Skip to content
2000
image of HIV-1 bNAb Vaccinal Effect – An Underachieving Goal?

Abstract

Reports of HIV-1-specific broadly neutralizing monoclonal antibodies (bNAbs) mediating a potential ‘vaccinal effect’ implicate passively transferred bNAbs in promoting endogenous anti-HIV-1 immune responses. To date, three clinical trials have reported either increased anti-HIV-1 neutralizing antibodies or T cell responses following bNAb administration to people living with HIV. Despite strong enthusiasm for this hypothesis, motivated in large part by its potential application to HIV-1 therapeutic strategies, the mechanism(s) underlying a vaccinal effect remain unclear. Moreover, vaccinal effects on antibody and T cell responses are not consistently replicated. Partly, this inconsistency may be due to numerous difficulties in sensitively measuring a vaccinal effect in the context of human clinical trials. The magnitude of immune response increase following bNAb administration is generally modest, even when it is observed; a far greater enhancement of neutralization or T cell responses is likely required for a biologically meaningful impact. We review clinical and pre-clinical nonhuman primate studies that evaluated HIV-1/SIV monoclonal antibodies for vaccinal effects, with an emphasis on the strengths and limitations of these studies. Considerations for future studies investigating vaccinal effects are discussed, including appropriate comparators and specificity controls. Lastly, immune response characteristics of elite controller cohorts are outlined as potential vaccinal effect endpoints more likely to mediate HIV-1 suppression. As bNAb therapeutic interventions increasingly turn to combination approaches, including incorporation of immunomodulatory agents, attention to study design incorporating appropriate control groups, and relevant immunogenicity assays will enable more conclusive interpretation of vaccinal effects likely to mediate durable control of HIV. In any case, to date, the elicitation of vaccinal effects has been disappointing.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/chr/10.2174/011570162X362665250727012610
2025-08-19
2025-12-05
Loading full text...

Full text loading...

/deliver/fulltext/chr/10.2174/011570162X362665250727012610/BMS-CHIVR-2024-HT10-6091-7.html?itemId=/content/journals/chr/10.2174/011570162X362665250727012610&mimeType=html&fmt=ahah

References

  1. Rutishauser R.L. Trautmann L. CD8+ T-cell responses in HIV controllers: Potential implications for novel HIV remission strategies. Curr. Opin. HIV AIDS 2022 17 5 315 324 10.1097/COH.0000000000000748 35777930
    [Google Scholar]
  2. Sneller M.C. Blazkova J. Justement J.S. Combination anti-HIV antibodies provide sustained virological suppression. Nature 2022 606 7913 375 381 10.1038/s41586‑022‑04797‑9 35650437
    [Google Scholar]
  3. Mendoza P. Gruell H. Nogueira L. Combination therapy with anti-HIV-1 antibodies maintains viral suppression. Nature 2018 561 7724 479 484 10.1038/s41586‑018‑0531‑2 30258136
    [Google Scholar]
  4. Julg B. Stephenson K.E. Wagh K. Safety and antiviral activity of triple combination broadly neutralizing monoclonal antibody therapy against HIV-1: A phase 1 clinical trial. Nat. Med. 2022 28 6 1288 1296 10.1038/s41591‑022‑01815‑1 35551291
    [Google Scholar]
  5. Bar-On Y. Gruell H. Schoofs T. Safety and antiviral activity of combination HIV-1 broadly neutralizing antibodies in viremic individuals. Nat. Med. 2018 24 11 1701 1707 10.1038/s41591‑018‑0186‑4 30258217
    [Google Scholar]
