Skip to content
2000
image of The Characteristics of Peripheral Blood Lymphocyte Subsets in HIV-related Diffuse Large B-cell Lymphoma Patients and Their Impact on Treatment Efficacy

Abstract

Introduction

Peripheral blood lymphocyte subsets have been shown to influence prognosis in HIV-associated Diffuse Large B-Cell Lymphoma (HIV-DLBCL), a rare and highly aggressive form of non-Hodgkin's lymphoma linked to immunosuppression and abnormal B-cell proliferation. To lay the foundation for individualized therapy based on factors such as CD4+/CD8+ ratio and Treg/NK cell characteristics, this retrospective study was conducted to explore the variations in lymphocyte subset levels.

Methods

Overall, 51 HIV-DLBCL patients, 50 DLBCL patients, and 42 Healthy Donors (HD) were enrolled in the study. Data were extracted from outpatient records and the Hospital Information Management System. SPSS 27.0 software was used for statistical analysis of the data.

Results

Significant differences in lymphocyte subsets were observed between groups. HIV-DLBCL patients showed decreased CD4+ T cell and regulatory T cell (Treg) counts/percentages compared to DLBCL patients and HD, but increased CD8+ T cell counts and percentages, as well as Treg percentages. Age-stratified analysis revealed that older HIV-DLBCL patients had lower CD8+ T cell counts, reduced CD3+ T cell percentages, and elevated CD56+CD16+ NK cell proportions compared to their younger counterparts.

Discussion

This study revealed a distinct pattern of immune dysregulation in HIV-DLBCL patients, characterized by CD4+ T cell depletion and CD8+ T cell expansion, which is consistent with previous studies. Age-related immunosenescence may exacerbate the increased proportion of NK cells and the decline in T-cell function, suggesting a poorer prognosis in elderly patients. However, the lack of association between lymphocyte subsets and chemotherapy efficacy may reflect the broad impact of standard regimens on immune reconstitution. Limitations include the small sample size, absence of functional experiments, and failure to assess the influence of co-infections. Future studies should expand the cohort and integrate multi-omics data to validate these findings.

Conclusion

Patients with HIV-DLBCL have distinctive alterations in peripheral blood lymphocyte subsets, such as a decreased absolute count and percentage of CD4+ T cells, in comparison to individuals with DLBCL. These alterations appear age-related and showed no significant association with prior antiretroviral therapy. The therapeutic effect of chemotherapy for HIV-DLBCL, however, might not be impacted by the low absolute count and percentage of CD4+ T-cells in peripheral blood, as well as whether or not they had previously received antiretroviral therapy.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/chr/10.2174/011570162X369231250818043532
2025-08-26
2026-01-29
Loading full text...

Full text loading...

/deliver/fulltext/chr/10.2174/011570162X369231250818043532/BMS-CHIVR-2024-HT11-6165-6.html?itemId=/content/journals/chr/10.2174/011570162X369231250818043532&mimeType=html&fmt=ahah

