Skip to content
2000
image of HIV-Associated Lymphomas: Updates from Pathogenesis to Treatment Strategies

Abstract

HIV-associated lymphoma (HAL) is an aggressive malignancy directly linked to HIV infection and accounts for more than 30% of cancer-related deaths in people living with HIV (PLWH). HAL subtypes, including diffuse large B-cell lymphoma (DLBCL), Burkitt lymphoma (BL), primary effusion lymphoma (PEL), and plasmablastic lymphoma (PBL), exhibit five to ten times higher incidence rates and distinct molecular profiles compared to HIV-negative lymphomas. Pathogenesis involves HIV-driven CD4+ T-cell depletion, chronic B-cell activation, and oncogenic viral coinfection. First-line therapy combines antiretroviral therapy (ART) with chemotherapy, achieving complete remission rates of 60-70% for DLBCL using R-EPOCH and 50-60% for BL with CODOX-M/IVAC. Relapsed/refractory cases show durable responses to CD19-CAR-T therapy; however, only 10% of HAL patients are enrolled in pivotal immunotherapy trials. Severe immunosuppression necessitates PET-CT-guided de-escalation and nanoparticle-based drug delivery systems to minimize toxicity. Emerging strategies include PD-1 inhibitors and broad-spectrum antivirals targeting HIV reservoirs, underscoring the need for precision medicine that integrates tumor genomics and viral dynamics.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/chr/10.2174/011570162X367092250901062629
2025-09-04
2025-12-05
Loading full text...

Full text loading...

/deliver/fulltext/chr/10.2174/011570162X367092250901062629/BMS-CHIVR-2024-HT11-6165-3.html?itemId=/content/journals/chr/10.2174/011570162X367092250901062629&mimeType=html&fmt=ahah

References

  1. Carbone A. Vaccher E. Gloghini A. Hematologic cancers in individuals infected by HIV. Blood 2022 139 7 995 1012 10.1182/blood.2020005469 34469512
    [Google Scholar]
  2. Wang C. Liu J. Liu Y. Progress in the treatment of HIV-associated lymphoma when combined with the antiretroviral therapies. Front. Oncol. 2022 11 798008 10.3389/fonc.2021.798008 35096597
    [Google Scholar]
  3. Wu D. Chen C. Zhang M. The clinical features and prognosis of 100 AIDS-related lymphoma cases. Sci. Rep. 2019 9 1 5381 10.1038/s41598‑019‑41869‑9 30926889
    [Google Scholar]
  4. Dierickx D. Keane C. Natkunam Y. Genetic and immunological features of immune deficiency and dysregulation‐associated lymphoproliferations and lymphomas as a basis for classification. Histopathology 2025 86 1 106 118 10.1111/his.15342 39435688
    [Google Scholar]
  5. Pracher L. Zeitlinger M. Preclinical and clinical studies in the drug development process of European Medicines Agency-approved non-HIV antiviral agents: A narrative review. Clin. Microbiol. Infect. 2024 10.1016/j.cmi.2024.10.001 39389465
    [Google Scholar]
  6. Engels E.A. Shiels M.S. Barnabas R.V. State of the science and future directions for research on HIV and cancer: Summary of a joint workshop sponsored by IARC and NCI. Int. J. Cancer 2024 154 4 596 606 10.1002/ijc.34727 37715370
    [Google Scholar]
  7. Ortiz-Ortiz K.J. Ramos-Cartagena J.M. Deshmukh A.A. Torres-Cintrón C.R. Colón-López V. Ortiz A.P. Squamous cell carcinoma of the anus incidence, mortality, and survival among the general population and persons living with HIV in Puerto Rico, 2000-2016. JCO Glob. Oncol. 2021 7 7 133 143 10.1200/GO.20.00299 33493020
    [Google Scholar]
  8. Zhang E.R. Pfeiffer R.M. Austin A. Impact of HIV on anal squamous cell carcinoma rates in the United States, 2001-2015. J. Natl. Cancer Inst. 2022 114 9 1246 1252 10.1093/jnci/djac103 35575389
    [Google Scholar]
  9. Vaccher E. Gloghini A. Carbone A. HIV-related lymphomas. Curr. Opin. Oncol. 2022 34 5 439 445 10.1097/CCO.0000000000000890 35900752
    [Google Scholar]
  10. Coté T.R. Biggar R.J. Rosenberg P.S. Non-Hodgkin’s lymphoma among people with AIDS: Incidence, presentation and public health burden. Int. J. Cancer 1997 73 5 645 650 10.1002/(SICI)1097‑0215(19971127)73:5<645:AID‑IJC6>3.0.CO;2‑X 9398040
    [Google Scholar]
  11. Delabays B. Cavassini M. Damas J. Cardiovascular risk assessment in people living with HIV compared to the general population. Eur. J. Prev. Cardiol. 2022 29 4 689 699 10.1093/eurjpc/zwab201 34893801
    [Google Scholar]
  12. Carroll A.E. The problem with work requirements for medicaid. JAMA 2018 319 7 646 647 10.1001/jama.2018.0420 29466579
    [Google Scholar]
  13. Zhu S. Wang W. He J. Higher cardiovascular disease risks in people living with HIV: A systematic review and meta-analysis. J. Glob. Health 2024 14 04078 10.7189/jogh.14.04078 38666515
    [Google Scholar]
  14. Wei J. Hui W. Fang Y. The prevalence of nonalcoholic fatty liver disease in people living with HIV: A systematic review and meta-analysis. BMC Infect. Dis. 2025 25 1 239 10.1186/s12879‑025‑10455‑y 40108499
    [Google Scholar]
  15. Vorri S.C. Christodoulou I. Karanika S. Karantanos T. Human immunodeficiency virus and clonal hematopoiesis. Cells 2023 12 5 686 10.3390/cells12050686 36899822
    [Google Scholar]
