Skip to content
2000
image of Unveiling an Immunological Mystery: Deciphering the Durability Divide in Vaccine-Elicited Antibody Responses

Abstract

Achieving durable antibody-mediated protection remains critical in vaccine development, particularly for viral diseases like COVID-19 and HIV. We discuss factors influencing antibody durability, highlighting the role of long-lived plasma cells (LLPCs) in the bone marrow, which are essential for sustained antibody production over many years. The frequencies and properties of bone marrow LLPC are critical determinants of the broad spectrum of antibody durability for different vaccines. Vaccines for diseases like measles and mumps elicit long-lasting antibodies; those for COVID-19 and HIV do not. High epitope densities in the vaccine are known to favor antibody durability, but we discuss three underappreciated variables that also play a role in long-lived antibody responses. First, in addition to high epitope densities, we discuss the importance of CD21 as a critical determinant of antibody durability. CD21 is a B cell antigen receptor (BCR) complex component. It significantly affects BCR signaling strength in a way essential for generating LLPC in the bone marrow. Second, all antibody-secreting cells (ASC) are not created equal. There is a four-log range of antibody secretion rates, and we propose epigenetic imprinting of different rates on ASC, including LLPC, as a factor in antibody durability. Third, antibody durability afforded by bone marrow LLPC is independent of continuous antigenic stimulation. By contrast, tissue-resident T-bet+CD21low ASC also persists in secondary lymphoid tissues and continuously produces antibodies depending on persisting antigen and the tissue microenvironment. We discuss these variables in the context of making an HIV vaccine that elicits broadly neutralizing antibodies against HIV that persist at protective levels without continuous vaccination over many years.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/chr/10.2174/011570162X366336250707084941
2025-07-23
2025-12-05
Loading full text...

Full text loading...

/deliver/fulltext/chr/10.2174/011570162X366336250707084941/BMS-CHIVR-2024-HT10-6091-13.html?itemId=/content/journals/chr/10.2174/011570162X366336250707084941&mimeType=html&fmt=ahah

References

  1. Bok K. Sitar S. Graham B.S. Mascola J.R. Accelerated COVID-19 vaccine development: Milestones, lessons, and prospects. Immunity 2021 54 8 1636 1651 10.1016/j.immuni.2021.07.017 34348117
    [Google Scholar]
  2. Corey L. Miner M.D. Accelerating clinical trial development in vaccinology: COVID-19 and beyond. Curr. Opin. Immunol. 2022 76 102206 10.1016/j.coi.2022.102206 35569415
    [Google Scholar]
  3. Excler J.L. Saville M. Privor-Dumm L. Factors, enablers and challenges for COVID-19 vaccine development. BMJ Glob. Health 2023 8 6 e011879 10.1136/bmjgh‑2023‑011879 37277195
    [Google Scholar]
  4. Morens D.M. Taubenberger J.K. Fauci A.S. Rethinking next-generation vaccines for coronaviruses, influenzaviruses, and other respiratory viruses. Cell Host Microbe 2023 31 1 146 157 10.1016/j.chom.2022.11.016 36634620
    [Google Scholar]
  5. Nguyen D.C. Lamothe P.A. Woodruff M.C. COVID ‐19 and plasma cells: Is there long‐lived protection? Immunol. Rev. 2022 309 1 40 63 10.1111/imr.13115 35801537
    [Google Scholar]
  6. Townsend J.P. Hassler H.B. Wang Z. The durability of immunity against reinfection by SARS-CoV-2: A comparative evolutionary study. Lancet Microbe 2021 2 12 e666 e675 10.1016/S2666‑5247(21)00219‑6 34632431
    [Google Scholar]
  7. Kolehmainen P. Heroum J. Jalkanen P. Serological follow-up study indicates high seasonal coronavirus infection and reinfection rates in early childhood. Microbiol. Spectr. 2022 10 3 e01967 e21 10.1128/spectrum.01967‑21 35481830
    [Google Scholar]
  8. Galanti M. Shaman J. Direct observation of repeated infections with endemic coronaviruses. J. Infect. Dis. 2021 223 3 409 415 10.1093/infdis/jiaa392 32692346
    [Google Scholar]
  9. Edridge A.W.D. Kaczorowska J. Hoste A.C.R. Seasonal coronavirus protective immunity is short-lasting. Nat. Med. 2020 26 11 1691 1693 10.1038/s41591‑020‑1083‑1 32929268
    [Google Scholar]
  10. Callow K.A. Parry H.F. Sergeant M. Tyrrell D.A.J. The time course of the immune response to experimental coronavirus infection of man. Epidemiol. Infect. 1990 105 2 435 446 10.1017/S0950268800048019 2170159
    [Google Scholar]
  11. Amanna I.J. Carlson N.E. Slifka M.K. Duration of humoral immunity to common viral and vaccine antigens. N. Engl. J. Med. 2007 357 19 1903 1915 10.1056/NEJMoa066092 17989383
    [Google Scholar]
  12. Wrammert J. Ahmed R. Maintenance of serological memory. Biol. Chem. 2008 389 5 537 539 10.1515/BC.2008.066 18953719
    [Google Scholar]
  13. Khodadadi L. Cheng Q. Radbruch A. Hiepe F. The maintenance of memory plasma cells. Front. Immunol. 2019 10 721 10.3389/fimmu.2019.00721 31024553
    [Google Scholar]
  14. Chang H.D. Radbruch A. Maintenance of quiescent immune memory in the bone marrow. Eur. J. Immunol. 2021 51 7 1592 1601 10.1002/eji.202049012 34010475
    [Google Scholar]