References

  1. Dolcetti R. Gloghini A. Caruso A. Carbone A. A lymphomagenic role for HIV beyond immune suppression? Blood 2016 127 11 1403 1409 10.1182/blood‑2015‑11‑681411 26773045
    [Google Scholar]
  2. Bibas M. Antinori A. EBV and HIV-related lymphoma. Mediterr. J. Hematol. Infect. Dis. 2009 1 2 2009032 21416008
    [Google Scholar]
  3. Cesarman E. Pathology of lymphoma in HIV. Curr. Opin. Oncol. 2013 25 5 487 494 10.1097/01.cco.0000432525.70099.a4 23942293
    [Google Scholar]
  4. Shiels M.S. Engels E.A. Evolving epidemiology of HIV-associated malignancies. Curr. Opin. HIV AIDS 2017 12 1 6 11 10.1097/COH.0000000000000327 27749369
    [Google Scholar]
  5. Wang C. Xiao Q. Zhang X. Liu Y. HIV associated lymphoma: Latest updates from 2023 ASH annual meeting. Exp. Hematol. Oncol. 2024 13 1 65 10.1186/s40164‑024‑00530‑6 38970132
    [Google Scholar]
  6. Zhou M. Cheng J. Zhao H. Clinical features, phenotypic markers and outcomes of diffuse large b-cell lymphoma between hiv-infected and hiv-uninfected chinese patients. Cancers 2022 14 21 5380 10.3390/cancers14215380 36358798
    [Google Scholar]
  7. Liu Y. Xie X. Li J. Immune characteristics and immunotherapy of hiv-associated lymphoma. Curr. Issues Mol. Biol. 2024 46 9 9984 9997 10.3390/cimb46090596 39329948
    [Google Scholar]
  8. Manosuthi W. Charoenpong L. Santiwarangkana C. A retrospective study of survival and risk factors for mortality among people living with HIV who received antiretroviral treatment in a resource-limited setting. AIDS Res. Ther. 2021 18 1 71 10.1186/s12981‑021‑00397‑1 34641922
    [Google Scholar]
  9. Schwetz T.A. Fauci A.S. The extended impact of human immunodeficiency virus/aids research. J. Infect. Dis. 2019 219 1 6 9 30165415
    [Google Scholar]
  10. Berhan A. Bayleyegn B. Getaneh Z. HIV/AIDS associated lymphoma. Blood Lymphat. Cancer.: 2022 12 31 45 10.2147/BLCTT.S361320 35517869
    [Google Scholar]
  11. Vaughan J. Wiggill T. Lawrie D. Machaba M. Patel M. The prognostic impact of monocyte fluorescence, immunosuppressive monocytes and peripheral blood immune cell numbers in HIV-associated Diffuse Large B-cell Lymphoma. PLoS One 2023 18 1 0280044 10.1371/journal.pone.0280044 36630466
    [Google Scholar]
  12. de Carvalho P.S. Leal F.E. Soares M.A. Clinical and molecular properties of human immunodeficiency virus-related diffuse large B-cell lymphoma. Front. Oncol. 2021 11 675353 10.3389/fonc.2021.675353 33996608
    [Google Scholar]
  13. Liévin R. Maillard A. Hendel-Chavez H. Immune reconstitution and evolution of B-cell–stimulating cytokines after R-CHOP therapy for HIV-associated DLBCL. Blood Adv. 2024 8 23 6017 6027 10.1182/bloodadvances.2024014116 39348664
    [Google Scholar]
  14. Allred J. Bharucha K. Özütemiz C. Chimeric antigen receptor T-cell therapy for HIV-associated diffuse large B-cell lymphoma: Case report and management recommendations. Bone Marrow Transplant. 2021 56 3 679 682 10.1038/s41409‑020‑01018‑7 32764581
    [Google Scholar]
  15. Arber D.A. Orazi A. Hasserjian R. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016 127 20 2391 2405 10.1182/blood‑2016‑03‑643544 27069254
    [Google Scholar]
  16. Health Commission of the PRC N. National guidelines for diagnosis and treatment of malignant lymphoma 2022 in China (English version). Chin. J. Cancer Res. 2022 34 5 425 446 10.21147/j.issn.1000‑9604.2022.05.01 36398117
    [Google Scholar]
  17. Pongas G.N. Ramos J.C. HIV-associated lymphomas: Progress and new challenges. J. Clin. Med. 2022 11 5 1447 10.3390/jcm11051447 35268547
    [Google Scholar]
  18. Schommers P. Hentrich M. Hoffmann C. Survival of AIDS ‐related diffuse large B‐cell lymphoma, Burkitt lymphoma, and plasmablastic lymphoma in the German HIV Lymphoma Cohort. Br. J. Haematol. 2015 168 6 806 810 10.1111/bjh.13221 25403997