  16. Bick A.G. Popadin K. Thorball C.W. Increased prevalence of clonal hematopoiesis of indeterminate potential amongst people living with HIV. Sci. Rep. 2022 12 1 577 10.1038/s41598‑021‑04308‑2 35022435
    [Google Scholar]
  17. Taylor J.G. Liapis K. Gribben J.G. The role of the tumor microenvironment in HIV-associated lymphomas. Biomarkers Med. 2015 9 5 473 482 10.2217/bmm.15.13 25985176
    [Google Scholar]
  18. Hernández-Ramírez R.U. Qin L. Lin H. Association of immunosuppression and HIV viraemia with non-Hodgkin lymphoma risk overall and by subtype in people living with HIV in Canada and the USA: A multicentre cohort study. Lancet HIV 2019 6 4 e240 e249 10.1016/S2352‑3018(18)30360‑6 30826282
    [Google Scholar]
  19. Gopal S. Patel M.R. Yanik E.L. Temporal trends in presentation and survival for HIV-associated lymphoma in the antiretroviral therapy era. J. Natl. Cancer Inst. 2013 105 16 1221 1229 10.1093/jnci/djt158 23892362
    [Google Scholar]
  20. Piris M.A. Medeiros L.J. Chang K.C. Hodgkin lymphoma: A review of pathological features and recent advances in pathogenesis. Pathology 2020 52 1 154 165 10.1016/j.pathol.2019.09.005 31699300
    [Google Scholar]
  21. Guech-Ongey M. Simard E.P. Anderson W.F. AIDS-related Burkitt lymphoma in the United States: What do age and CD4 lymphocyte patterns tell us about etiology and/or biology? Blood 2010 116 25 5600 5604 10.1182/blood‑2010‑03‑275917 20813897
    [Google Scholar]
  22. Dolcetti R. Gloghini A. Caruso A. Carbone A. A lymphomagenic role for HIV beyond immune suppression? Blood 2016 127 11 1403 1409 10.1182/blood‑2015‑11‑681411 26773045
    [Google Scholar]
  23. Ugwendum D. Fernando A. Arrey A.D.B. An atypical presentation of burkitt lymphoma presenting as large intra-abdominal masses compressing multiple organs with peri-pericardial involvement in an HIV Patient: A case report and literature review. Cureus 2024 16 2 e54088 10.7759/cureus.54088 38487136
    [Google Scholar]
  24. Bohlius J. Schmidlin K. Boué F. HIV-1–related Hodgkin lymphoma in the era of combination antiretroviral therapy: Incidence and evolution of CD4+ T-cell lymphocytes. Blood 2011 117 23 6100 6108 10.1182/blood‑2010‑08‑301531 21368291
    [Google Scholar]
  25. Biggar R.J. Jaffe E.S. Goedert J.J. Chaturvedi A. Pfeiffer R. Engels E.A. Hodgkin lymphoma and immunodeficiency in persons with HIV/AIDS. Blood 2006 108 12 3786 3791 10.1182/blood‑2006‑05‑024109 16917006
    [Google Scholar]
  26. Brandsma D. Bromberg J.E.C. Primary CNS lymphoma in HIV infection. Handb. Clin. Neurol. 2018 152 177 186 10.1016/B978‑0‑444‑63849‑6.00014‑1 29604975
    [Google Scholar]
  27. Gupta N.K. Nolan A. Omuro A. Long-term survival in AIDS-related primary central nervous system lymphoma. Neuro-oncol. 2017 19 1 99 108 10.1093/neuonc/now155 27576871
    [Google Scholar]
  28. Harmon C.M. Smith L.B. Plasmablastic lymphoma: A review of clinicopathologic features and differential diagnosis. Arch. Pathol. Lab. Med. 2016 140 10 1074 1078 10.5858/arpa.2016‑0232‑RA 27684979
    [Google Scholar]
  29. Li L. Cheng H. EBV+/HHV-8+/HIV+ high grade T Cell Lymphoma in the stomach. Am. J. Clin. Pathol. 2022 158 S111 S112 10.1093/ajcp/aqac126.236
    [Google Scholar]
  30. Qin J. Liu J. Acute T cell leukemia/lymphoma present as gastric mass in a HIV positive patient. Am. J. Clin. Pathol. 2015 144 A307 A7 10.1093/ajcp/144.suppl2.307
    [Google Scholar]
  31. Yang Z. Gong D. Huang F. Sun Y. Hu Q. Epidemiological characteristics and the development of prognostic nomograms of patients with HIV-associated cutaneous T-cell lymphoma. Front. Oncol. 2022 12 847710 10.3389/fonc.2022.847710 35372067
    [Google Scholar]
  32. Liu Y. Xie X. Li J. Immune characteristics and immunotherapy of HIV-associated lymphoma. Current Issues Mol. Biol. 2024 46 9 9984 9997 10.3390/cimb46090596 39329948
    [Google Scholar]
  33. Carroll V.A. Lafferty M.K. Marchionni L. Bryant J.L. Gallo R.C. Garzino-Demo A. Expression of HIV-1 matrix protein p17 and association with B-cell lymphoma in HIV-1 transgenic mice. Proc. Natl. Acad. Sci. USA 2016 113 46 13168 13173 10.1073/pnas.1615258113 27799525
    [Google Scholar]
  34. Bugatti A. Caccuri F. Filippini F. Ravelli C. Caruso A. Binding to PI(4,5)P 2 is indispensable for secretion of B-cell clonogenic HIV-1 matrix protein p17 variants. J. Biol. Chem. 2021 297 2 100934 10.1016/j.jbc.2021.100934 34273353
    [Google Scholar]
  35. Giagulli C. Caccuri F. Zorzan S. B-cell clonogenic activity of HIV-1 p17 variants is driven by PAR1-mediated EGF transactivation. Cancer Gene Ther. 2021 28 6 649 666 10.1038/s41417‑020‑00246‑9 33093643
    [Google Scholar]
  36. Alves de Souza Rios L. Mapekula L. Mdletshe N. Chetty D. Mowla S. HIV-1 transactivator of transcription (Tat) co-operates with AP-1 factors to enhance c-MYC transcription. Front. Cell Dev. Biol. 2021 9 693706 10.3389/fcell.2021.693706 34277639
    [Google Scholar]
  37. Sall F.B. El Amine R. Markozashvili D. HIV‐1 Tat protein induces aberrant activation of AICDA in human B‐lymphocytes from peripheral blood. J. Cell. Physiol. 2019 234 9 15678 15685 10.1002/jcp.28219 30701532
    [Google Scholar]