  6. Stephenson K.E. Julg B. Tan C.S. Safety, pharmacokinetics and antiviral activity of PGT121, a broadly neutralizing monoclonal antibody against HIV-1: A randomized, placebo-controlled, phase 1 clinical trial. Nat. Med. 2021 27 10 1718 1724 10.1038/s41591‑021‑01509‑0 34621054
    [Google Scholar]
  7. Caskey M. Schoofs T. Gruell H. Antibody 10-1074 suppresses viremia in HIV-1-infected individuals. Nat. Med. 2017 23 2 185 191 10.1038/nm.4268 28092665
    [Google Scholar]
  8. Scheid J.F. Horwitz J.A. Bar-On Y. HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption. Nature 2016 535 7613 556 560 10.1038/nature18929 27338952
    [Google Scholar]
  9. Caskey M. Klein F. Lorenzi J.C.C. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature 2015 522 7557 487 491 10.1038/nature14411 25855300
    [Google Scholar]
  10. Lynch R.M. Boritz E. Coates E.E. Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Sci. Transl. Med. 2015 7 319 319ra206 10.1126/scitranslmed.aad5752 26702094
    [Google Scholar]
  11. Naranjo-Gomez M. Pelegrin M. Vaccinal effect of HIV-1 antibody therapy: Dream or reality? Curr. Opin. HIV AIDS 2023 18 4 209 216 10.1097/COH.0000000000000797 37144564
    [Google Scholar]
  12. Tipoe T. Fidler S. Frater J. An exploration of how broadly neutralizing antibodies might induce HIV remission: The ‘vaccinal’ effect. Curr. Opin. HIV AIDS 2022 17 3 162 170 10.1097/COH.0000000000000731 35439790
    [Google Scholar]
  13. Regnault A. Lankar D. Lacabanne V. Fcgamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J. Exp. Med. 1999 189 2 371 380 10.1084/jem.189.2.371 9892619
    [Google Scholar]
  14. Michaud H.A. Gomard T. Gros L. A crucial role for infected-cell/antibody immune complexes in the enhancement of endogenous antiviral immunity by short passive immunotherapy. PLoS Pathog. 2010 6 6 1000948 10.1371/journal.ppat.1000948 20548955
    [Google Scholar]
  15. Kalergis A.M. Ravetch J.V. Inducing tumor immunity through the selective engagement of activating Fcgamma receptors on dendritic cells. J. Exp. Med. 2002 195 12 1653 1659 10.1084/jem.20020338 12070293
    [Google Scholar]
  16. Dhodapkar K.M. Kaufman J.L. Ehlers M. Selective blockade of inhibitory Fcγ receptor enables human dendritic cell maturation with IL-12p70 production and immunity to antibody-coated tumor cells. Proc. Natl. Acad. Sci. USA 2005 102 8 2910 2915 10.1073/pnas.0500014102 15703291
    [Google Scholar]
  17. Hioe C.E. Kumar R. Upadhyay C. Modulation of antibody responses to the V1V2 and V3 regions of HIV-1 envelope by immune complex vaccines. Front. Immunol. 2018 9 2441 10.3389/fimmu.2018.02441 30416503
    [Google Scholar]
  18. Kumar R. Tuen M. Liu J. Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3 epitopes of HIV-1 by immune complex vaccines. Vaccine 2013 31 46 5413 5421 10.1016/j.vaccine.2013.09.010 24051158
    [Google Scholar]
  19. Chen Y. Wilson R. O’Dell S. An HIV-1 env–antibody complex focuses antibody responses to conserved neutralizing epitopes. J. Immunol. 2016 197 10 3982 3998 10.4049/jimmunol.1601134 27815444
    [Google Scholar]
  20. Martin J.T. Cottrell C.A. Antanasijevic A. Targeting HIV Env immunogens to B cell follicles in nonhuman primates through immune complex or protein nanoparticle formulations. NPJ Vaccines 2020 5 1 72 10.1038/s41541‑020‑00223‑1 32802411
    [Google Scholar]
  21. Garg A.K. Desikan R. Dixit N.M. Preferential presentation of high-affinity immune complexes in germinal centers can explain how passive immunization improves the humoral response. Cell Rep. 2019 29 12 3946 3957.e5 10.1016/j.celrep.2019.11.030 31851925
    [Google Scholar]
  22. Zhang Y. Meyer-Hermann M. George L.A. Germinal center B cells govern their own fate via antibody feedback. J. Exp. Med. 2013 210 3 457 464 10.1084/jem.20120150 23420879