    [Google Scholar]
  19. Noy A. Optimizing treatment of HIV-associated lymphoma. Blood 2019 134 17 1385 1394 10.1182/blood‑2018‑01‑791400 30992269
    [Google Scholar]
  20. Wang C. Wu Y. Liu J. Impact of initial chemotherapy cycles and clinical characteristics on outcomes for HIV-associated diffuse large B cell lymphoma patients: The Central and Western China AIDS Lymphoma League 001 study (CALL-001 study). Front. Immunol. 2023 14 1153790 10.3389/fimmu.2023.1153790 37063928
    [Google Scholar]
  21. Vargas J.C. Marques M.O. Pereira J. Factors associated with survival in patients with lymphoma and HIV. AIDS 2023 37 8 1217 1226 10.1097/QAD.0000000000003549 36939075
    [Google Scholar]
  22. Barta S.K. Samuel M.S. Xue X. Changes in the influence of lymphoma- and HIV-specific factors on outcomes in AIDS-related non-Hodgkin lymphoma. Ann. Oncol. 2015 26 5 958 966 10.1093/annonc/mdv036 25632071
    [Google Scholar]
  23. Yin H. Qu J. Peng Q. Gan R. Molecular mechanisms of EBV-driven cell cycle progression and oncogenesis. Med. Microbiol. Immunol. 2019 208 5 573 583 10.1007/s00430‑018‑0570‑1 30386928
    [Google Scholar]
  24. Navarro W.H. Kaplan L.D. AIDS-related lymphoproliferative disease. Blood 2006 107 1 13 20 10.1182/blood‑2004‑11‑4278 16099881
    [Google Scholar]
  25. Yarchoan R. Uldrick T.S. HIV-associated cancers and related diseases. N. Engl. J. Med. 2018 378 11 1029 1041 10.1056/NEJMra1615896 29539283
    [Google Scholar]
  26. Gopal S. Patel M.R. Yanik E.L. Temporal trends in presentation and survival for HIV-associated lymphoma in the antiretroviral therapy era. J. Natl. Cancer Inst. 2013 105 16 1221 1229 10.1093/jnci/djt158 23892362
    [Google Scholar]
  27. Chapman J.R. Bouska A.C. Zhang W. EBV‐positive HIV‐associated diffuse large B cell lymphomas are characterized by JAK/STAT (STAT3) pathway mutations and unique clinicopathologic features. Br. J. Haematol. 2021 194 5 870 878 10.1111/bjh.17708 34272731
    [Google Scholar]
  28. Vaughan J. Patel M. Suchard M. Derangements of immunological proteins in HIV-associated diffuse large B-cell lymphoma: The frequency and prognostic impact. Front. Cell. Infect. Microbiol. 2024 14 1340096 10.3389/fcimb.2024.1340096 38633747
    [Google Scholar]
  29. Vidya Vijayan K.K. Karthigeyan K.P. Tripathi S.P. Hanna L.E. Pathophysiology of CD4+ T-cell depletion in HIV-1 and HIV-2 infections. Front. Immunol. 2017 8 580 10.3389/fimmu.2017.00580 28588579
    [Google Scholar]
  30. Nie P. Cao Z. Yu R. Targeting p97–Npl4 interaction inhibits tumor Treg cell development to enhance tumor immunity. Nat. Immunol. 2024 25 9 1623 1636 10.1038/s41590‑024‑01912‑y 39107403
    [Google Scholar]
  31. Wang X.M. Zhang J.Y. Xing X. Global transcriptomic characterization of T cells in individuals with chronic HIV-1 infection. Cell Discov. 2022 8 1 29 10.1038/s41421‑021‑00367‑x 35351857
    [Google Scholar]
  32. Perdomo-Celis F. Taborda N.A. Rugeles M.T. CD8+ T-cell response to hiv infection in the era of antiretroviral therapy. Front. Immunol. 2019 10 1896 10.3389/fimmu.2019.01896 31447862
    [Google Scholar]
  33. Dolina J.S. Van Braeckel-Budimir N. Thomas G.D. Salek-Ardakani S. CD8+ T cell exhaustion in cancer. Front. Immunol. 2021 12 715234 10.3389/fimmu.2021.715234 34354714
    [Google Scholar]
  34. Chevalier M.F. Weiss L. The split personality of regulatory T cells in HIV infection. Blood 2013 121 1 29 37 10.1182/blood‑2012‑07‑409755 23043072
    [Google Scholar]
  35. López-Abente J. Correa-Rocha R. Pion M. Functional mechanisms of treg in the context of HIV infection and the janus face of immune suppression. Front. Immunol. 2016 7 192 10.3389/fimmu.2016.00192 27242797