  38. Mdletshe N. Nel A. Shires K. Mowla S. HIV Nef enhances the expression of oncogenic c-MYC and activation-induced cytidine deaminase in Burkitt lymphoma cells, promoting genomic instability. Infect. Agent. Cancer 2020 15 1 54 10.1186/s13027‑020‑00320‑9
    [Google Scholar]
  39. Park J.E. Kim T.S. Zeng Y. Centrosome amplification and aneuploidy driven by the HIV-1-induced Vpr•VprBP•Plk4 complex in CD4 + T cells. Nat. Commun. 2024 15 1 2017 10.1038/s41467‑024‑46306‑8 38443376
    [Google Scholar]
  40. Tincati C. Douek D.C. Marchetti G. Gut barrier structure, mucosal immunity and intestinal microbiota in the pathogenesis and treatment of HIV infection. AIDS Res. Ther. 2016 13 1 19 10.1186/s12981‑016‑0103‑1 27073405
    [Google Scholar]
  41. Zevin A.S. McKinnon L. Burgener A. Klatt N.R. Microbial translocation and microbiome dysbiosis in HIV-associated immune activation. Curr. Opin. HIV AIDS 2016 11 2 182 190 10.1097/COH.0000000000000234 26679414
    [Google Scholar]
  42. Marks M.A. Rabkin C.S. Engels E.A. Markers of microbial translocation and risk of AIDS-related lymphoma. AIDS 2013 27 3 469 474 10.1097/QAD.0b013e32835c1333 23169327
    [Google Scholar]
  43. Borges Á.H. Silverberg M.J. Wentworth D. Predicting risk of cancer during HIV infection. AIDS 2013 27 9 1433 1441 10.1097/QAD.0b013e32835f6b0c 23945504
    [Google Scholar]
  44. Wang X. Lei D. Ding J. A DNA-methylated sight on autoimmune inflammation network across RA, pSS, and SLE. J. Immunol. Res. 2018 2018 1 13 10.1155/2018/4390789 30159339
    [Google Scholar]
  45. Tanaka T, Narazaki M, Masuda K, Kishimoto T. Regulation of IL-6 in immunity and diseases. Adv. Exp. Med. Biol. 2016 941 79 88 10.1007/978‑94‑024‑0921‑5_4 27734409
    [Google Scholar]
  46. Zhang Q. Song M.M. Zhang X. Association of systemic inflammation with survival in patients with cancer cachexia: Results from a multicentre cohort study. J. Cachexia Sarcopenia Muscle 2021 12 6 1466 1476 10.1002/jcsm.12761 34337882
    [Google Scholar]
  47. Du Bruyn E. Fukutani K.F. Rockwood N. Inflammatory profile of patients with tuberculosis with or without HIV-1 co-infection: A prospective cohort study and immunological network analysis. Lancet Microbe 2021 2 8 e375 e385 10.1016/S2666‑5247(21)00037‑9 35544195
    [Google Scholar]
  48. Luo K. Peters B.A. Moon J.Y. Metabolic and inflammatory perturbation of diabetes associated gut dysbiosis in people living with and without HIV infection. Genome Med. 2024 16 1 59 10.1186/s13073‑024‑01336‑1 38643166
    [Google Scholar]
  49. Trøseid M. Nielsen S.D. Vujkovic-Cvijin I. Gut microbiome and cardiometabolic comorbidities in people living with HIV. Microbiome 2024 12 1 106 10.1186/s40168‑024‑01815‑y 38877521
    [Google Scholar]
  50. Pereira R.S. Strongin Z. Soudeyns H. Dual blockade of IL-10 and PD-1 leads to control of SIV viral rebound following analytical treatment interruption. Nat. Immunol. 2024 25 10 1900 1912 10.1038/s41590‑024‑01952‑4 39266691
    [Google Scholar]
  51. Veenhuis R.T. Abreu C.M. Shirk E.N. Gama L. Clements J.E. HIV replication and latency in monocytes and macrophages. Semin. Immunol. 2021 51 101472 10.1016/j.smim.2021.101472 33648815
    [Google Scholar]
  52. Sáez-Cirión A. Sereti I. Immunometabolism and HIV-1 pathogenesis: Food for thought. Nat. Rev. Immunol. 2021 21 1 5 19 10.1038/s41577‑020‑0381‑7 32764670
    [Google Scholar]
  53. Singh H. Jadhav S. Arif K.A. APOBEC3, TRIM5α, and BST2 polymorphisms in healthy individuals of various populations with special references to its impact on HIV transmission. Microb. Pathog. 2022 162 105326 10.1016/j.micpath.2021.105326 34863878
    [Google Scholar]
  54. Singh H. Samani D. Ghate M.V. Gangakhedkar R.R. Impact of cellular restriction gene (TRIM5α, BST‐2) polymorphisms on the acquisition of HIV‐1 and disease progression. J. Gene Med. 2018 20 2-3 e3004 10.1002/jgm.3004 29282802
    [Google Scholar]
  55. Lê-Bury G. Niedergang F. Defective phagocytic properties of HIV-infected macrophages: How might they be implicated in the development of invasive Salmonella typhimurium? Front. Immunol. 2018 9 531 10.3389/fimmu.2018.00531 29628924
    [Google Scholar]
  56. Wang L. Li G. Yao Z.Q. Moorman J.P. Ning S. MicroRNA regulation of viral immunity, latency, and carcinogenesis of selected tumor viruses and HIV. Rev. Med. Virol. 2015 25 5 320 341 10.1002/rmv.1850 26258805
    [Google Scholar]
  57. Planès R. Bahraoui E. HIV-1 Tat protein induces the production of IDO in human monocyte derived-dendritic cells through a direct mechanism: Effect on T cells proliferation. PLoS One 2013 8 9 e74551 10.1371/journal.pone.0074551 24073214
    [Google Scholar]
  58. Favre D. Mold J. Hunt P.W. Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in HIV disease. Sci. Transl. Med. 2010 2 32 32ra36 10.1126/scitranslmed.3000632 20484731
    [Google Scholar]
  59. Terness P. Bauer T.M. Röse L. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: Mediation of suppression by tryptophan metabolites. J. Exp. Med. 2002 196 4 447 457 10.1084/jem.20020052 12186837
    [Google Scholar]