  15. Nguyen D.C. Duan M. Ali M. Ley A. Sanz I. Lee F.E.H. Plasma cell survival: The intrinsic drivers, migratory signals, and extrinsic regulators. Immunol. Rev. 2021 303 1 138 153 10.1111/imr.13013 34337772
    [Google Scholar]
  16. Lewis G.K. DeVico A.L. Gallo R.C. Antibody persistence and T-cell balance: Two key factors confronting HIV vaccine development. Proc. Natl. Acad. Sci. USA 2014 111 44 15614 15621 10.1073/pnas.1413550111 25349379
    [Google Scholar]
  17. Palin A.C. Alter G. Crotty S. The persistence of memory: defining, engineering, and measuring vaccine durability. Nat. Immunol. 2022 23 12 1665 1668 10.1038/s41590‑022‑01359‑z 36456737
    [Google Scholar]
  18. Vashishtha V.M. Kumar P. The durability of vaccine-induced protection: An overview. Expert Rev. Vaccines 2024 23 1 389 408 10.1080/14760584.2024.2331065 38488132
    [Google Scholar]
  19. Diener E. Feldmann M. Relationship between antigen and antibody-induced suppression of immunity. Immunol. Rev. 1972 8 1 76 103 10.1111/j.1600‑065X.1972.tb01565.x 4117565
    [Google Scholar]
  20. Feldmann M. Nossal G.J.V. Tolerance, enhancement and the regulation of interactions between T cells, B cells and macrophages. Immunol. Rev. 1972 13 1 3 34 10.1111/j.1600‑065X.1972.tb00058.x 4142145
    [Google Scholar]
  21. Klinman N.R. The mechanism of antigenic stimulation of primary and secondary clonal precursor cells. J. Exp. Med. 1972 136 2 241 260 10.1084/jem.136.2.241 4114497
    [Google Scholar]
  22. Yahara I. Edelman G.M. Restriction of the mobility of lymphocyte immunoglobulin receptors by concanavalin A. Proc. Natl. Acad. Sci. USA 1972 69 3 608 612 10.1073/pnas.69.3.608 4551979
    [Google Scholar]
  23. Dintzis H.M. Dintzis R.Z. Vogelstein B. Molecular determinants of immunogenicity: The immunon model of immune response. Proc. Natl. Acad. Sci. USA 1976 73 10 3671 3675 10.1073/pnas.73.10.3671 62364
    [Google Scholar]
  24. Dintzis R.Z. Vogelstein B. Dintzis H.M. Specific cellular stimulation in the primary immune response: Experimental test of a quantized model. Proc. Natl. Acad. Sci. USA 1982 79 3 884 888 10.1073/pnas.79.3.884 6950432
    [Google Scholar]
  25. Vogelstein B. Dintzis R.Z. Dintzis H.M. Specific cellular stimulation in the primary immune response: A quantized model. Proc. Natl. Acad. Sci. USA 1982 79 2 395 399 10.1073/pnas.79.2.395 6952192
    [Google Scholar]
  26. Alkan S.S. Bush M.E. Nitecki D.E. Goodman J.W. Antigen recognition and the immune response. Structural requirements in the side chain of tyrosine for immuno-genicity of L-tyrosine-azobenzenearsonate. J. Exp. Med. 1972 136 2 387 391 10.1084/jem.136.2.387 5043418
    [Google Scholar]
  27. Bush M.E. Alkan S.S. Nitecki D.E. Goodman J.W. Antigen recognition and the immune response. “Self-help” with symmetrical bifunctional antigen molecules. J. Exp. Med. 1972 136 6 1478 1483 10.1084/jem.136.6.1478 4118413
    [Google Scholar]
  28. Gold M.R. Reth M.G. Antigen receptor function in the context of the nanoscale organization of the B cell membrane. Annu. Rev. Immunol. 2019 37 1 97 123 10.1146/annurev‑immunol‑042718‑041704 31026412
    [Google Scholar]
  29. Volkmann C. Brings N. Becker M. Hobeika E. Yang J. Reth M. Molecular requirements of the B‐cell antigen receptor for sensing monovalent antigens. EMBO J. 2016 35 21 2371 2381 10.15252/embj.201694177 27634959
    [Google Scholar]
  30. Moon J.J. Suh H. Bershteyn A. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nat. Mater. 2011 10 3 243 251 10.1038/nmat2960 21336265
    [Google Scholar]
  31. Moon J.J. Suh H. Li A.V. Ockenhouse C.F. Yadava A. Irvine D.J. Enhancing humoral responses to a malaria antigen with nanoparticle vaccines that expand T fh cells and promote germinal center induction. Proc. Natl. Acad. Sci. USA 2012 109 4 1080 1085 10.1073/pnas.1112648109 22247289
    [Google Scholar]
  32. Laurens M.B. RTS,S/AS01 vaccine (Mosquirix™): An overview. Hum. Vaccin. Immunother. 2020 16 3 480 489 10.1080/21645515.2019.1669415 31545128
    [Google Scholar]
  33. Olotu A. Fegan G. Wambua J. Four-year efficacy of RTS,S/AS01E and its interaction with malaria exposure. N. Engl. J. Med. 2013 368 12 1111 1120 10.1056/NEJMoa1207564 23514288
    [Google Scholar]
  34. Wholey W.Y. Mueller J.L. Tan C. Brooks J.F. Zikherman J. Cheng W. Synthetic liposomal mimics of biological viruses for the study of immune responses to infection and vaccination. Bioconjug. Chem. 2020 31 3 685 697 10.1021/acs.bioconjchem.9b00825 31940172
    [Google Scholar]
  35. Brooks J.F. Riggs J. Mueller J.L. Molecular basis for potent B cell responses to antigen displayed on particles of viral size. Nat. Immunol. 2023 24 10 1762 1777 10.1038/s41590‑023‑01597‑9 37653247
    [Google Scholar]
  36. Wholey W.Y. Meyer A.R. Yoda S.T. Chackerian B. Zikherman J. Cheng W. Minimal determinants for lifelong antiviral antibody responses in mice from a single exposure to virus-like immunogens at low doses. Vaccines 2024 12 4 405 10.3390/vaccines12040405 38675787
    [Google Scholar]
  37. Wholey W.Y. Meyer A.R. Yoda S.T. An integrated signaling threshold initiates IgG response towards virus-like immunogens. bioRxiv 2024
    [Google Scholar]
