Skip to content
2000
image of Correlation of BDNF and CD4 with Cognitive Function in Patients with HIV Infection

Abstract

Introduction

Human Immunodeficiency Virus (HIV) remains a global epidemic and is frequently associated with neurocognitive impairment, known as HIV-Associated Neurocognitive Disorder (HAND). Brain-Derived Neurotrophic Factor (BDNF), which regulates neuroplasticity, learning, and memory, may play a key role in this process. This study aimed to investigate the correlation between BDNF, CD4 levels, and cognitive function in patients with HIV.

Methods

We conducted a cross-sectional study at Adam Malik General Hospital, Medan, Indonesia, from July 2024 to January 2025. Fifty-eight HIV-positive patients aged 18–60 years with CD4 ≥200 cells/mm3 and on antiretroviral therapy for at least 4 months were included. Blood samples were analyzed for serum BDNF (ELISA) and CD4 counts. Cognitive function was assessed using the Stroop Test, and correlations were examined with Spearman’s test.

Result

Participants had a mean age of 38.77 ± 9.28 years; 79.3% were male. The mean BDNF level was 1.08 ± 0.59 ng/mL, the mean CD4 count was 512.60 ± 331.08 cells/mm3, and the mean Stroop Test score was 68.75 ± 24.60 seconds. A significant negative correlation was observed between BDNF and Stroop performance (r = -0.288, p = 0.028), indicating that higher BDNF was associated with better cognitive function. No significant correlation was found between CD4 and cognitive function (p = 0.336)

Discussion

These findings suggest that reduced BDNF may contribute to cognitive impairment in HIV, whereas CD4 levels may not directly reflect neurocognitive status, particularly in patients with CD4 ≥200.

Conclusion

BDNF levels are significantly correlated with cognitive function in HIV-positive patients, underscoring its potential role as a biomarker for HAND.

Loading

Article metrics loading...

/content/journals/chr/10.2174/011570162X399039251103052306
2026-01-22
2026-01-29
Loading full text...

Full text loading...