    [Google Scholar]
  23. Thomas P. Rees-Spear C. Griffith S. High affinity mAb infusion can enhance maximum affinity maturation during HIV Env immunization. iScience 2024 27 4 109495 10.1016/j.isci.2024.109495 38550978
    [Google Scholar]
  24. Forsell M.N.E. Kvastad L. Sedimbi S.K. Andersson J. Karlsson M.C.I. Regulation of subunit-specific germinal center B cell responses to the HIV-1 envelope glycoproteins by antibody-mediated feedback. Front. Immunol. 2017 8 738 10.3389/fimmu.2017.00738 28713371
    [Google Scholar]
  25. McNamara H.A. Idris A.H. Sutton H.J. Antibody feedback limits the expansion of b cell responses to malaria vaccination but drives diversification of the humoral response. Cell Host Microbe 2020 28 4 572 585.e7 10.1016/j.chom.2020.07.001 32697938
    [Google Scholar]
  26. Schaefer-Babajew D. Wang Z. Muecksch F. Antibody feedback regulates immune memory after SARS-CoV-2 mRNA vaccination. Nature 2023 613 7945 735 742 10.1038/s41586‑022‑05609‑w 36473496
    [Google Scholar]
  27. Mittal S. Garg A.K. Desikan R. Dixit N.M. Trade-off between the antiviral and vaccinal effects of antibody therapy in the humoral response to HIV. J. R. Soc. Interface 2024 21 221 20240535 10.1098/rsif.2024.0535 39626747
    [Google Scholar]
  28. Kannan D. Wang E. Deeks S.G. Lewin S.R. Chakraborty A.K. Mechanism for evolution of diverse autologous antibodies upon broadly neutralizing antibody therapy of people with HIV. bioRxiv 2025
    [Google Scholar]
  29. King H.A.D. Lewin S.R. Immune checkpoint inhibitors in infectious disease. Immunol. Rev. 2024 328 1 350 371 10.1111/imr.13388 39248154
    [Google Scholar]
  30. Haigwood N.L. Montefiori D.C. Sutton W.F. Passive immunotherapy in simian immunodeficiency virus-infected macaques accelerates the development of neutralizing antibodies. J. Virol. 2004 78 11 5983 5995 10.1128/JVI.78.11.5983‑5995.2004 15140996
    [Google Scholar]
  31. Ng C.T. Jaworski J.P. Jayaraman P. Passive neutralizing antibody controls SHIV viremia and enhances B cell responses in infant macaques. Nat. Med. 2010 16 10 1117 1119 10.1038/nm.2233 20890292
    [Google Scholar]
  32. Jaworski J.P. Kobie J. Brower Z. Neutralizing polyclonal IgG present during acute infection prevents rapid disease onset in simian-human immunodeficiency virus SHIVSF162P3-infected infant rhesus macaques. J. Virol. 2013 87 19 10447 10459 10.1128/JVI.00049‑13 23885083
    [Google Scholar]
  33. Schoofs T. Klein F. Braunschweig M. HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1. Science 2016 352 6288 997 1001 10.1126/science.aaf0972 27199429
    [Google Scholar]
  34. Niessl J. Baxter A.E. Mendoza P. Combination anti-HIV-1 antibody therapy is associated with increased virus-specific T cell immunity. Nat. Med. 2020 26 2 222 227 10.1038/s41591‑019‑0747‑1 32015556
    [Google Scholar]
  35. Rosás-Umbert M. Gunst J.D. Pahus M.H. Administration of broadly neutralizing anti-HIV-1 antibodies at ART initiation maintains long-term CD8+ T cell immunity. Nat. Commun. 2022 13 1 6473 10.1038/s41467‑022‑34171‑2 36309514
    [Google Scholar]
  36. Nishimura Y. Gautam R. Chun T.W. Early antibody therapy can induce long-lasting immunity to SHIV. Nature 2017 543 7646 559 563 10.1038/nature21435 28289286
    [Google Scholar]
  37. Nishimura Y. Donau O.K. Dias J. Immunotherapy during the acute SHIV infection of macaques confers long-term suppression of viremia. J. Exp. Med. 2021 218 1 20201214 10.1084/jem.20201214 32966579
    [Google Scholar]
  38. Lim S.Y. Lee J. Osuna C.E. Induction of durable remission by dual immunotherapy in SHIV-infected ART-suppressed macaques. Science 2024 383 6687 1104 1111 10.1126/science.adf7966 38422185