  38. Cheng W. The density code for the development of a vaccine? J. Pharm. Sci. 2016 105 11 3223 3232 10.1016/j.xphs.2016.07.020 27649885
    [Google Scholar]
  39. Chen Z. Moon J.J. Cheng W. Quantitation and stability of protein conjugation on liposomes for controlled density of surface epitopes. Bioconjug. Chem. 2018 29 4 1251 1260 10.1021/acs.bioconjchem.8b00033 29528624
    [Google Scholar]
  40. Wholey W.Y. Yoda S.T. Cheng W. Site-specific and stable conjugation of the SARS-CoV-2 receptor-binding domain to liposomes in the absence of any other adjuvants elicits potent neutralizing antibodies in BALB/c Mice. Bioconjug. Chem. 2021 32 12 2497 2506 10.1021/acs.bioconjchem.1c00463 34775749
    [Google Scholar]
  41. García-Sánchez M. Castro M. Faro J. B cell receptors and free antibodies have different antigen-binding kinetics. Proc. Natl. Acad. Sci. USA 2023 120 35 e2220669120 10.1073/pnas.2220669120 37616223
    [Google Scholar]
  42. Slifka M.K. Amanna I.J. Role of multivalency and antigenic threshold in generating protective antibody responses. Front. Immunol. 2019 10 956 10.3389/fimmu.2019.00956 31118935
    [Google Scholar]
  43. Amanna I.J. Slifka M.K. Mechanisms that determine plasma cell lifespan and the duration of humoral immunity. Immunol. Rev. 2010 236 1 125 138 10.1111/j.1600‑065X.2010.00912.x 20636813
    [Google Scholar]
  44. Casola S. Otipoby K.L. Alimzhanov M. B cell receptor signal strength determines B cell fate. Nat. Immunol. 2004 5 3 317 327 10.1038/ni1036 14758357
    [Google Scholar]
  45. Slifka M.K. Antia R. Whitmire J.K. Ahmed R. Humoral immunity due to long-lived plasma cells. Immunity 1998 8 3 363 372 10.1016/S1074‑7613(00)80541‑5 9529153
    [Google Scholar]
  46. Croix D.A. Ahearn J.M. Rosengard A.M. Antibody response to a T-dependent antigen requires B cell expression of complement receptors. J. Exp. Med. 1996 183 4 1857 1864 10.1084/jem.183.4.1857 8666942
    [Google Scholar]
  47. Jegerlehner A. Storni T. Lipowsky G. Schmid M. Pumpens P. Bachmann M.F. Regulation of IgG antibody responses by epitope density and CD21-mediated costimulation. Eur. J. Immunol. 2002 32 11 3305 3314 10.1002/1521‑4141(200211)32:11<3305:AID‑IMMU3305>3.0.CO;2‑J 12555676
    [Google Scholar]
  48. Gatto D. Pfister T. Jegerlehner A. Martin S.W. Kopf M. Bachmann M.F. Complement receptors regulate differentiation of bone marrow plasma cell precursors expressing transcription factors Blimp-1 and XBP-1. J. Exp. Med. 2005 201 6 993 1005 10.1084/jem.20042239 15767369
    [Google Scholar]
  49. Matsumoto A.K. Kopicky-Burd J. Carter R.H. Tuveson D.A. Tedder T.F. Fearon D.T. Intersection of the complement and immune systems: A signal transduction complex of the B lymphocyte-containing complement receptor type 2 and CD19. J. Exp. Med. 1991 173 1 55 64 10.1084/jem.173.1.55 1702139
    [Google Scholar]
  50. Tedder T.F. Zhou L.J. Engel P. The CD19/CD21 signal transduction complex of B lymphocytes. Immunol. Today 1994 15 9 437 442 10.1016/0167‑5699(94)90274‑7 7524521
    [Google Scholar]
  51. Dempsey P.W. Allison M.E.D. Akkaraju S. Goodnow C.C. Fearon D.T. C3d of complement as a molecular adjuvant: Bridging innate and acquired immunity. Science 1996 271 5247 348 350 10.1126/science.271.5247.348 8553069
    [Google Scholar]
  52. Cherukuri A. Cheng P.C. Sohn H.W. Pierce S.K. The CD19/CD21 complex functions to prolong B cell antigen receptor signaling from lipid rafts. Immunity 2001 14 2 169 179 10.1016/S1074‑7613(01)00098‑X 11239449
    [Google Scholar]
  53. Barrington R.A. Zhang M. Zhong X. CD21/CD19 coreceptor signaling promotes B cell survival during primary immune responses. J. Immunol. 2005 175 5 2859 2867 10.4049/jimmunol.175.5.2859 16116172
    [Google Scholar]
  54. Cooper N.R. Moore M.D. Nemerow G.R. Immunobiology of CR2, the B lymphocyte receptor for Epstein-Barr virus and the C3d complement fragment. Annu. Rev. Immunol. 1988 6 1 85 113 10.1146/annurev.iy.06.040188.000505 2838050
    [Google Scholar]
  55. Ahearn J.M. Fearon D.T. Structure and function of the complement receptors, CR1 (CD35) and CR2 (CD21). Adv. Immunol. 1989 46 183 219 10.1016/S0065‑2776(08)60654‑9 2551147
    [Google Scholar]
  56. Fearon D.T. Carroll M.C. Carroll M.C. Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu. Rev. Immunol. 2000 18 1 393 422 10.1146/annurev.immunol.18.1.393 10837064
    [Google Scholar]
  57. Roozendaal R. Carroll M.C. Complement receptors CD21 and CD35 in humoral immunity. Immunol. Rev. 2007 219 1 157 166 10.1111/j.1600‑065X.2007.00556.x 17850488
    [Google Scholar]
  58. Haas K.M. Toapanta F.R. Oliver J.A. Cutting edge: C3d functions as a molecular adjuvant in the absence of CD21/35 expression. J. Immunol. 2004 172 10 5833 5837 10.4049/jimmunol.172.10.5833 15128761
    [Google Scholar]
  59. Weiss R. Gabler M. Jacobs T. Gilberger T.W. Thalhamer J. Scheiblhofer S. Differential effects of C3d on the immunogenicity of gene gun vaccines encoding Plasmodium falciparum and Plasmodium berghei MSP142. Vaccine 2010 28 28 4515 4522 10.1016/j.vaccine.2010.04.054 20438877
    [Google Scholar]
  60. De Groot A.S. Ross T.M. Levitz L. C3d adjuvant effects are mediated through the activation of C3d‐specific autoreactive T cells. Immunol. Cell Biol. 2015 93 2 189 197 10.1038/icb.2014.89 25385064