References

  1. Danforth K. Granich R. Wiedeman D. Baxi S. Padian N. Global mortality and morbidity of HIV/AIDS. In: Major Infectious Diseases Holmes K.K. Bertozzi S. Bloom B.R. Jha P. Washington, DC The International Bank for Reconstruction and Development/The World Bank 2017 10.1596/978‑1‑4648‑0524‑0_ch2 30212096
    [Google Scholar]
  2. Simon V. Ho D.D. Abdool Karim Q. HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet 2006 368 9534 489 504 10.1016/S0140‑6736(06)69157‑5 16890836
    [Google Scholar]
  3. Maartens G. Celum C. Lewin S.R. HIV infection: Epidemiology, pathogenesis, treatment, and prevention. In: The Lancet. Elsevier B.V. 2014 Vol. 384 258 271 10.1016/S0140‑6736(14)60164‑1
    [Google Scholar]
  4. Patel K. Zhang A. Zhang M.H. Forty years since the epidemic: Modern paradigms in HIV diagnosis and treatment. Cureus 2021 13 5 e14805 10.7759/cureus.14805 34094761
    [Google Scholar]
  5. van Schalkwyk C. Mahy M. Johnson L.F. Imai-Eaton J.W. Updated data and methods for the 2023 UNAIDS HIV estimates. J. Acquir. Immune Defic. Syndr. 2024 95 1S e1 e4 10.1097/QAI.0000000000003344 38180734
    [Google Scholar]
  6. Kajian epidemiologi HIV Indonesia 2016. 2017.Kementerian Kesehatan Republik Indonesia. Available from:https://p2p.kemkes.go.id/wpcontent/uploads/2023/06/FINAL_6072023_Layout_HIVAIDS-1.pdf
  7. Merati T.P. Karyana M. Tjitra E. Prevalence of HIV infection and resistance mutations in patients hospitalized for febrile illness in indonesia. Am. J. Trop. Med. Hyg. 2021 105 4 960 965 10.4269/ajtmh.20‑1595 34460416
    [Google Scholar]
  8. Fanales-Belasio E. Raimondo M. Suligoi B. Buttò S. HIV virology and pathogenetic mechanisms of infection: A brief overview. Ann. Ist. Super. Sanita 2010 46 1 5 14 10.1590/S0021‑25712010000100002 20348614
    [Google Scholar]
  9. Swanstrom R. Coffin J. HIV-1 pathogenesis: The virus. Cold Spring Harb. Perspect. Med. 2012 2 12 a007443 10.1101/cshperspect.a007443 23143844
    [Google Scholar]
  10. Naif HM Pathogenesis of HIV infection. Infect Dis Rep 2013 5 11 e6.(Suppl. 1) 10.4081/idr.2013.s1.e6 24470970
    [Google Scholar]
  11. Parekh B.S. Ou C.Y. Fonjungo P.N. Diagnosis of human immunodeficiency virus infection. Clin. Microbiol. Rev. 2018 32 1 e00064 e18 10.1128/CMR.00064‑18 30487166
    [Google Scholar]
  12. Anand P. Springer S.A. Copenhaver M.M. Altice F.L. Neurocognitive impairment and HIV risk factors: A reciprocal relationship. AIDS Behav. 2010 14 6 1213 1226 10.1007/s10461‑010‑9684‑1 20232242
    [Google Scholar]
  13. Zeng M. Southern P.J. Reilly C.S. Lymphoid tissue damage in HIV-1 infection depletes naïve T cells and limits T cell reconstitution after antiretroviral therapy. PLoS Pathog. 2012 8 1 e1002437 10.1371/journal.ppat.1002437 22241988
    [Google Scholar]
  14. Zulfiqar HF Javed A Sumbal HIV Diagnosis and treatment through advanced technologies. Front. Public Health 2017 5 32 10.3389/fpubh.2017.00032 28326304
    [Google Scholar]
  15. Fearon M. The laboratory diagnosis of HIV infections. Can. J. Infect. Dis. Med. Microbiol. 2005 16 1 26 30 10.1155/2005/515063 18159524
    [Google Scholar]
  16. Sturdevant C.B. Joseph S.B. Schnell G. Price R.W. Swanstrom R. Spudich S. Compartmentalized replication of R5 T cell-tropic HIV-1 in the central nervous system early in the course of infection. PLoS Pathog. 2015 11 3 e1004720 10.1371/journal.ppat.1004720 25811757
    [Google Scholar]