  60. Judge C.J. Kostadinova L. Sherman K.E. CD56 bright NK IL-7Rα expression negatively associates with HCV level, and IL-7-induced NK function is impaired during HCV and HIV infections. J. Leukoc. Biol. 2017 102 1 171 184 10.1189/jlb.5A1116‑456R 28400540
    [Google Scholar]
  61. Demers K.R. Makedonas G. Buggert M. Temporal dynamics of CD8+ T cell effector responses during primary HIV infection. PLoS Pathog. 2016 12 8 e1005805 10.1371/journal.ppat.1005805 27486665
    [Google Scholar]
  62. Doyon-Laliberté K. Aranguren M. Poudrier J. Roger M. Marginal zone B-cell populations and their regulatory potential in the context of HIV and other chronic inflammatory conditions. Int. J. Mol. Sci. 2022 23 6 3372 10.3390/ijms23063372 35328792
    [Google Scholar]
  63. Doyon-Laliberté K. Aranguren M. Byrns M. Excess BAFF alters NR4As expression levels and breg function of human precursor-like marginal zone B-cells in the context of HIV-1 infection. Int. J. Mol. Sci. 2022 23 23 15142 10.3390/ijms232315142 36499469
    [Google Scholar]
  64. Hernández-Gallego A. Navarro J.T. Tapia G. HHV8+ diffuse large B-cell lymphoma in a patient with HIV infection. Med. Clín 2021 157 6 306 307 10.1016/j.medcli.2020.06.039 32883511
    [Google Scholar]
  65. Vangipuram R. Tyring S.K. AIDS-associated malignancies Cancer Treat Res 2019 177 1 21 10.1007/978‑3‑030‑03502‑0_1 30523619
    [Google Scholar]
  66. Barta S.K. Xue X. Wang D. A new prognostic score for AIDS-related lymphomas in the rituximab-era. Haematologica 2014 99 11 1731 1737 10.3324/haematol.2014.111112 25150257
    [Google Scholar]
  67. Barta S.K. Xue X. Wang D. Treatment factors affecting outcomes in HIV-associated non-Hodgkin lymphomas: A pooled analysis of 1546 patients. Blood 2013 122 19 3251 3262 10.1182/blood‑2013‑04‑498964 24014242
    [Google Scholar]
  68. Chen J. Wu Y. Zhao H. Ruan G. Qin S. Ratio of hemoglobin to red cell distribution width: An inflammatory predictor of survival in AIDS-related DLBCL. Front. Immunol. 2024 15 1354325 10.3389/fimmu.2024.1354325 38426083
    [Google Scholar]
  69. Chen J. Liu X. Qin S. A novel prognostic score including the CD4/CD8 for AIDS-related lymphoma. Front. Cell. Infect. Microbiol. 2022 12 919446 10.3389/fcimb.2022.919446 35873145
    [Google Scholar]
  70. Vargas J.C. Marques M.O. Pereira J. Factors associated with survival in patients with lymphoma and HIV. AIDS 2023 37 8 1217 1226 10.1097/QAD.0000000000003549 36939075
    [Google Scholar]
  71. Zeng J. Zhang X. Jia L. Wu Y. Tian Y. Zhang Y. Pretreatment lymphocyte‐to‐monocyte ratios predict AIDS‐related diffuse large B‐cell lymphoma overall survival. J. Med. Virol. 2021 93 6 3907 3914 10.1002/jmv.26655 33155687
    [Google Scholar]
  72. Szymańska B.M. Marchewka Z. Knysz B. Piwowar A.B. A panel of urinary biochemical markers for the non-invasive detection of kidney dysfunction in HIV-patients. Pol Arch Intern Med 2019 129 7-8 490 498 10.20452/pamw.14905 31342944
    [Google Scholar]
  73. Painschab M.S. Kasonkanji E. Zuze T. Mature outcomes and prognostic indices in diffuse large B‐cell lymphoma in Malawi: A prospective cohort. Br. J. Haematol. 2019 184 3 364 372 10.1111/bjh.15625 30450671
    [Google Scholar]
  74. Zelenetz A.D. Gordon L.I. Chang J.E. NCCN Guidelines® Insights: B-Cell Lymphomas, Version 5.2021. J. Natl. Compr. Canc. Netw. 2021 19 11 1218 1230 10.6004/jnccn.2021.0054 34781267
    [Google Scholar]
  75. Staiger A.M. Ziepert M. Horn H. Clinical impact of the cell-of-origin classification and the MYC/BCL2 dual expresser status in diffuse large B-cell lymphoma treated within prospective clinical trials of the German high-grade non-hodgkin’s lymphoma study group. J. Clin. Oncol. 2017 35 22 2515 2526 10.1200/JCO.2016.70.3660 28525305
    [Google Scholar]
  76. Nowakowski G.S. Feldman T. Rimsza L.M. Westin J.R. Witzig T.E. Zinzani P.L. Integrating precision medicine through evaluation of cell of origin in treatment planning for diffuse large B-cell lymphoma. Blood Cancer J. 2019 9 6 48 10.1038/s41408‑019‑0208‑6 31097684
    [Google Scholar]
  77. Chapman J.R. Bouska A.C. Zhang W. EBV‐positive HIV‐associated diffuse large B cell lymphomas are characterized by JAK/STAT (STAT3) pathway mutations and unique clinicopathologic features. Br. J. Haematol. 2021 194 5 870 878 10.1111/bjh.17708 34272731
    [Google Scholar]
  78. Baptista M.J. Tapia G. Morgades M. Using the Lymph2Cx assay for assessing cell-of-origin subtypes of HIV-related diffuse large B-cell lymphoma. Leuk. Lymphoma 2019 60 4 1087 1091 10.1080/10428194.2018.1512711 30322315
    [Google Scholar]
  79. Capello D. Scandurra M. Poretti G. Genome wide DNA‐profiling of HIV‐related B‐cell lymphomas. Br. J. Haematol. 2010 148 2 245 255 10.1111/j.1365‑2141.2009.07943.x 19832807
    [Google Scholar]
  80. Ramos J.C. Sparano J. Moore P.C. A randomized trial of EPOCH-based chemotherapy with vorinostat for highly aggressive HIV-associated lymphomas: Updated results evaluating impact of diagnosis-to-treatment interval (DTI) and pre-protocol systemic therapy on outcomes. Blood 2019 134 1588 10.1182/blood‑2019‑129687
    [Google Scholar]