    [Google Scholar]
  61. Sicard T. Kassardjian A. Julien J.P. B cell targeting by molecular adjuvants for enhanced immunogenicity. Expert Rev. Vaccines 2020 19 11 1023 1039 10.1080/14760584.2020.1857736 33252273
    [Google Scholar]
  62. Chen Z. Koralov S.B. Gendelman M. Carroll M.C. Kelsoe G. Humoral immune responses in Cr2-/- mice: Enhanced affinity maturation but impaired antibody persistence. J. Immunol. 2000 164 9 4522 4532 10.4049/jimmunol.164.9.4522 10779753
    [Google Scholar]
  63. Fischer M.B. Goerg S. Shen L. Dependence of germinal center B cells on expression of CD21/CD35 for survival. Science 1998 280 5363 582 585 10.1126/science.280.5363.582 9554848
    [Google Scholar]
  64. Gatto D. Martin S.W. Bessa J. Regulation of memory antibody levels: The role of persisting antigen versus plasma cell life span. J. Immunol. 2007 178 1 67 76 10.4049/jimmunol.178.1.67 17182541
    [Google Scholar]
  65. Zabel F. Kündig T.M. Bachmann M.F. Virus-induced humoral immunity: On how B cell responses are initiated. Curr. Opin. Virol. 2013 3 3 357 362 10.1016/j.coviro.2013.05.004 23731601
    [Google Scholar]
  66. Zabel F. Mohanan D. Bessa J. Viral particles drive rapid differentiation of memory B cells into secondary plasma cells producing increased levels of antibodies. J. Immunol. 2014 192 12 5499 5508 10.4049/jimmunol.1400065 24821969
    [Google Scholar]
  67. Amanna I.J. Slifka M.K. Successful vaccines. Curr. Top. Microbiol. Immunol. 2018 428 1 30 10.1007/82_2018_102 30046984
    [Google Scholar]
  68. Klasse P.J. Ozorowski G. Sanders R.W. Moore J.P. Env exceptionalism: Why are HIV-1 env glycoproteins atypical immunogens? Cell Host Microbe 2020 27 4 507 518 10.1016/j.chom.2020.03.018 32272076
    [Google Scholar]
  69. Antia A. Ahmed H. Handel A. Heterogeneity and longevity of antibody memory to viruses and vaccines. PLoS Biol. 2018 16 8 e2006601 10.1371/journal.pbio.2006601 30096134
    [Google Scholar]
  70. Nailescu C. Nelson R.D. Verghese P.S. Human papillomavirus vaccination in male and female adolescents before and after kidney transplantation: A pediatric nephrology research consortium study. Front Pediatr. 2020 8 46 10.3389/fped.2020.00046 32154194
    [Google Scholar]
  71. Hammarlund E. Lewis M.W. Hansen S.G. Duration of antiviral immunity after smallpox vaccination. Nat. Med. 2003 9 9 1131 1137 10.1038/nm917 12925846
    [Google Scholar]
  72. Hammarlund E. Thomas A. Amanna I.J. Plasma cell survival in the absence of B cell memory. Nat. Commun. 2017 8 1 1781 10.1038/s41467‑017‑01901‑w 29176567
    [Google Scholar]
  73. Langley W.A. Wieland A. Ahmed H. Persistence of virus-specific antibody after depletion of memory B cells. J. Virol. 2022 96 9 e00026 e22 10.1128/jvi.00026‑22 35404084
    [Google Scholar]
  74. DiLillo D.J. Hamaguchi Y. Ueda Y. Maintenance of long-lived plasma cells and serological memory despite mature and memory B cell depletion during CD20 immunotherapy in mice. J. Immunol. 2008 180 1 361 371 10.4049/jimmunol.180.1.361 18097037
    [Google Scholar]
  75. Amore A. Antibody-mediated rejection. Curr. Opin. Organ Transplant. 2015 20 5 536 542 10.1097/MOT.0000000000000230 26348571
    [Google Scholar]
  76. Everly M.J. Terasaki P.I. The state of therapy for removal of alloantibody producing plasma cells in transplantation. Semin. Immunol. 2012 24 2 143 147 10.1016/j.smim.2011.08.014 22153981
    [Google Scholar]
  77. Rizzi M. Knoth R. Hampe C.S. Long-lived plasma cells and memory B cells produce pathogenic anti-GAD65 autoantibodies in Stiff Person Syndrome. PLoS One 2010 5 5 e10838 10.1371/journal.pone.0010838 20520773
    [Google Scholar]
  78. Mahévas M. Michel M. Weill J.C. Reynaud C.A. Long-lived plasma cells in autoimmunity: Lessons from B-cell depleting therapy. Front. Immunol. 2013 4 494 10.3389/fimmu.2013.00494 24409184
    [Google Scholar]
  79. Mahévas M. Patin P. Huetz F. B cell depletion in immune thrombocytopenia reveals splenic long-lived plasma cells. J. Clin. Invest. 2013 123 1 432 442 10.1172/JCI65689 23241960
    [Google Scholar]
  80. Manz R.A. Thiel A. Radbruch A. Lifetime of plasma cells in the bone marrow. Nature 1997 388 6638 133 134 10.1038/40540 9217150
    [Google Scholar]
  81. Manz R. Löhning M. Cassese G. Thiel A. Radbruch A. Survival of long-lived plasma cells is independent of antigen. Int. Immunol. 1998 10 11 1703 1711 10.1093/intimm/10.11.1703 9846699
    [Google Scholar]
  82. Ahuja A. Anderson S.M. Khalil A. Shlomchik M.J. Maintenance of the plasma cell pool is independent of memory B cells. Proc. Natl. Acad. Sci. USA 2008 105 12 4802 4807 10.1073/pnas.0800555105 18339801
    [Google Scholar]
  83. Coons A.H. Leduc E.H. Connolly J.M. Studies on antibody production. I. A method for the histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbit. J. Exp. Med. 1955 102 1 49 60 10.1084/jem.102.1.49 14392240
    [Google Scholar]
  84. Slifka M.K. Matloubian M. Ahmed R. Bone marrow is a major site of long-term antibody production after acute viral infection. J. Virol. 1995 69 3 1895 1902 10.1128/jvi.69.3.1895‑1902.1995 7853531