  17. Weinberg J.L. Kovarik C.L. The WHO clinical staging system for HIV/AIDS. Virtual Mentor 2010 12 3 202 206 10.1001/virtualmentor.2010.12.3.cprl1‑1003 23140869
    [Google Scholar]
  18. Eggers C. Arendt G. Hahn K. HIV-1-associated neurocognitive disorder: epidemiology, pathogenesis, diagnosis, and treatment. J. Neurol. 2017 264 8 1715 1727 German Association of Neuro-AIDS und Neuro-Infectiology (DGNANI). 10.1007/s00415‑017‑8503‑2 28567537
    [Google Scholar]
  19. Olivier I.S. Cacabelos R. Naidoo V. Risk factors and pathogenesis of HIV-associated neurocognitive disorder: The role of host genetics. Int. J. Mol. Sci. 2018 19 11 3594 10.3390/ijms19113594 30441796
    [Google Scholar]
  20. Mekuriaw B. Belayneh Z. Teshome W. Akalu Y. Prevalence and variability of HIV/AIDS-associated neurocognitive impairments in africa: A systematic review and meta-analysis. BMC Public Health 2023 23 1 997 10.1186/s12889‑023‑15935‑x 37254121
    [Google Scholar]
  21. Vastag Z. Fira-Mladinescu O. Rosca E.C. HIV-Associated neurocognitive disorder (HAND): Obstacles to early neuropsychological diagnosis. Int. J. Gen. Med. 2022 15 4079 4090 10.2147/IJGM.S295859 35450033
    [Google Scholar]
  22. Zhou L Saksena NK HIV associated neurocognitive disorders. Infect Dis Rep 2013 5 11 e8.(Suppl. 1) 10.4081/idr.2013.s1.e8 24470972
    [Google Scholar]
  23. Wang Y. Liu M. Lu Q. Global prevalence and burden of HIV-associated neurocognitive disorder. Neurology 2020 95 19 e2610 e2621 10.1212/WNL.0000000000010752 32887786
    [Google Scholar]
  24. Elendu C. Aguocha C.M. Okeke C.V. Okoro C.B. Peterson J.C. HIV-related neurocognitive disorders: Diagnosis, treatment, and mental health implications: A review. Medicine 2023 102 43 e35652 10.1097/MD.0000000000035652 37904369
    [Google Scholar]
  25. Sanmarti M. Ibáñez L. Huertas S. HIV-associated neurocognitive disorders. J. Mol. Psychiatry 2014 2 1 2 10.1186/2049‑9256‑2‑2 25945248
    [Google Scholar]
  26. Zenebe Y. Necho M. Yimam W. Akele B. Worldwide occurrence of HIV-associated neurocognitive disorders and its associated factors: A systematic review and meta-analysis. Front. Psychiatry 2022 13 814362 10.3389/fpsyt.2022.814362 35711575
    [Google Scholar]
  27. Mitra P. Sharman T. HIV neurocognitive disorders. In: StatPearls. Treasure Island, FL StatPearls Publishing 2024 32310414
    [Google Scholar]
  28. Saylor D. Dickens A.M. Sacktor N. HIV-associated neurocognitive disorder — pathogenesis and prospects for treatment. Nat. Rev. Neurol. 2016 12 4 234 248 10.1038/nrneurol.2016.27 26965674
    [Google Scholar]
  29. Smail R.C. Brew B.J. HIV-associated neurocognitive disorder. In: Handbook of Clinical Neurology. Elsevier B.V. 2018 Vol. 152 75 97 10.1016/B978‑0‑444‑63849‑6.00007‑4
    [Google Scholar]
  30. Antinori A. Arendt G. Grant I. Letendre S. Assessment, diagnosisand treatment of human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND): A consensus report of the mind exchange program. Clin. Infect. Dis. 2013 56 7 1004 1017 10.1093/cid/cis975 23175555
    [Google Scholar]
  31. Nabha L. Duong L. Timpone J. HIV-associated neurocognitive disorders: Perspective on management strategies. Drugs 2013 73 9 893 905 10.1007/s40265‑013‑0059‑6 23733447
    [Google Scholar]
  32. Rumbaugh J.A. Tyor W. HIV-associated neurocognitive disorders. Neurol. Clin. Pract. 2015 5 3 224 231 10.1212/CPJ.0000000000000117 26124979
    [Google Scholar]