  81. Attwell L. Gray B. Hall R. Intrathecal (IT) chemotherapy for central nervous system (CNS) prophylaxis in diffuse large B-cell lymphoma (DLBCL): A single centre retrospective observational study. Blood 2020 136 18 19 10.1182/blood‑2020‑140797
    [Google Scholar]
  82. Barta S.K. Lee J.Y. Kaplan L.D. Noy A. Sparano J.A. Pooled analysis of AIDS malignancy consortium trials evaluating rituximab plus CHOP or infusional EPOCH chemotherapy in HIV‐associated non‐Hodgkin lymphoma. Cancer 2012 118 16 3977 3983 10.1002/cncr.26723 22180164
    [Google Scholar]
  83. Kusumoto S. Arcaini L. Hong X. Risk of HBV reactivation in patients with B-cell lymphomas receiving obinutuzumab or rituximab immunochemotherapy. Blood 2019 133 2 137 146 10.1182/blood‑2018‑04‑848044 30341058
    [Google Scholar]
  84. William W. David A. Ariela N. Response-adapted therapy with infusional EPOCH chemotherapy plus rituximab in HIV-associated, B-cell non-Hodgkin’s lymphoma. Haematologica 2020 106 3 730 735 10.3324/haematol.2019.243386 32107337
    [Google Scholar]
  85. Wang C. Wu Y. Liu J. Impact of initial chemotherapy cycles and clinical characteristics on outcomes for HIV-associated diffuse large B cell lymphoma patients: The Central and Western China AIDS Lymphoma League 001 study (CALL-001 study). Front. Immunol. 2023 14 1153790 10.3389/fimmu.2023.1153790 37063928
    [Google Scholar]
  86. Archin N.M. Kirchherr J.L. Sung J.A.M. Interval dosing with the HDAC inhibitor vorinostat effectively reverses HIV latency. J. Clin. Invest. 2017 127 8 3126 3135 10.1172/JCI92684 28714868
    [Google Scholar]
  87. Spurgeon S.E. Sharma K. Claxton D.F. Phase 1–2 study of vorinostat (SAHA), cladribine and rituximab (SCR) in relapsed B‐cell non‐Hodgkin lymphoma and previously untreated mantle cell lymphoma. Br. J. Haematol. 2019 186 6 845 854 10.1111/bjh.16008 31177537
    [Google Scholar]
  88. Ramos J.C. Sparano J.A. Rudek M.A. Safety and Preliminary Efficacy of Vorinostat With R-EPOCH in High-risk HIV-associated Non-Hodgkin’s Lymphoma (AMC-075). Clin. Lymphoma Myeloma Leuk. 2018 18 3 180 190.e2 10.1016/j.clml.2018.01.004 29426719
    [Google Scholar]
  89. Uldrick T.S. Gonçalves P.H. Abdul-Hay M. Assessment of the safety of pembrolizumab in patients with HIV and advanced cancer—A phase 1 study. JAMA Oncol. 2019 5 9 1332 1339 10.1001/jamaoncol.2019.2244 31154457
    [Google Scholar]
  90. Lurain K. Ramaswami R. Mangusan R. Use of pembrolizumab with or without pomalidomide in HIV-associated non-Hodgkin’s lymphoma. J. Immunother. Cancer 2021 9 2 e002097 10.1136/jitc‑2020‑002097 33608378
    [Google Scholar]
  91. Mwanda W.O. Orem J. Fu P. Dose-modified oral chemotherapy in the treatment of AIDS-related non-Hodgkin’s lymphoma in East Africa. J. Clin. Oncol. 2009 27 21 3480 3488 10.1200/JCO.2008.18.7641 19470940
    [Google Scholar]
  92. Dunleavy K. Approach to the diagnosis and treatment of adult Burkitt’s Lymphoma. J. Oncol. Pract. 2018 14 11 665 671 10.1200/JOP.18.00148 30423267
    [Google Scholar]
  93. Noy A. Lee J.Y. Cesarman E. AMC 048: Modified CODOX-M/IVAC-rituximab is safe and effective for HIV-associated Burkitt lymphoma. Blood 2015 126 2 160 166 10.1182/blood‑2015‑01‑623900 25957391
    [Google Scholar]
  94. Pai S. Master S. Dwary A. Outcomes of american burkitt’s lymphoma in HIV and non HIV patients treated with rituxan-hyper CVAD regimen: a single center retrospective study. Biol. Blood Marrow Transplant. 2016 22 3 S226 10.1016/j.bbmt.2015.11.632
    [Google Scholar]
  95. Tan J.Y. Qiu T.Y. Chiang J. Burkitt lymphoma – no impact of HIV status on outcomes with rituximab-based chemoimmunotherapy. Leuk. Lymphoma 2023 64 3 586 596 10.1080/10428194.2022.2027402 35188049
    [Google Scholar]
  96. Zeng J. Yang L. Huang F. The metronomic therapy with prednisone, etoposide, and cyclophosphamide reduces the serum levels of VEGF and circulating endothelial cells and improves response rates and progression-free survival in patients with relapsed or refractory non-Hodgkin’s lymphoma. Cancer Chemother. Pharmacol. 2016 78 4 801 808 10.1007/s00280‑016‑3136‑1 27562137
    [Google Scholar]
  97. Dwivedi P. Kapse A. Bangurwar C. Tamhane A. Banavali S. Metronomic chemotherapy for burkitt lymphoma in a patient with HIV: Case report. J. Pediatr. Hematol. Oncol. 2023 45 2 78 81 10.1097/MPH.0000000000002547 36161878
    [Google Scholar]
  98. Zayac A.S. Evens A.M. Danilov A. Outcomes of Burkitt lymphoma with central nervous system involvement: Evidence from a large multicenter cohort study. Haematologica 2021 106 7 1932 1942 10.3324/haematol.2020.270876 33538152
    [Google Scholar]
  99. Evens A.M. Danilov A. Jagadeesh D. Burkitt lymphoma in the modern era: Real-world outcomes and prognostication across 30 US cancer centers. Blood 2021 137 3 374 386 10.1182/blood.2020006926 32663292
    [Google Scholar]
  100. Noy A. HIV Lymphoma and Burkitts Lymphoma. Cancer J. 2020 26 3 260 268 10.1097/PPO.0000000000000448 32496459
    [Google Scholar]
  101. Junfeng L. Lina M. Xinyue C. Autologous hematopoietic stem cell transplantation for human immunodeficiency virus associated gastric Burkitt lymphoma. Medicine 2019 98 29 e16222 10.1097/MD.0000000000016222 31335672