    [Google Scholar]
  85. Manz R.A. Arce S. Cassese G. Hauser A.E. Hiepe F. Radbruch A. Humoral immunity and long-lived plasma cells. Curr. Opin. Immunol. 2002 14 4 517 521 10.1016/S0952‑7915(02)00356‑4 12088688
    [Google Scholar]
  86. Wols H.A.M. Underhill G.H. Kansas G.S. Witte P.L. The role of bone marrow-derived stromal cells in the maintenance of plasma cell longevity. J. Immunol. 2002 169 8 4213 4221 10.4049/jimmunol.169.8.4213 12370351
    [Google Scholar]
  87. O’Connor B.P. Gleeson M.W. Noelle R.J. Erickson L.D. The rise and fall of long‐lived humoral immunity: Terminal differentiation of plasma cells in health and disease. Immunol. Rev. 2003 194 1 61 76 10.1034/j.1600‑065X.2003.00055.x 12846808
    [Google Scholar]
  88. Kallies A. Hasbold J. Tarlinton D.M. Plasma cell ontogeny defined by quantitative changes in blimp-1 expression. J. Exp. Med. 2004 200 8 967 977 10.1084/jem.20040973 15492122
    [Google Scholar]
  89. Tokoyoda K. Egawa T. Sugiyama T. Choi B.I. Nagasawa T. Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 2004 20 6 707 718 10.1016/j.immuni.2004.05.001 15189736
    [Google Scholar]
  90. Odendahl M. Mei H. Hoyer B.F. Generation of migratory antigen-specific plasma blasts and mobilization of resident plasma cells in a secondary immune response. Blood 2005 105 4 1614 1621 10.1182/blood‑2004‑07‑2507 15507523
    [Google Scholar]
  91. Shapiro-Shelef M. Lin K.I. Savitsky D. Liao J. Calame K. Blimp-1 is required for maintenance of long-lived plasma cells in the bone marrow. J. Exp. Med. 2005 202 11 1471 1476 10.1084/jem.20051611 16314438
    [Google Scholar]
  92. Fairfax K.A. Kallies A. Nutt S.L. Tarlinton D.M. Plasma cell development: From B-cell subsets to long-term survival niches. Semin. Immunol. 2008 20 1 49 58 10.1016/j.smim.2007.12.002 18222702
    [Google Scholar]
  93. Chu V.T. Beller A. Nguyen T.T.N. Steinhauser G. Berek C. The long-term survival of plasma cells. Scand. J. Immunol. 2011 73 6 508 511 10.1111/j.1365‑3083.2011.02544.x 21352257
    [Google Scholar]
  94. Henn A.D. Rebhahn J. Brown M.A. Modulation of single-cell IgG secretion frequency and rates in human memory B cells by CpG DNA, CD40L, IL-21, and cell division. J. Immunol. 2009 183 5 3177 3187 10.4049/jimmunol.0804233 19675172
    [Google Scholar]
  95. Taillardet M. Haffar G. Mondière P. The thymus-independent immunity conferred by a pneumococcal polysaccharide is mediated by long-lived plasma cells. Blood 2009 114 20 4432 4440 10.1182/blood‑2009‑01‑200014 19767510
    [Google Scholar]
  96. Njau M.N. Kim J.H. Chappell C.P. CD28-B7 interaction modulates short- and long-lived plasma cell function. J. Immunol. 2012 189 6 2758 2767 10.4049/jimmunol.1102728 22908331
    [Google Scholar]
  97. Njau M.N. Jacob J. The CD28/B7 pathway: A novel regulator of plasma cell function. Adv. Exp. Med. Biol. 2013 785 67 75 10.1007/978‑1‑4614‑6217‑0_8 23456839
    [Google Scholar]
  98. Bounab Y. Eyer K. Dixneuf S. Dynamic single-cell phenotyping of immune cells using the microfluidic platform DropMap. Nat. Protoc. 2020 15 9 2920 2955 10.1038/s41596‑020‑0354‑0 32788719
    [Google Scholar]
  99. Aymerich N. Bucheli O.T.M. Portmann K. Eyer K. Baudry J. A guide to the quantitation of protein secretion dynamics at the single-cell level. Methods Mol. Biol. 2024 2804 141 162 10.1007/978‑1‑0716‑3850‑7_9 38753146
    [Google Scholar]
  100. Eyer K. Doineau R.C.L. Castrillon C.E. Single-cell deep phenotyping of IgG-secreting cells for high-resolution immune monitoring. Nat. Biotechnol. 2017 35 10 977 982 10.1038/nbt.3964 28892076
    [Google Scholar]
  101. Brocca-Cofano E. McKinnon K. Demberg T. Vaccine-elicited SIV and HIV envelope-specific IgA and IgG memory B cells in rhesus macaque peripheral blood correlate with functional antibody responses and reduced viremia. Vaccine 2011 29 17 3310 3319 10.1016/j.vaccine.2011.02.066 21382487
    [Google Scholar]
  102. Kasturi S.P. Rasheed M.A.U. Havenar-Daughton C. 3M-052, a synthetic TLR-7/8 agonist, induces durable HIV-1 envelope–specific plasma cells and humoral immunity in nonhuman primates. Sci. Immunol. 2020 5 48 eabb1025 10.1126/sciimmunol.abb1025 32561559
    [Google Scholar]
  103. Halliley J.L. Tipton C.M. Liesveld J. Long-lived plasma cells are contained within the CD19−CD38hiCD138+ subset in human bone marrow. Immunity 2015 43 1 132 145 10.1016/j.immuni.2015.06.016 26187412
    [Google Scholar]
  104. Scharff M.D. Bargellesi A. Baumal R. Buxbaum J. Coffino P. Laskov R. Variations in the synthesis and assembly of immunoglobulins by mouse myeloma cells: A genetic and biochemical analysis. J. Cell. Physiol. 1970 76 3 331 348 10.1002/jcp.1040760311 4100579
    [Google Scholar]
  105. Nguyen D.C. Garimalla S. Xiao H. Factors of the bone marrow microniche that support human plasma cell survival and immunoglobulin secretion. Nat. Commun. 2018 9 1 3698 10.1038/s41467‑018‑05853‑7 30209264
    [Google Scholar]
  106. Nguyen D.C. Lewis H.C. Joyner C. Extracellular vesicles from bone marrow‐derived mesenchymal stromal cells support ex vivo survival of human antibody secreting cells. J. Extracell. Vesicles 2018 7 1 1463778 10.1080/20013078.2018.1463778 29713426
