 
tumor-associated antigen PBF for osteosarcoma might have 
a certain possibility to induce some objective responses in 
addition to immunological responses. Considering the early 
study of vaccination with autologous tumor lysates [73], 
PBF-derived peptide vaccination trials in adjuvant or neoad-
juvant settings seem attractive. 

New Adjuvant: Heat-Shock Protein 

 As mentioned above, new adjuvants are expected to elicit 
strong immune responses. Activation of innate immunity in 
addition to acquired immunity against a vaccine might be 
essential to further increase efficacy. We focused on molecu-
lar chaperone heat-shock protein 90 (hsp90), which could 
elicit anti-tumor CTL responses in mouse models [80]. Our 
preclinical study demonstrated that DCs could take up the 
exogenous hsp90-peptide vaccine complex and present the 
peptide on DCs in the context of HLA class I molecules via a 
cross-presentation pathway. As a result, the hsp90-antigenic 
peptide complex could elicit anti-vaccine CTLs [81]. 
Moreover, hsp90 could induce the production of inflamma-
tory cytokines (TNF-alpha, IL-1, IL-6 and IL-12) via TLR-2 
and -4 signaling pathways [82]. Therefore, hsp90 might be 
promising for an adjuvant effect in the peptide vaccination 
strategy. 
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