    [Google Scholar]
  39. Gruell H. Gunst J.D. Cohen Y.Z. Effect of 3BNC117 and romidepsin on the HIV-1 reservoir in people taking suppressive antiretroviral therapy (ROADMAP): A randomised, open-label, phase 2A trial. Lancet Microbe 2022 3 3 e203 e214 10.1016/S2666‑5247(21)00239‑1 35544074
    [Google Scholar]
  40. Gunst J.D. Højen J.F. Pahus M.H. Impact of a TLR9 agonist and broadly neutralizing antibodies on HIV-1 persistence: the randomized phase 2a TITAN trial. Nat. Med. 2023 29 10 2547 2558 10.1038/s41591‑023‑02547‑6 37696935
    [Google Scholar]
  41. Mehandru S. Vcelar B. Wrin T. Adjunctive passive immunotherapy in human immunodeficiency virus type 1-infected individuals treated with antiviral therapy during acute and early infection. J. Virol. 2007 81 20 11016 11031 10.1128/JVI.01340‑07 17686878
    [Google Scholar]
  42. Dias J. Fabozzi G. Fourati S. Administration of anti-HIV-1 broadly neutralizing monoclonal antibodies with increased affinity to Fcγ receptors during acute SHIVAD8-EO infection. Nat. Commun. 2024 15 1 7461 10.1038/s41467‑024‑51848‑y 39198422
    [Google Scholar]
  43. Gunst J.D. Gohil J. Li J.Z. Time to HIV viral rebound and frequency of post-treatment control after analytical interruption of antiretroviral therapy: An individual data-based meta-analysis of 24 prospective studies. Nat. Commun. 2025 16 1 906 10.1038/s41467‑025‑56116‑1 39837813
    [Google Scholar]
  44. Mesquita F.S. Li Y. Li J.Z. Viral and immune predictors of HIV posttreatment control. Curr. Opin. HIV AIDS 2025 20 1 54 60 10.1097/COH.0000000000000898 39633539
    [Google Scholar]
  45. Gunst J.D. Pahus M.H. Rosás-Umbert M. Early intervention with 3BNC117 and romidepsin at antiretroviral treatment initiation in people with HIV-1: A phase 1b/2a, randomized trial. Nat. Med. 2022 28 11 2424 2435 10.1038/s41591‑022‑02023‑7 36253609
    [Google Scholar]
  46. Yamamoto H. Kawada M. Takeda A. Igarashi H. Matano T. Post-infection immunodeficiency virus control by neutralizing antibodies. PLoS One 2007 2 6 540 10.1371/journal.pone.0000540 17579714
    [Google Scholar]
  47. Bolton D.L. Pegu A. Wang K. Human immunodeficiency virus type 1 monoclonal antibodies suppress acute simian-human immunodeficiency virus viremia and limit seeding of cell-associated viral reservoirs. J. Virol. 2016 90 3 1321 1332 10.1128/JVI.02454‑15 26581981
    [Google Scholar]
  48. Watkins J.D. Siddappa N.B. Lakhashe S.K. An anti-HIV-1 V3 loop antibody fully protects cross-clade and elicits T-cell immunity in macaques mucosally challenged with an R5 clade C SHIV. PLoS One 2011 6 3 18207 10.1371/journal.pone.0018207 21483815
    [Google Scholar]
  49. Barouch D.H. Whitney J.B. Moldt B. Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys. Nature 2013 503 7475 224 228 10.1038/nature12744 24172905
    [Google Scholar]
  50. Julg B. Pegu A. Abbink P. Virological control by the CD4-binding site antibody N6 in simian-human immunodeficiency virus-infected rhesus monkeys. J. Virol. 2017 91 16 e00498 e17 10.1128/JVI.00498‑17 28539448
    [Google Scholar]
  51. Borducchi E.N. Liu J. Nkolola J.P. Antibody and TLR7 agonist delay viral rebound in SHIV-infected monkeys. Nature 2018 563 7731 360 364 10.1038/s41586‑018‑0600‑6 30283138
    [Google Scholar]
  52. Frank I. Cigoli M. Arif M.S. Blocking α 4 β 7 integrin delays viral rebound in SHIV SF162P3 -infected macaques treated with anti-HIV broadly neutralizing antibodies. Sci. Transl. Med. 2021 13 607 eabf7201 10.1126/scitranslmed.abf7201 34408080
    [Google Scholar]
  53. Moldt B. Chandrashekar A. Borducchi E.N. HIV envelope antibodies and TLR7 agonist partially prevent viral rebound in chronically SHIV-infected monkeys. PLoS Pathog. 2022 18 4 1010467 10.1371/journal.ppat.1010467 35452496