    [Google Scholar]
  107. Joyner C.J. Ley A.M. Nguyen D.C. Generation of human long-lived plasma cells by developmentally regulated epigenetic imprinting. Life Sci. Alliance 2021 5 3 5 34952892
    [Google Scholar]
  108. Duan M. Nguyen D.C. Joyner C.J. Understanding heterogeneity of human bone marrow plasma cell maturation and survival pathways by single-cell analyses. Cell Rep. 2023 42 7 112682 10.1016/j.celrep.2023.112682 37355988
    [Google Scholar]
  109. Corey L. Gilbert P.B. Juraska M. Two randomized trials of neutralizing antibodies to prevent HIV-1 acquisition. N. Engl. J. Med. 2021 384 11 1003 1014 10.1056/NEJMoa2031738 33730454
    [Google Scholar]
  110. Gilbert P.B. Huang Y. deCamp A.C. Neutralization titer biomarker for antibody-mediated prevention of HIV-1 acquisition. Nat. Med. 2022 28 9 1924 1932 10.1038/s41591‑022‑01953‑6 35995954
    [Google Scholar]
  111. Seaton K.E. Huang Y. Karuna S. Pharmacokinetic serum concentrations of VRC01 correlate with prevention of HIV-1 acquisition. EBioMedicine 2023 93 104590 10.1016/j.ebiom.2023.104590 37300931
    [Google Scholar]
  112. Pegu A. Borate B. Huang Y. A Meta-analysis of passive immunization studies shows that serum-neutralizing antibody titer associates with protection against SHIV challenge. Cell Host Microbe 2019 26 3 336 346.e3 10.1016/j.chom.2019.08.014 31513771
    [Google Scholar]
  113. Haynes B.F. Wiehe K. Borrow P. Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies. Nat. Rev. Immunol. 2023 23 3 142 158 10.1038/s41577‑022‑00753‑w 35962033
    [Google Scholar]
  114. Haynes B.F. Wiehe K. Alam S.M. Weissman D. Saunders K.O. Progress with induction of HIV broadly neutralizing antibodies in the Duke Consortia for HIV/AIDS Vaccine Development. Curr. Opin. HIV AIDS 2023 18 6 300 308 10.1097/COH.0000000000000820 37751363
    [Google Scholar]
  115. Burton D.R. Antiviral neutralizing antibodies: From in vitro to in vivo activity. Nat. Rev. Immunol. 2023 23 11 720 734 10.1038/s41577‑023‑00858‑w 37069260
    [Google Scholar]
  116. Steichen J.M. Phung I. Salcedo E. Vaccine priming of rare HIV broadly neutralizing antibody precursors in nonhuman primates. Science 2024 384 6697 eadj8321 10.1126/science.adj8321 38753769
    [Google Scholar]
  117. Schiffner T. Phung I. Ray R. Vaccination induces broadly neutralizing antibody precursors to HIV gp41. Nat. Immunol. 2024 25 6 1073 1082 10.1038/s41590‑024‑01833‑w 38816615
    [Google Scholar]
  118. Caniels T.G. Medina-Ramìrez M. Zhang S. Germline-targeting HIV vaccination induces neutralizing antibodies to the CD4 binding site. Sci. Immunol. 2024 9 98 eadk9550 10.1126/sciimmunol.adk9550 39213338
    [Google Scholar]
  119. Leggat D.J. Cohen K.W. Willis J.R. Vaccination induces HIV broadly neutralizing antibody precursors in humans. Science 2022 378 6623 eadd6502 10.1126/science.add6502 36454825
    [Google Scholar]
  120. Pauthner M.G. Nkolola J.P. Havenar-Daughton C. Vaccine-induced protection from homologous Tier 2 SHIV challenge in nonhuman primates depends on serum-neutralizing antibody titers. Immunity 2019 50 1 241 252.e6 10.1016/j.immuni.2018.11.011 30552025
    [Google Scholar]
  121. Guan Y. Sajadi M.M. Kamin-Lewis R. Discordant memory B cell and circulating anti-Env antibody responses in HIV-1 infection. Proc. Natl. Acad. Sci. USA 2009 106 10 3952 3957 10.1073/pnas.0813392106 19225108
    [Google Scholar]
  122. Sajadi M.M. Heredia A. Le N. Constantine N.T. Redfield R.R. HIV-1 natural viral suppressors: Control of viral replication in the absence of therapy. AIDS 2007 21 4 517 519 10.1097/QAD.0b013e328013d9eb 17301571
    [Google Scholar]
  123. Sajadi M.M. Guan Y. DeVico A.L. Correlation between circulating HIV-1 RNA and broad HIV-1 neutralizing antibody activity. J. Acquir. Immune Defic. Syndr. 2011 57 1 9 15 10.1097/QAI.0b013e3182100c1b 21283016
    [Google Scholar]
  124. Sajadi M Dahshti A Tehrani ZR Tolbert WD Identification of near pan-neutralizing antibodies against HIV-1 by deconvolution of plasma antibodies. Cell 2018 137 7 1783 10.1016/j.cell.2018.03.061
    [Google Scholar]
  125. Rerks-Ngarm S. Pitisuttithum P. Nitayaphan S. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 2009 361 23 2209 2220 10.1056/NEJMoa0908492 19843557
    [Google Scholar]
  126. Robb M.L. Rerks-Ngarm S. Nitayaphan S. Risk behaviour and time as covariates for efficacy of the HIV vaccine regimen ALVAC-HIV (vCP1521) and AIDSVAX B/E: a post-hoc analysis of the Thai phase 3 efficacy trial RV 144. Lancet Infect. Dis. 2012 12 7 531 537 10.1016/S1473‑3099(12)70088‑9 22652344
    [Google Scholar]
  127. Knox J.J. Buggert M. Kardava L. T-bet+ B cells are induced by human viral infections and dominate the HIV gp140 response. JCI Insight 2017 2 8 e92943 10.1172/jci.insight.92943 28422752
    [Google Scholar]
  128. Austin J.W. Buckner C.M. Kardava L. Overexpression of T-bet in HIV infection is associated with accumulation of B cells outside germinal centers and poor affinity maturation. Sci. Transl. Med. 2019 11 520 eaax0904 10.1126/scitranslmed.aax0904 31776286
    [Google Scholar]