    [Google Scholar]
  102. Chen Y.B. Rahemtullah A. Hochberg E. Primary effusion lymphoma. Oncologist 2007 12 5 569 576 10.1634/theoncologist.12‑5‑569 17522245
    [Google Scholar]
  103. Guillet S. Gérard L. Meignin V. Classic and extracavitary primary effusion lymphoma in 51 HIV ‐infected patients from a single institution. Am. J. Hematol. 2016 91 2 233 237 10.1002/ajh.24251 26799611
    [Google Scholar]
  104. Cozzi I. Rossi G. Rullo E. Ascoli V. Classic KSHV/HHV-8-positive primary effusion lymphoma (PEL): A systematic review and meta-analysis of case reports. Mediterr. J. Hematol. Infect. Dis. 2022 14 1 e2022020 10.4084/MJHID.2022.020 35444770
    [Google Scholar]
  105. Ramaswami R. Lurain K. Peer C.J. Tocilizumab in patients with symptomatic Kaposi sarcoma herpesvirus–associated multicentric Castleman disease. Blood 2020 135 25 2316 2319 10.1182/blood.2019004602 32276276
    [Google Scholar]
  106. Marcelin A.G. Aaron L. Mateus C. Rituximab therapy for HIV-associated Castleman disease. Blood 2003 102 8 2786 2788 10.1182/blood‑2003‑03‑0951 12842986
    [Google Scholar]
  107. Boulanger E. Agbalika F. Maarek O. A clinical, molecular and cytogenetic study of 12 cases of human herpesvirus 8 associated primary effusion lymphoma in HIV-infected patients. Hematol. J. 2001 2 3 172 179 10.1038/sj.thj.6200096 11920242
    [Google Scholar]
  108. Boulanger E. Gérard L. Gabarre J. Prognostic factors and outcome of human herpesvirus 8-associated primary effusion lymphoma in patients with AIDS. J. Clin. Oncol. 2005 23 19 4372 4380 10.1200/JCO.2005.07.084 15994147
    [Google Scholar]
  109. Patil A. Manzano M. Gottwein E. CK1α and IRF4 are essential and independent effectors of immunomodulatory drugs in primary effusion lymphoma. Blood 2018 132 6 577 586 10.1182/blood‑2018‑01‑828418 29954751
    [Google Scholar]
  110. Gopalakrishnan R. Matta H. Tolani B. Triche T.J. Chaudhary P. Immunomodulatory drugs are efficacious against primary effusion lymphoma by targeting IKZF1, IRF4 and MYC in a CRBN-dependent manner and are synergistic with BRD4 inhibitors. Blood 2014 124 21 3109 10.1182/blood.V124.21.3109.3109
    [Google Scholar]
  111. Lurain K. Ramaswami R. Widell A. Phase I study of lenalidomide combined with dose-adjusted EPOCH and rituximab (EPOCH-R2) in primary effusion lymphoma in participants with or without HIV (NCT02911142). Blood 2020 136 8 9 10.1182/blood‑2020‑137188
    [Google Scholar]
  112. Sandoval-Sus J.D. Brahim A. Khan A. Raphael B. Ansari-Lari A. Ruiz M. Brentuximab vedotin as frontline treatment for HIV-related extracavitary primary effusion lymphoma. Int. J. Hematol. 2019 109 5 622 626 10.1007/s12185‑019‑02592‑3 30671911
    [Google Scholar]
  113. Hogan L.E. Vasquez J. Hobbs K.S. Increased HIV-1 transcriptional activity and infectious burden in peripheral blood and gut-associated CD4+ T cells expressing CD30. PLoS Pathog. 2018 14 2 e1006856 10.1371/journal.ppat.1006856 29470552
    [Google Scholar]
  114. Castillo J.J. Bibas M. Miranda R.N. The biology and treatment of plasmablastic lymphoma. Blood 2015 125 15 2323 2330 10.1182/blood‑2014‑10‑567479 25636338
    [Google Scholar]
  115. Wong J Collinge B Hilton LK The genomic landscape of plasmablastic lymphoma (PBL) - An L.L.M.P.P. project Blood 2021 138 1326.(Suppl. 1) 10.1182/blood‑2021‑153441
    [Google Scholar]
  116. Phillips L. Opie J. The utility of bone marrow sampling in the diagnosis and staging of lymphoma in South Africa. Int. J. Lab. Hematol. 2018 40 3 276 283 10.1111/ijlh.12782 29427399
    [Google Scholar]
  117. Antel K. Levetan C. Mohamed Z. The determinants and impact of diagnostic delay in lymphoma in a TB and HIV endemic setting. BMC Cancer 2019 19 1 384 10.1186/s12885‑019‑5586‑4 31023278
    [Google Scholar]
  118. Roché P. Venton G. Berda-Haddad Y. Could daratumumab induce the maturation of plasmablasts in Plasmablastic lymphoma?—Potential therapeutic applications. Eur. J. Haematol. 2021 106 4 589 592 10.1111/ejh.13584 33469987
    [Google Scholar]
  119. Castillo J.J. Furman M. Beltrán B.E. Human immunodeficiency virus‐associated plasmablastic lymphoma. Cancer 2012 118 21 5270 5277 10.1002/cncr.27551 22510767
    [Google Scholar]
  120. Castillo J.J. Winer E.S. Stachurski D. Prognostic factors in chemotherapy-treated patients with HIV-associated Plasmablastic lymphoma. Oncologist 2010 15 3 293 299 10.1634/theoncologist.2009‑0304 20167839
    [Google Scholar]
  121. Makady N.F. Ramzy D. Ghaly R. Abdel-Malek R.R. Shohdy K.S. The emerging treatment options of plasmablastic lymphoma: Analysis of 173 individual patient outcomes. Clin. Lymphoma Myeloma Leuk. 2021 21 3 e255 e263 10.1016/j.clml.2020.11.025 33419717
    [Google Scholar]
  122. Castillo J.J. Winer E.S. Stachurski D. Clinical and pathological differences between human immunodeficiency virus-positive and human immunodeficiency virus-negative patients with plasmablastic lymphoma. Leuk. Lymphoma 2010 51 11 2047 2053 10.3109/10428194.2010.516040 20919850
    [Google Scholar]