  33. Lu B. Nagappan G. Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb. Exp. Pharmacol. 2014 220 223 250 10.1007/978‑3‑642‑45106‑5_9 24668475
    [Google Scholar]
  34. Carroll A. Bruce B. HIV-associated neurocognitive disorders: Recent advances in pathogenesis, biomarkers, and treatment. F1000 Res. 2017 6 312 10.12688/f1000research.10651.1 28413625
    [Google Scholar]
  35. Modi G. Mochan A. Modi M. Neurological manifestations of HIV. In: Advances in HIV and AIDS Control. IntechOpen 2018 10.5772/intechopen.80054
    [Google Scholar]
  36. Guo H.J. Sapra A. Instrumental activity of daily living. StatPearls 2022
    [Google Scholar]
  37. Gliwińska A. Czubilińska-Łada J. Więckiewicz G. The role of brain-derived neurotrophic factor (BDNF) in diagnosis and treatment of epilepsy, depression, schizophrenia, anorexia nervosa and alzheimer’s disease as highly drug-resistant diseases: A narrative review. Brain Sci. 2023 13 2 163 10.3390/brainsci13020163 36831706
    [Google Scholar]
  38. Bathina S. Das U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci. 2015 6 6 1164 1178 10.5114/aoms.2015.56342 26788077
    [Google Scholar]
  39. Wang Y. Liao J. Tang S.J. Shu J. Zhang W. HIV-1 gp120 upregulates brain-derived neurotrophic factor (BDNF) expression in BV2 cells via the Wnt/β-Catenin signaling pathway. J. Mol. Neurosci. 2017 62 2 199 208 10.1007/s12031‑017‑0931‑z 28560687
    [Google Scholar]
  40. Míguez M.J. Espinoza L.A. Perez C. Kahler C. Brain derived neurotrophic factor: From neurobiology to sexual risk prevention. J. AIDS Clin. Res. 2016 7 10 10.4172/2155‑6113.1000620
    [Google Scholar]
  41. Colucci-D’Amato L. Speranza L. Volpicelli F. Neurotrophic factor bdnf, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. Int. J. Mol. Sci. 2020 21 20 7777 10.3390/ijms21207777 33096634
    [Google Scholar]
  42. Ghassabian A. Sundaram R. Chahal N. Determinants of neonatal brain-derived neurotrophic factor and association with child development. Dev Psychopathol 2017 29 4 1499 511 10.1017/S0954579417000414] 28462726
    [Google Scholar]
  43. Baydyuk M. Xu B. BDNF signaling and survival of striatal neurons. Front. Cell. Neurosci. 2014 8 AUG 254 10.3389/fncel.2014.00254 25221473
    [Google Scholar]
  44. Miranda M. Morici J.F. Zanoni M.B. Bekinschtein P. Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Front. Cell. Neurosci. 2019 13 363 10.3389/fncel.2019.00363 31440144
    [Google Scholar]
  45. Utami N. Effendy E. Amin M. The relation of brain-derived neurotropic factor (BDNF) serum level to sub-domain cognitive functions of indonesian schizophrenia patients measured by MoCA-Ina. Open Access Maced. J. Med. Sci. 2019 7 23 4053 4058 10.3889/oamjms.2019.705 32165951
    [Google Scholar]
  46. Weinstein G. Beiser A.S. Choi S.H. Serum brain-derived neurotrophic factor and the risk for dementia: The framingham heart study. JAMA Neurol. 2014 71 1 55 61 10.1001/jamaneurol.2013.4781 24276217
    [Google Scholar]
  47. Kementrian Kesehatan R.I. Laporan Perkembangan HIV AIDS di Indonesia tahun. Jakarta Kemenkes RI 2021
    [Google Scholar]
  48. Abassi M. Morawski B.M. Nakigozi G. Cerebrospinal fluid biomarkers and HIV-associated neurocognitive disorders in HIV-infected individuals in Rakai, Uganda. J. Neurovirol. 2017 23 3 369 375 10.1007/s13365‑016‑0505‑9 27995575
    [Google Scholar]