    [Google Scholar]
  54. Walker-Sperling V.E.K. Mercado N.B. Chandrashekar A. Therapeutic efficacy of combined active and passive immunization in ART-suppressed, SHIV-infected rhesus macaques. Nat. Commun. 2022 13 1 3463 10.1038/s41467‑022‑31196‑5 35710819
    [Google Scholar]
  55. King H.A.D. Brammer D. Lewitus E. SIV monoclonal antibody administration spanning treatment interruption in macaques delays viral rebound and selects escape variants. Proc. Natl. Acad. Sci. USA 2025 122 5 2404767122 10.1073/pnas.2404767122 39883843
    [Google Scholar]
  56. Gonelli C.A. King H.A.D. Ko S. Antibody prophylaxis may mask subclinical SIV infections in macaques. Nature 2025 639 8053 205 213 10.1038/s41586‑024‑08500‑y 39910294
    [Google Scholar]
  57. Zalevsky J. Chamberlain A.K. Horton H.M. Enhanced antibody half-life improves in vivo activity. Nat. Biotechnol. 2010 28 2 157 159 10.1038/nbt.1601 20081867
    [Google Scholar]
  58. Caskey M. Millard K. Turroja M. Gaebler C. Logue E. Jiang C.S. Phase I study of long-acting 3BNC117 and 10-1074 in viremic adults living with HIV. Conference on Retrovirusesand Opportunistic In-fections. Virtual February 12-16 2022
    [Google Scholar]
  59. Bhiman J.N. Lynch R.M. Broadly neutralizing antibodies as treatment: Effects on virus and immune system. Curr. HIV/AIDS Rep. 2017 14 2 54 62 10.1007/s11904‑017‑0352‑1 28349376
    [Google Scholar]
  60. Migueles S.A. Osborne C.M. Royce C. Lytic granule loading of CD8+ T cells is required for HIV-infected cell elimination associated with immune control. Immunity 2008 29 6 1009 1021 10.1016/j.immuni.2008.10.010 19062316
    [Google Scholar]
  61. Migueles S.A. Weeks K.A. Nou E. Defective human immunodeficiency virus-specific CD8+ T-cell polyfunctionality, proliferation, and cytotoxicity are not restored by antiretroviral therapy. J. Virol. 2009 83 22 11876 11889 10.1128/JVI.01153‑09 19726501
    [Google Scholar]
  62. Ndhlovu Z.M. Chibnik L.B. Proudfoot J. High-dimensional immunomonitoring models of HIV-1–specific CD8 T-cell responses accurately identify subjects achieving spontaneous viral control. Blood 2013 121 5 801 811 10.1182/blood‑2012‑06‑436295 23233659
    [Google Scholar]
  63. Migueles S.A. Nettere D.M. Gavil N.V. HIV vaccines induce CD8+ T cells with low antigen receptor sensitivity. Science 2023 382 6676 1270 1276 10.1126/science.adg0514 38096385
    [Google Scholar]
  64. Migueles S.A. Laborico A.C. Shupert W.L. HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat. Immunol. 2002 3 11 1061 1068 10.1038/ni845 12368910
    [Google Scholar]
  65. Sáez-Cirión A. Lacabaratz C. Lambotte O. HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar cytotoxic T lymphocyte activation phenotype. Proc. Natl. Acad. Sci. USA 2007 104 16 6776 6781 10.1073/pnas.0611244104 17428922
    [Google Scholar]
  66. Almeida J.R. Price D.A. Papagno L. Superior control of HIV-1 replication by CD8+ T cells is reflected by their avidity, polyfunctionality, and clonal turnover. J. Exp. Med. 2007 204 10 2473 2485 10.1084/jem.20070784 17893201
    [Google Scholar]
  67. Collins D.R. Hitschfel J. Urbach J.M. Cytolytic CD8+ T cells infiltrate germinal centers to limit ongoing HIV replication in spontaneous controller lymph nodes. Sci. Immunol. 2023 8 83 eade5872 10.1126/sciimmunol.ade5872 37205767
    [Google Scholar]
  68. Peluso M. Sandel D. Deitchman A. Kim S.J. Dalhuisen T. Tummala H. Combination immunotherapy induces post-intervention control of HIV. Res Sq 2025 10.21203/rs.3.rs‑6141479/v1
    [Google Scholar]