  129. Moir S. Ho J. Malaspina A. Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J. Exp. Med. 2008 205 8 1797 1805 10.1084/jem.20072683 18625747
    [Google Scholar]
  130. Nellore A. Zumaquero E. Seifert M. T-bet+ B cells in humans: Protective and pathologic functions. Transplantation 2024 108 8 1709 1714 10.1097/TP.0000000000004889 38051131
    [Google Scholar]
  131. Kardava L. Moir S. B-cell abnormalities in HIV-1 infection. Curr. Opin. HIV AIDS 2019 14 4 240 245 10.1097/COH.0000000000000547 30973418
    [Google Scholar]
  132. Cancro M.P. Tomayko M.M. Memory B cells and plasma cells: The differentiative continuum of humoral immunity. Immunol. Rev. 2021 303 1 72 82 10.1111/imr.13016 34396546
    [Google Scholar]
  133. Knox J.J. Myles A. Cancro M.P. T‐bet + memory B cells: Generation, function, and fate. Immunol. Rev. 2019 288 1 149 160 10.1111/imr.12736 30874358
    [Google Scholar]
  134. Keller B. Warnatz K. T-bethighCD21low B cells: The need to unify our understanding of a distinct B cell population in health and disease. Curr. Opin. Immunol. 2023 82 102300 10.1016/j.coi.2023.102300 36931129
    [Google Scholar]
  135. Townsley S.M. Donofrio G.C. Jian N. B cell engagement with HIV-1 founder virus envelope predicts development of broadly neutralizing antibodies. Cell Host Microbe 2021 29 4 564 578.e9 10.1016/j.chom.2021.01.016 33662277
    [Google Scholar]
  136. Ambegaonkar A.A. Kwak K. Sohn H. Manzella-Lapeira J. Brzostowski J. Pierce S.K. Expression of inhibitory receptors by B cells in chronic human infectious diseases restricts responses to membrane-associated antigens. Sci. Adv. 2020 6 30 eaba6493 10.1126/sciadv.aba6493 32754637
    [Google Scholar]
  137. Johnson J.L. Rosenthal R.L. Knox J.J. The transcription factor T-bet resolves memory B cell subsets with distinct tissue distributions and antibody specificities in mice and humans. Immunity 2020 52 5 842 855.e6 10.1016/j.immuni.2020.03.020 32353250
    [Google Scholar]
  138. Sundling C. Rönnberg C. Yman V. B cell profiling in malaria reveals expansion and remodelling of CD11c+ B cell subsets. JCI Insight 2019 5 9 4 30939125
    [Google Scholar]
  139. Nellore A. Zumaquero E. Scharer C.D. A transcriptionally distinct subset of influenza-specific effector memory B cells predicts long-lived antibody responses to vaccination in humans. Immunity 2023 56 4 847 863.e8 10.1016/j.immuni.2023.03.001 36958335
    [Google Scholar]
  140. Andrews S.F. Chambers M.J. Schramm C.A. Activation dynamics and immunoglobulin evolution of pre-existing and newly generated human memory B cell responses to influenza hemagglutinin. Immunity 2019 51 2 398 410.e5 10.1016/j.immuni.2019.06.024 31350180
    [Google Scholar]
  141. Lau D. Lan L.Y.L. Andrews S.F. Low CD21 expression defines a population of recent germinal center graduates primed for plasma cell differentiation. Sci. Immunol. 2017 2 7 eaai8153 10.1126/sciimmunol.aai8153 28783670
    [Google Scholar]
  142. Sutton H.J. Aye R. Idris A.H. A typical B cells are part of an alternative lineage of B cells that participates in responses to vaccination and infection in humans. Cell Rep. 2021 34 6 108684 10.1016/j.celrep.2020.108684 33567273
    [Google Scholar]
  143. Montezuma-Rusca J.M. Moir S. Kardava L. Bone marrow plasma cells are a primary source of serum HIV-1-specific antibodies in chronically infected individuals. J. Immunol. 2015 194 6 2561 2568 10.4049/jimmunol.1402424 25681347
    [Google Scholar]
  144. Davis C.W. Jackson K.J.L. McCausland M.M. Influenza vaccine–induced human bone marrow plasma cells decline within a year after vaccination. Science 2020 370 6513 237 241 10.1126/science.aaz8432 32792465
    [Google Scholar]
  145. Buchmeier M.J. Welsh R.M. Dutko F.J. Oldstone M.B.A. The virology and immunobiology of lymphocytic choriomeningitis virus infection. Adv. Immunol. 1980 30 275 331 10.1016/S0065‑2776(08)60197‑2 6160740
    [Google Scholar]
  146. Oldstone M.B.A. Ahmed R. Byrne J. Buchmeier M.J. Riviere Y. Southern P. Virus and immune responses: Lymphocytic choriomeningitis virus as a prototype model of viral pathogenesis. Br. Med. Bull. 1985 41 1 70 74 10.1093/oxfordjournals.bmb.a072029 3882190
    [Google Scholar]
  147. Abdel-Hakeem M.S. Viruses teaching immunology: Role of LCMV model and human viral infections in immunological discoveries. Viruses 2019 11 2 106 10.3390/v11020106 30691215
    [Google Scholar]
  148. Ahmed R. Salmi A. Butler L.D. Chiller J.M. Oldstone M.B. Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice. Role in suppression of cytotoxic T lymphocyte response and viral persistence. J. Exp. Med. 1984 160 2 521 540 10.1084/jem.160.2.521 6332167
    [Google Scholar]
  149. Kahan S.M. Zajac A.J. Immune exhaustion: Past lessons and new insights from lymphocytic choriomeningitis virus. Viruses 2019 11 2 156 10.3390/v11020156 30781904
    [Google Scholar]
  150. Virgin H.W. Wherry E.J. Ahmed R. Redefining chronic viral infection. Cell 2009 138 1 30 50 10.1016/j.cell.2009.06.036 19596234
    [Google Scholar]
  151. Asano M. Ahmed R. Immune conflicts in lymphocytic choriomeningitis virus. Springer Semin. Immunopathol. 1995 17 2-3 247 259 10.1007/BF00196168 8571171
    [Google Scholar]