  49. Fitri F.I. Rambe A.S. Fitri A. Correlation between lymphocyte CD4 count, treatment duration, opportunistic infection and cognitive function in human immunodeficiency virus-acquired immunodeficiency syndrome (HIV-AIDS) patients. Open Access Maced. J. Med. Sci. 2018 6 4 643 647 10.3889/oamjms.2018.152 29731931
    [Google Scholar]
  50. Scarpina F. Tagini S. The stroop color and word test. Front. Psychol. 2017 8 APR 557 10.3389/fpsyg.2017.00557 28446889
    [Google Scholar]
  51. Nurbaiti N. Indrianti R. Kemenkes P. Ii J. Penggunaan stroop test di bidang kesehatan. 2022 Available from:https://publikasi.kocenin.com/index.php/teksi
    [Google Scholar]
  52. Mahendrayana E. Fitri F.I. Rambe A.S. Effect of fatigue on cognitive performance in neurology residents of faculty of medicine universitas sumatera utara. Int. J. Res. Med. Sci. 2021 9 9 2718 2722 10.18203/2320‑6012.ijrms20213413
    [Google Scholar]
  53. Yeboah K. Otu F.F. Agyekum J.A. Dzudzor B. Brain-derived neurotrophic factor is associated with cardiometabolic risk factors in HIV patients on combination antiretroviral therapy in ghana. Egypt. J. Intern. Med. 2023 35 1 74 10.1186/s43162‑023‑00257‑6
    [Google Scholar]
  54. Avdoshina V. Garzino-Demo A. Bachis A. HIV-1 decreases the levels of neurotrophins in human lymphocytes. AIDS 2011 25 8 1126 1128 10.1097/QAD.0b013e32834671b3 21422985
    [Google Scholar]
  55. Azizah N. Machin A. Hamdan M. Low CD4 level increased the risk of cognitive impairment in the HIV patient. Indian J. Public Health Res. Dev. 2020 11 1 1403 10.37506/v11/i1/2020/ijphrd/194156
    [Google Scholar]
  56. Karege F. Perret G. Bondolfi G. Schwald M. Bertschy G. Aubry J.M. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res. 2002 109 2 143 148 10.1016/S0165‑1781(02)00005‑7 11927139
    [Google Scholar]
  57. Shimizu E. Hashimoto K. Okamura N. Koike K. Komatsu N. Alterations of serum levels of tyrosine kinase B in depressed patients with and or without antidepressants. Biol. Psychiatry 2003 54 70 75 10.1016/S0006‑3223(03)00181‑1 12842310
    [Google Scholar]
  58. Schmolesky M.T. Webb D.L. Hansen R.A. The effects of aerobic exercise intensity and duration on levels of brain-derived neurotrophic factor in healthy men. J. Sports Sci. Med. 2013 12 3 502 511 24149158
    [Google Scholar]
  59. Michael H. Mpofana T. Ramlall S. Oosthuizen F. The role of brain derived neurotrophic factor in HIV-associated neurocognitive disorder: From the bench-top to the bedside. Neuropsychiatr. Dis. Treat. 2020 16 355 367 10.2147/NDT.S232836 32099373
    [Google Scholar]
  60. Bachis A. Avdoshina V. Zecca L. Parsadanian M. Mocchetti I. Human immunodeficiency virus type 1 alters brain-derived neurotrophic factor processing in neurons. J. Neurosci. 2012 32 28 9477 9484 10.1523/JNEUROSCI.0865‑12.2012 22787033
    [Google Scholar]
  61. Gaff J Estiasari R Diafiri D Halstrom S Kamerman P Price P Neurocognitive outcomes in indonesians living with HIV are influ-enced by polymorphisms in the gene encoding purinergic P2X recep-tor 7. 2021 13 1 100220 10.1016/j.bbih.2021.100220 34589739
  62. Anastasia A. Deinhardt K. Chao M.V. Val66Met polymorphism of BDNF alters prodomain structure to induce neuronal growth cone retraction. Nat. Commun. 2013 4 1 2490 10.1038/ncomms3490 24048383
    [Google Scholar]
  63. Finley J. Facilitation of hippocampal long-term potentiation and reactivation of latent HIV-1 via AMPK activation: Common mechanism of action linking learning, memory, and the potential eradication of HIV-1. Med. Hypotheses 2018 116 61 73 10.1016/j.mehy.2018.04.018 29857913