  69. Kiani Z. Olatotse M. Urbach J. Lichterfeld M. Gunst J.D. Søgaard O. HIV-specific CD8+ T cell stemness predicts postintervention control of viremia. Conference on Retroviruses and Opportunistic Infections San Francisco, California March 9-12 2025 1 215
    [Google Scholar]
  70. Bailey J.R. Lassen K.G. Yang H.C. Neutralizing antibodies do not mediate suppression of human immunodeficiency virus type 1 in elite suppressors or selection of plasma virus variants in patients on highly active antiretroviral therapy. J. Virol. 2006 80 10 4758 4770 10.1128/JVI.80.10.4758‑4770.2006 16641269
    [Google Scholar]
  71. Gray E.S. Madiga M.C. Hermanus T. The neutralization breadth of HIV-1 develops incrementally over four years and is associated with CD4+ T cell decline and high viral load during acute infection. J. Virol. 2011 85 10 4828 4840 10.1128/JVI.00198‑11 21389135
    [Google Scholar]
  72. Esmaeilzadeh E. Etemad B. Lavine C.L. Autologous neutralizing antibodies increase with early antiretroviral therapy and shape HIV rebound after treatment interruption. Sci. Transl. Med. 2023 15 695 eabq4490 10.1126/scitranslmed.abq4490 37163616
    [Google Scholar]
  73. Bertagnolli L.N. Varriale J. Sweet S. Autologous IgG antibodies block outgrowth of a substantial but variable fraction of viruses in the latent reservoir for HIV-1. Proc. Natl. Acad. Sci. USA 2020 117 50 32066 32077 10.1073/pnas.2020617117 33239444
    [Google Scholar]
  74. Wang F.X. Kimura T. Nishihara K. Yoshimura K. Koito A. Matsushita S. Emergence of autologous neutralization-resistant variants from preexisting human immunodeficiency virus (HIV) quasi species during virus rebound in HIV type 1-infected patients undergoing highly active antiretroviral therapy. J. Infect. Dis. 2002 185 5 608 617 10.1086/339015 11865417
    [Google Scholar]
  75. Molinos-Albert L.M. Lorin V. Monceaux V. Transient viral exposure drives functionally-coordinated humoral immune responses in HIV-1 post-treatment controllers. Nat. Commun. 2022 13 1 1944 10.1038/s41467‑022‑29511‑1 35410989
    [Google Scholar]
  76. Baum L.L. Cassutt K.J. Knigge K. HIV-1 gp120-specific antibody-dependent cell-mediated cytotoxicity correlates with rate of disease progression. J. Immunol. 1996 157 5 2168 2173 10.4049/jimmunol.157.5.2168 8757343
    [Google Scholar]
  77. Forthal D.N. Landucci G. Keenan B. Relationship between antibody-dependent cellular cytotoxicity, plasma HIV type 1 RNA, and CD4+ lymphocyte count. AIDS Res. Hum. Retroviruses 2001 17 6 553 561 10.1089/08892220151126661 11350669
    [Google Scholar]
  78. Ljunggren K. Moschese V. Broliden P.A. Antibodies mediating cellular cytotoxicity and neutralization correlate with a better clinical stage in children born to human immunodeficiency virus-infected mothers. J. Infect. Dis. 1990 161 2 198 202 10.1093/infdis/161.2.198 2299204
    [Google Scholar]
  79. Tyler D.S. Stanley S.D. Nastala C.A. Alterations in antibody-dependent cellular cytotoxicity during the course of HIV-1 infection. Humoral and cellular defects. J. Immunol. 1990 144 9 3375 3384 10.4049/jimmunol.144.9.3375 2329275
    [Google Scholar]
  80. Ackerman M.E. Mikhailova A. Brown E.P. Polyfunctional HIV-specific antibody responses are associated with spontaneous HIV control. PLoS Pathog. 2016 12 1 1005315 10.1371/journal.ppat.1005315 26745376
    [Google Scholar]
  81. León B. Ballesteros-Tato A. Randall T.D. Lund F.E. Prolonged antigen presentation by immune complex–binding dendritic cells programs the proliferative capacity of memory CD8 T cells. J. Exp. Med. 2014 211 8 1637 1655 10.1084/jem.20131692 25002751
    [Google Scholar]
  82. Divangahi M. Aaby P. Khader S.A. Trained immunity, tolerance, priming and differentiation: Distinct immunological processes. Nat. Immunol. 2021 22 1 2 6 10.1038/s41590‑020‑00845‑6 33293712