  152. Jin Y. He Y. Liu B. Single-cell RNA sequencing reveals the dynamics and heterogeneity of lymph node immune cells during acute and chronic viral infections. Front. Immunol. 2024 15 1341985 10.3389/fimmu.2024.1341985 38352870
    [Google Scholar]
  153. Cooper L. Xu H. Polmear J. Type I interferons induce an epigenetically distinct memory B cell subset in chronic viral infection. Immunity 2024 57 5 1037 1055.e6 10.1016/j.immuni.2024.03.016 38593796
    [Google Scholar]
  154. Serrán M.G. Vernengo F.F. Almada L. Extrafollicular plasmablasts present in the acute phase of infections express high levels of pd-l1 and are able to limit T cell response. Front. Immunol. 2022 13 828734 10.3389/fimmu.2022.828734 35651611
    [Google Scholar]
  155. Neumeier D. Pedrioli A. Genovese A. Profiling the specificity of clonally expanded plasma cells during chronic viral infection by single‐cell analysis. Eur. J. Immunol. 2022 52 2 297 311 10.1002/eji.202149331 34727578
    [Google Scholar]
  156. Kräutler N.J. Yermanos A. Pedrioli A. Quantitative and qualitative analysis of humoral immunity reveals continued and personalized evolution in chronic viral infection. Cell Rep. 2020 30 4 997 1012.e6 10.1016/j.celrep.2019.12.088 31995768
    [Google Scholar]
  157. Barnett B.E. Staupe R.P. Odorizzi P.M. Cutting edge: B cell–intrinsic T-bet expression is required to control chronic viral infection. J. Immunol. 2016 197 4 1017 1022 10.4049/jimmunol.1500368 27430722
    [Google Scholar]
  158. Pino M. Abid T. Pereira Ribeiro S. A yeast-expressed RBD-based SARS-CoV-2 vaccine formulated with 3M-052-alum adjuvant promotes protective efficacy in non-human primates. Sci. Immunol. 2021 6 61 eabh3634 10.1126/sciimmunol.abh3634 34266981
    [Google Scholar]
  159. Tehrani Z.R. Habibzadeh P. Flinko R. Deficient generation of spike-specific long-lived plasma cells in the bone marrow after severe acute respiratory syndrome coronavirus 2 infection. J. Infect. Dis. 2024 230 1 e30 e33 10.1093/infdis/jiad603 39052732
    [Google Scholar]
  160. Nguyen D.C. Hentenaar I.T. Morrison-Porter A. SARS-CoV-2-specific plasma cells are not durably established in the bone marrow long-lived compartment after mRNA vaccination. Nat. Med. 2024 31 1 235 244 39333316
    [Google Scholar]
  161. Zarnitsyna V.I. Lavine J. Ellebedy A. Ahmed R. Antia R. Multi-epitope models explain how pre-existing antibodies affect the generation of broadly protective responses to influenza. PLoS Pathog. 2016 12 6 e1005692 10.1371/journal.ppat.1005692 27336297
    [Google Scholar]
  162. Linderman S.L. Ellebedy A.H. Davis C. Influenza immunization in the context of preexisting immunity. Cold Spring Harb. Perspect. Med. 2021 11 11 a040964 10.1101/cshperspect.a040964 32988981
    [Google Scholar]
  163. Bennett M.J. Choe S. Eisenberg D. Refined structure of dimeric diphtheria toxin at 2.0 Å resolution. Protein Sci. 1994 3 9 1444 1463 10.1002/pro.5560030911 7833807
    [Google Scholar]
  164. Masuyer G. Conrad J. Stenmark P. The structure of the tetanus toxin reveals pH ‐mediated domain dynamics. EMBO Rep. 2017 18 8 1306 1317 10.15252/embr.201744198 28645943
    [Google Scholar]
  165. Verkoczy L. Humanized immunoglobulin mice. Adv. Immunol. 2017 134 235 352 10.1016/bs.ai.2017.01.004 28413022
    [Google Scholar]
  166. Klasse P.J. Sanders R.W. Cerutti A. Moore J.P. How can HIV-type-1-Env immunogenicity be improved to facilitate antibody-based vaccine development? AIDS Res. Hum. Retroviruses 2012 28 1 1 15 10.1089/aid.2011.0053 21495876
    [Google Scholar]
  167. Shan M. Klasse P.J. Banerjee K. HIV-1 gp120 mannoses induce immunosuppressive responses from dendritic cells. PLoS Pathog. 2007 3 11 e169 10.1371/journal.ppat.0030169 17983270
    [Google Scholar]
  168. Banerjee K. Andjelic S. Klasse P.J. Enzymatic removal of mannose moieties can increase the immune response to HIV-1 gp120 in vivo. Virology 2009 389 1-2 108 121 10.1016/j.virol.2009.04.001 19410272
    [Google Scholar]
  169. Banerjee K. Michael E. Eggink D. Occluding the mannose moieties on human immunodeficiency virus type 1 gp120 with griffithsin improves the antibody responses to both proteins in mice. AIDS Res. Hum. Retroviruses 2012 28 2 206 214 10.1089/aid.2011.0101 21793733
    [Google Scholar]
  170. Ringe R.P. Cruz Portillo V.M. Dosenovic P. Neutralizing antibody induction by HIV-1 envelope glycoprotein SOSIP trimers on iron oxide nanoparticles may be impaired by mannose binding lectin. J. Virol. 2020 94 6 e01883 e19 10.1128/JVI.01883‑19 31852794
    [Google Scholar]
  171. D’Addabbo A. Tong T. Crooks E.T. Impact of glycan depletion, glycan debranching and increased glycan charge on HIV-1 neutralization sensitivity and immunogenicity. Glycobiology 2024 34 11 cwae063 10.1093/glycob/cwae063 39115361
    [Google Scholar]
  172. Lee J.H. Sutton H.J. Cottrell C.A. Long-primed germinal centres with enduring affinity maturation and clonal migration. Nature 2022 609 7929 998 1004 10.1038/s41586‑022‑05216‑9 36131022
    [Google Scholar]
/content/journals/chr/10.2174/011570162X366336250707084941
Loading
/content/journals/chr/10.2174/011570162X366336250707084941
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test