  123. Ricker E.C. Ryu Y.K. Amengual J.E. Daratumumab plus chemotherapy induces complete responses in a consecutive series of four patients with plasmablastic lymphoma. Blood 2021 138 4573 10.1182/blood‑2021‑150800
    [Google Scholar]
  124. Guerrero-Garcia T.A. Mogollon R.J. Castillo J.J. Bortezomib in plasmablastic lymphoma: A glimpse of hope for a hard-to-treat disease. Leuk. Res. 2017 62 12 16 10.1016/j.leukres.2017.09.020 28963907
    [Google Scholar]
  125. Sonneveld P. Dimopoulos M.A. Boccadoro M. Daratumumab, bortezomib, lenalidomide, and dexamethasone for multiple myeloma. N. Engl. J. Med. 2024 390 4 301 313 10.1056/NEJMoa2312054 38084760
    [Google Scholar]
  126. Biggar R.J. Horm J. Goedert J.J. Melbye M. Cancer in a group at risk of acquired immunodeficiency syndrome (AIDS) through 1984. Am. J. Epidemiol. 1987 126 4 578 586 10.1093/oxfordjournals.aje.a114697 3631049
    [Google Scholar]
  127. Carroll V. Garzino-Demo A. HIV-associated lymphoma in the era of combination antiretroviral therapy: Shifting the immunological landscape. Pathog. Dis. 2015 73 7 ftv044 10.1093/femspd/ftv044 26121984
    [Google Scholar]
  128. Vaccher E. Spina M. Tirelli U. Clinical aspects and management of Hodgkin’s disease and other tumours in HIV-infected individuals. Eur. J. Cancer 2001 37 10 1306 1315 10.1016/S0959‑8049(01)00122‑8 11423262
    [Google Scholar]
  129. Subramanian K. Switchenko J.M. Flowers C. Khan M.K. A meta-analysis on ABVD administration in HIV+ patients with advanced stage Hodgkin’s lymphoma (HL). J. Clin. Oncol. 2018 36 15_suppl. e19522 e2 10.1200/JCO.2018.36.15_suppl.e19522
    [Google Scholar]
  130. Besson C. Lancar R. Prevot S. High risk features contrast with favorable outcomes in HIV-associated Hodgkin lymphoma in the modern cART era, ANRS CO16 LYMPHOVIR cohort. Clin. Infect. Dis. 2015 61 9 1469 1475 10.1093/cid/civ627 26223997
    [Google Scholar]
  131. Ezzat H.M. Cheung M.C. Hicks L.K. Incidence, predictors and significance of severe toxicity in patients with human immunodeficiency virus-associated Hodgkin lymphoma. Leuk. Lymphoma 2012 53 12 2390 2396 10.3109/10428194.2012.697560 22642935
    [Google Scholar]
  132. Cheung M.C. Hicks L.K. Leitch H.A. Excessive neurotoxicity with ABVD when combined with protease inhibitor-based antiretroviral therapy in the treatment of AIDS-related Hodgkin lymphoma. Clin. Lymphoma Myeloma Leuk. 2010 10 2 E22 E25 10.3816/CLML.2010.n.025 20371439
    [Google Scholar]
  133. Cordova E. Morganti L. Odzak A. Severe hypokalemia due to a possible drug–drug interaction between vinblastine and antiretrovirals in a HIV-infected patient with Hodgkin’s lymphoma. Int. J. STD AIDS 2017 28 12 1259 1262 10.1177/0956462417703026 28403692
    [Google Scholar]
  134. Diehl V. Franklin J. Pfreundschuh M. Standard and increased-dose BEACOPP chemotherapy compared with COPP-ABVD for advanced Hodgkin’s disease. N. Engl. J. Med. 2003 348 24 2386 2395 10.1056/NEJMoa022473 12802024
    [Google Scholar]
  135. Birgegård G. Gascón P. Ludwig H. Evaluation of anaemia in patients with multiple myeloma and lymphoma: Findings of the European CANCER ANAEMIA SURVEY. Eur. J. Haematol. 2006 77 5 378 386 10.1111/j.1600‑0609.2006.00739.x 17044835
    [Google Scholar]
  136. de Laat B. de Groot P.G. Derksen R.H.W.M. Association between beta2-glycoprotein I plasma levels and the risk of myocardial infarction in older men. Blood 2009 114 17 3656 3661 10.1182/blood‑2009‑03‑212910 19706887
    [Google Scholar]
  137. Simba K. Mohamed Z. Opie J.J. The international prognostic score and HIV status predict red cell concentrate transfusion needs in Hodgkin lymphoma. Leuk. Lymphoma 2023 64 3 613 620 10.1080/10428194.2022.2157214 36562564
    [Google Scholar]
  138. Shi Y. Li Q. Zhang W. Sintilimab as salvage treatment in an HIV patient with relapsed/refractory Hodgkin: A case report. Ann. Palliat. Med. 2020 9 4 2414 2419 10.21037/apm‑20‑1333 32692239
    [Google Scholar]
  139. Sandoval-Sus J.D. Mogollon-Duffo F. Patel A. Nivolumab as salvage treatment in a patient with HIV-related relapsed/refractory Hodgkin lymphoma and liver failure with encephalopathy. J. Immunother. Cancer 2017 5 1 49 10.1186/s40425‑017‑0252‑3 28642818
    [Google Scholar]
  140. Chang E. Rivero G. Patel N.R. HIV-related refractory hodgkin lymphoma: A case report of complete response to nivolumab. Clin. Lymphoma Myeloma Leuk. 2018 18 2 e143 e146 10.1016/j.clml.2017.12.008 29342442
    [Google Scholar]
  141. Thompson L.D.R. Fisher M.S.I. Chu W.S. Nelson A. Abbondanzo S.L. HIV-associated Hodgkin lymphoma: A clinicopathologic and immunophenotypic study of 45 cases. Am. J. Clin. Pathol. 2004 121 5 727 738 10.1309/PNVQ0PQGXHVY6L7G 15151213
    [Google Scholar]
  142. Azzouzi M. El Hadad S.E. Azougagh O. Synthesis, characterization, and antiviral evaluation of new chalcone-based imidazo[1,2-a]pyridine derivatives: Insights from in vitro and in silico anti-HIV studies. Bioorg. Chem. 2025 154 108102 10.1016/j.bioorg.2024.108102 39740310
    [Google Scholar]
  143. Zhu M. Zhou H. Ma L. Design, synthesis and biological evaluation of protease inhibitors containing morpholine cores with remarkable potency against both HIV-1 subtypes B and C. Eur. J. Med. Chem. 2022 233 114251 10.1016/j.ejmech.2022.114251 35278855