    [Google Scholar]
  83. Netea M.G. Domínguez-Andrés J. Barreiro L.B. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 2020 20 6 375 388 10.1038/s41577‑020‑0285‑6 32132681
    [Google Scholar]
  84. Barblu L. Machmach K. Gras C. Plasmacytoid dendritic cells (pDCs) from HIV controllers produce interferon-α and differentiate into functional killer pDCs under HIV activation. J. Infect. Dis. 2012 206 5 790 801 10.1093/infdis/jis384 22693234
    [Google Scholar]
  85. Soumelis V. Scott I. Gheyas F. Depletion of circulating natural type 1 interferon-producing cells in HIV-infected AIDS patients. Blood 2001 98 4 906 912 10.1182/blood.V98.4.906 11493432
    [Google Scholar]
  86. Taborda N.A. Cataño J.C. Delgado J.C. Rugeles M.T. Montoya C.J. Higher SLPI expression, lower immune activation, and increased frequency of immune cells in a cohort of Colombian HIV-1 controllers. J. Acquir. Immune Defic. Syndr. 2012 60 1 12 19 10.1097/QAI.0b013e31824876ca 22240462
    [Google Scholar]
  87. Tomescu C. Liu Q. Ross B.N. A correlate of HIV-1 control consisting of both innate and adaptive immune parameters best predicts viral load by multivariable analysis in HIV-1 infected viremic controllers and chronically-infected non-controllers. PLoS One 2014 9 7 103209 10.1371/journal.pone.0103209 25078947
    [Google Scholar]
  88. Machmach K. Leal M. Gras C. Plasmacytoid dendritic cells reduce HIV production in elite controllers. J. Virol. 2012 86 8 4245 4252 10.1128/JVI.07114‑11 22318133
    [Google Scholar]
  89. Huang J. Burke P.S. Cung T.D.H. Leukocyte immunoglobulin-like receptors maintain unique antigen-presenting properties of circulating myeloid dendritic cells in HIV-1-infected elite controllers. J. Virol. 2010 84 18 9463 9471 10.1128/JVI.01009‑10 20631139
    [Google Scholar]
  90. May M.E. Pohlmeyer C.W. Kwaa A.K. Mankowski M.C. Bailey J.R. Blankson J.N. Combined effects of HLA-B*57/5801 elite suppressor CD8+ T cells and NK cells on HIV-1 replication. Front. Cell. Infect. Microbiol. 2020 10 113 10.3389/fcimb.2020.00113 32266164
    [Google Scholar]
  91. Lee M.J. Collins S. Babalis D. The RIO trial: rationale, design, and the role of community involvement in a randomised placebo-controlled trial of antiretroviral therapy plus dual long-acting HIV-specific broadly neutralising antibodies (bNAbs) in participants diagnosed with recent HIV infection—study protocol for a two-stage randomised phase II trial. Trials 2022 23 1 263 10.1186/s13063‑022‑06151‑w 35382844
    [Google Scholar]
  92. Dong K. Asari V. Govender V. Pillay V. Ngcobo S. Ismail N. Evaluation of 2 bNAbs plus vesatolimod in early-treated south african women with HIV-1 during ATI. Conference on Retroviruses and Opportunistic Infections San Francisco, CA March 9-12 2025
    [Google Scholar]
  93. Fidler S. Lee M.J. Collins S. Cherrill L-R. Falaschetti E. Zacharopoulou P. RIO: A randomised placebo-controlled study of 2 LS-bNAbs in people treated in early HIV. Conference on Retroviruses and Opportunistic Infections San Francisco, CA March 9-12 2025
    [Google Scholar]
  94. Gossez M. Martin G.E. Pace M. Virological remission after antiretroviral therapy interruption in female African HIV seroconverters. Aids 2019 33 2 185 197 10.1097/QAD.0000000000002044
    [Google Scholar]
/content/journals/chr/10.2174/011570162X362665250727012610
Loading
/content/journals/chr/10.2174/011570162X362665250727012610
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: HIV durable control ; passive transfer ; bNAb ; vaccinal effect ; SIV ; antibody ; HIV
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test