    [Google Scholar]
  64. Ipser J.C. Brown G.G. Bischoff-Grethe A. HIV infection is associated with attenuated frontostriatal intrinsic connectivity: A preliminary study. J. Int. Neuropsychol. Soc. 2015 21 3 203 213 Translational Methamphetamine AIDS Research Center (TMARC) Group. 10.1017/S1355617715000156 25824201
    [Google Scholar]
  65. Gunstad J. Benitez A. Smith J. Serum brain-derived neurotrophic factor is associated with cognitive function in healthy older adults. J. Geriatr. Psychiatry Neurol. 2008 21 3 166 170 10.1177/0891988708316860 18503034
    [Google Scholar]
  66. Mizoguchi Y. Yao H. Imamura Y. Hashimoto M. Monji A. Lower brain-derived neurotrophic factor levels are associated with age-related memory impairment in community-dwelling older adults: The Sefuri study. Sci. Rep. 2020 10 1 16442 10.1038/s41598‑020‑73576‑1 33020545
    [Google Scholar]
  67. Clifford D.B. Ances B.M. HIV-associated neurocognitive disorder. Lancet Infect. Dis. 2013 13 11 976 986 10.1016/S1473‑3099(13)70269‑X 24156898
    [Google Scholar]
  68. Kovalevich J. Langford D. Neuronal toxicity in HIV CNS disease. Future Virol. 2012 7 7 687 698 10.2217/fvl.12.57 23616788
    [Google Scholar]
  69. Carvallo L. Lopez L. Fajardo J.E. Jaureguiberry-Bravo M. Fiser A. Berman J.W. HIV-Tat regulates macrophage gene expression in the context of neuroAIDS. PLoS One 2017 12 6 e0179882 10.1371/journal.pone.0179882 28640909
    [Google Scholar]
  70. Ellis R.J. Badiee J. Vaida F. CD4 nadir is a predictor of HIV neurocognitive impairment in the era of combination antiretroviral therapy. AIDS 2011 25 14 1747 1751 10.1097/QAD.0b013e32834a40cd 21750419
    [Google Scholar]
  71. Valcour V. Yee P. William A.E. Shiramizu B. Watters M. Selnes O. Lowest ever CD4 lymphocyte count (CD4 nadir) as a predictor of current cognitive and neurological status in HIV -1 Infection. The Hawaii Aging with HIV Cohort. J. Neurovirol. 2006 12 5 387 391 10.1080/13550280600915339 17065131
    [Google Scholar]
  72. Hua X. Boyle C.P. Harezlak J. Disrupted cerebral metabolite levels and lower nadir CD4+ counts are linked to brain volume deficits in 210 HIV-infected patients on stable treatmentpatients on stable treatment. Neuroimage Clin. 2013 3 132 142 HIV Neuroimaging Consortium. 10.1016/j.nicl.2013.07.009 24179857
    [Google Scholar]
  73. I I Katu S, Syamsuddin S, Bakri S, Bachtiar RR, Halim R. Cognitive impairment among HIV-infected adults on antiretroviral therapy in indonesia. HIV AIDS Rev. 2023 22 1 38 42 10.5114/hivar.2023.124744
    [Google Scholar]
  74. Fazeli P.L. Woods S.P. Lambert C.C. Li W. Hopkins C.N. Vance D.E. Differential associations between BDNF and memory across older black and white adults with HIV disease. J. Acquir. Immune Defic. Syndr. 2022 89 2 129 135 10.1097/QAI.0000000000002831 34629411
    [Google Scholar]
  75. Míguez-Burbano M.J. Espinoza L. Bueno D. Beyond the brain. J. Int. Assoc. Provid. AIDS Care 2014 13 5 454 460 10.1177/2325957414535253 24835642
    [Google Scholar]
  76. Fields J.A. Ellis R.J. HIV in the cART era and the mitochondrial: Immune interface in the CNS. In: International Review of Neurobiology. Academic Press Inc. 2019 Vol. 145 29 65 10.1016/bs.irn.2019.04.003
    [Google Scholar]
/content/journals/chr/10.2174/011570162X399039251103052306
Loading
/content/journals/chr/10.2174/011570162X399039251103052306
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test