    [Google Scholar]
  144. Zhu M. Shan Q. Ma L. Structure based design and evaluation of benzoheterocycle derivatives as potential dual HIV-1 protease and reverse transcriptase inhibitors. Eur. J. Med. Chem. 2023 246 114981 10.1016/j.ejmech.2022.114981 36481598
    [Google Scholar]
  145. Yeruva S.L. Kumar P. Deepa S. Kondapi A.K. Lactoferrin nanoparticles coencapsulated with curcumin and tenofovir improve vaginal defense against HIV-1 infection. Nanomedicine (Lond.) 2021 16 7 569 586 10.2217/nnm‑2020‑0347 33660529
    [Google Scholar]
  146. Li S. Wang B. Jiang S. Surface-functionalized silica-coated calcium phosphate nanoparticles efficiently deliver DNA-based HIV-1 trimeric envelope vaccines against HIV-1. ACS Appl. Mater. Interfaces 2021 13 45 53630 53645 10.1021/acsami.1c16989 34735127
    [Google Scholar]
  147. Wu D. Si M. Xue H.Y. Lipid nanocarrier targeting activated macrophages for antiretroviral therapy of HIV reservoir. Nanomedicine 2023 18 20 1343 1360 10.2217/nnm‑2023‑0120 37815117
    [Google Scholar]
  148. Zhernov Y.V. Konstantinov A.I. Zherebker A. Antiviral activity of natural humic substances and shilajit materials against HIV-1: Relation to structure. Environ. Res. 2021 193 110312 10.1016/j.envres.2020.110312 33065073
    [Google Scholar]
  149. Valipour M. Zakeri K.Z. Abdollahi E. Ayati A. Recent applications of protoberberines as privileged starting materials for the development of novel broad-spectrum antiviral agents: A concise review (2017–2023). ACS Pharmacol. Transl. Sci. 2024 7 1 48 71 10.1021/acsptsci.3c00292 38230282
    [Google Scholar]
  150. Ratanabunyong S. Seetaha S. Hannongbua S. Biophysical characterization of novel DNA aptamers against K103N/Y181C double mutant HIV-1 reverse transcriptase. Molecules 2022 27 1 285 10.3390/molecules27010285 35011517
    [Google Scholar]
  151. Chiao E.Y. Coghill A. Kizub D. The effect of non-AIDS-defining cancers on people living with HIV. Lancet Oncol. 2021 22 6 e240 e253 10.1016/S1470‑2045(21)00137‑6 34087151
    [Google Scholar]
  152. Hsu J. Van Besien K. Glesby M.J. HIV-1 remission and possible cure in a woman after haplo-cord blood transplant. Cell 2023 186 6 1115 1126.e8 10.1016/j.cell.2023.02.030 36931242
    [Google Scholar]
  153. HIV-1 cure after CCR5Δ32/Δ32 allogeneic hematopoietic stem cell transplantation. Nat. Med. 2023 29 3 547 548 10.1038/s41591‑023‑02215‑9 36849733
    [Google Scholar]
  154. Jensen B.E.O. Knops E. Cords L. In-depth virological and immunological characterization of HIV-1 cure after CCR5Δ32/Δ32 allogeneic hematopoietic stem cell transplantation. Nat. Med. 2023 29 3 583 587 10.1038/s41591‑023‑02213‑x 36807684
    [Google Scholar]
  155. Shindiapina P Pietrzak M Seweryn M Comparative analysis of immune reconstitution in HIV-positive recipients of allogeneic and autologous stem cell transplant on the BMT CTN 0903/AMC-080 and BMT CTN 0803/AMC-071 trials Blood 2019 134 4525.(Suppl. 1) 10.1182/blood‑2019‑129488
    [Google Scholar]
  156. Hattenhauer T. Mispelbaum R. Hentrich M. Boesecke C. Monin M.B. Enabling CAR T ‐cell therapies for HIV ‐positive lymphoma patients – A call for action. HIV Med. 2023 24 9 957 964 10.1111/hiv.13514 37322863
    [Google Scholar]
  157. Li X. Li H. Li C. Xia W. Li A. Li W. Traditional Chinese medicine can improve the immune reconstruction of HIV/AIDS patients. AIDS Res. Hum. Retroviruses 2020 36 4 258 259 10.1089/aid.2019.0274 31958968
    [Google Scholar]
  158. Chen S. Wu Z. Ke Y. Wogonoside inhibits tumor growth and metastasis in endometrial cancer via ER stress-Hippo signaling axis. Acta Biochim. Biophys. Sin. 2019 51 11 1096 1105 10.1093/abbs/gmz109 31696210
    [Google Scholar]
  159. Esposito F. Carli I. Del Vecchio C. Sennoside A, derived from the traditional chinese medicine plant Rheum L., is a new dual HIV-1 inhibitor effective on HIV-1 replication. Phytomedicine 2016 23 12 1383 1391 10.1016/j.phymed.2016.08.001 27765358
    [Google Scholar]
  160. Ntlhamu M.I. Ndhlala A.R. Masoko P. Exploring the anti-HIV-1 reverse transcriptase, anti-inflammatory, anti-cancer activities and cytotoxicity of two fermented commercial herbal concoctions sold in Limpopo Province of South Africa. BMC Complement Med Ther 2021 21 1 151 10.1186/s12906‑021‑03321‑2 34039320
    [Google Scholar]
  161. Sun J. Jiang F. Wen B. Chinese herbal medicine for patients living with HIV in Guangxi province, China: An analysis of two registries. Sci. Rep. 2019 9 1 17444 10.1038/s41598‑019‑53725‑x 31767895
    [Google Scholar]
  162. Trickey A. McGinnis K. Gill M.J. Longitudinal trends in causes of death among adults with HIV on antiretroviral therapy in Europe and North America from 1996 to 2020: A collaboration of cohort studies. Lancet HIV 2024 11 3 e176 e185 10.1016/S2352‑3018(23)00272‑2 38280393
    [Google Scholar]
/content/journals/chr/10.2174/011570162X367092250901062629
Loading
/content/journals/chr/10.2174/011570162X367092250901062629
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test