    [Google Scholar]
  36. Moreno-Fernandez M.E. Presicce P. Chougnet C.A. Homeostasis and function of regulatory T cells in HIV/SIV infection. J. Virol. 2012 86 19 10262 10269 10.1128/JVI.00993‑12 22811537
    [Google Scholar]
  37. Swaminathan S. Scorza T. Yero A. Impact of in vitro HIV infection on human thymic regulatory T cell differentiation. Front. Microbiol. 2023 14 1217801 10.3389/fmicb.2023.1217801 37547675
    [Google Scholar]
  38. Yero A. Bouassa R.S.M. Ancuta P. Estaquier J. Jenabian M.A. Immuno-metabolic control of the balance between Th17-polarized and regulatory T-cells during HIV infection. Cytokine Growth Factor Rev. 2023 69 1 13 10.1016/j.cytogfr.2023.01.001 36681548
    [Google Scholar]
  39. Deeks S.G. HIV infection, inflammation, immunosenescence, and aging. Annu. Rev. Med. 2011 62 1 141 155 10.1146/annurev‑med‑042909‑093756 21090961
    [Google Scholar]
  40. Chauvin M. Sauce D. Mechanisms of immune aging in HIV. Clin. Sci. 2022 136 1 61 80 10.1042/CS20210344 34985109
    [Google Scholar]
  41. Chan J.Y. Somasundaram N. Grigoropoulos N. Evolving therapeutic landscape of diffuse large B-cell lymphoma: Challenges and aspirations. Discov Oncol 2023 14 1 132 10.1007/s12672‑023‑00754‑8 37466782
    [Google Scholar]
  42. Liu Z. Liang Q. Ren Y. Immunosenescence: Molecular mechanisms and diseases. Signal Transduct. Target. Ther. 2023 8 1 200 10.1038/s41392‑023‑01451‑2 37179335
    [Google Scholar]
  43. Di M. Huntington S.F. Olszewski A.J. Challenges and opportunities in the management of diffuse large B-cell lymphoma in older patients. Oncologist 2021 26 2 120 132 10.1002/onco.13610 33230948
    [Google Scholar]
  44. Huguet M. Navarro J.T. Moltó J. Ribera J.M. Tapia G. Diffuse large B-cell lymphoma in the HIV setting. Cancers 2023 15 12 3191 10.3390/cancers15123191 37370801
    [Google Scholar]
  45. Hocqueloux L. Avettand-Fènoël V. Jacquot S. Long-term antiretroviral therapy initiated during primary HIV-1 infection is key to achieving both low HIV reservoirs and normal T cell counts. J. Antimicrob. Chemother. 2013 68 5 1169 1178 10.1093/jac/dks533 23335199
    [Google Scholar]
  46. Jain V. Hartogensis W. Bacchetti P. Antiretroviral therapy initiated within 6 months of HIV infection is associated with lower T-cell activation and smaller HIV reservoir size. J. Infect. Dis. 2013 208 8 1202 1211 10.1093/infdis/jit311 23852127
    [Google Scholar]
  47. Chun T.W. Justement J.S. Pandya P. Relationship between the size of the human immunodeficiency virus type 1 (HIV-1) reservoir in peripheral blood CD4+ T cells and CD4+:CD8+ T cell ratios in aviremic HIV-1-infected individuals receiving long-term highly active antiretroviral therapy. J. Infect. Dis. 2002 185 11 1672 1676 10.1086/340521 12023777
    [Google Scholar]
  48. Ruppert A.S. Dixon J.G. Salles G. International prognostic indices in diffuse large B-cell lymphoma: A comparison of IPI, R-IPI, and NCCN-IPI. Blood 2020 135 23 2041 2048 10.1182/blood.2019002729 32232482
    [Google Scholar]
  49. Sehn L.H. Salles G. Diffuse large B-cell lymphoma. N. Engl. J. Med. 2021 384 9 842 858 10.1056/NEJMra2027612 33657296
    [Google Scholar]
  50. Scott D.W. Mottok A. Ennishi D. Prognostic significance of diffuse large b-cell lymphoma cell of origin determined by digital gene expression in formalin-fixed paraffin-embedded tissue biopsies. J. Clin. Oncol. 2015 33 26 2848 2856 10.1200/JCO.2014.60.2383 26240231
    [Google Scholar]
/content/journals/chr/10.2174/011570162X369231250818043532
Loading
/content/journals/chr/10.2174/011570162X369231250818043532
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test