Skip to content
2000
image of Innovative Single-Cell Sequencing Techniques for B cell Analysis and Their Implications for Rational HIV-1 Vaccine Design
This item has no full text

Abstract

Single-cell analysis to study the variety of immune cells has long been regarded as challenging. Recently, innovative techniques have emerged and have revolutionized the way immune cells can be explored, offering unprecedented insights into the dynamics of this complex system. In particular, novel approaches have enabled a detailed characterization of B cell responses, encompassing immune repertoire, gene expression, and phenotype analysis at an individual cell level. By analyzing single B cells, researchers can unravel their heterogeneity, trace clonal evolution, and track immune responses over time during infections and vaccinations, thereby gaining a deeper understanding of the mechanisms underlying antibody secretion and immune memory formation. This knowledge can inform the development of optimal immunogens, adjuvants, and vaccine platforms, which are crucial for inducing robust, long-lasting protective responses and overcoming existing challenges in vaccine research. This is particularly valuable for rational vaccine design against specific pathogens, such as human immunodeficiency virus (HIV-1), for which a successful vaccine remains to be developed due to the need to elicit rare broadly neutralizing antibodies that target conserved epitopes on the genetically diverse envelope glycoprotein trimer. In this review, we highlight the latest advances in single-cell sequencing techniques and bioinformatic tools for the analysis of B cell responses in the context of infectious diseases and vaccinations. We discuss their applications and their pivotal role in advancing the design of next-generation vaccines, especially in the context of HIV-1.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/chr/10.2174/011570162X362655250620115404
2025-07-01
2025-12-05
Loading full text...

Full text loading...

/deliver/fulltext/chr/10.2174/011570162X362655250620115404/BMS-CHIVR-2024-HT10-6091-6.html?itemId=/content/journals/chr/10.2174/011570162X362655250620115404&mimeType=html&fmt=ahah

References

  1. Chi H. Pepper M. Thomas P.G. Principles and therapeutic applications of adaptive immunity. Cell 2024 187 9 2052 2078 10.1016/j.cell.2024.03.037 38670065
    [Google Scholar]
  2. Hoehn K.B. Fowler A. Lunter G. Pybus O.G. The diversity and molecular evolution of B cell receptors during infection. Mol. Biol. Evol. 2016 33 5 1147 1157 10.1093/molbev/msw015 26802217
    [Google Scholar]
  3. Nielsen S.C.A. Boyd S.D. Human adaptive immune receptor repertoire analysis-Past, present, and future. Immunol. Rev. 2018 284 1 9 23 10.1111/imr.12667 29944765
    [Google Scholar]
  4. Kotagiri P. Mescia F. Rae W.M. B cell receptor repertoire kinetics after SARS-CoV-2 infection and vaccination. Cell Rep. 2022 38 7 110393 10.1016/j.celrep.2022.110393 35143756
    [Google Scholar]
  5. Hoffman W. Lakkis F.G. Chalasani G. B cells, antibodies, and more. Clin. J. Am. Soc. Nephrol. 2016 11 1 137 154 10.2215/CJN.09430915 26700440
    [Google Scholar]
  6. Tellier J. Nutt S.L. Plasma cells: The programming of an antibody‐secreting machine. Eur. J. Immunol. 2019 49 1 30 37 10.1002/eji.201847517 30273443
    [Google Scholar]
  7. Nutt S.L. Hodgkin P.D. Tarlinton D.M. Corcoran L.M. The generation of antibody-secreting plasma cells. Nat. Rev. Immunol. 2015 15 3 160 171 10.1038/nri3795 25698678
    [Google Scholar]
  8. Syeda M.Z. Hong T. Huang C. Huang W. Mu Q. B cell memory: From generation to reactivation: A multipronged defense wall against pathogens. Cell Death Discov. 2024 10 1 117 10.1038/s41420‑024‑01889‑5 38453885
    [Google Scholar]
  9. Akkaya M. Kwak K. Pierce S.K. B cell memory: Building two walls of protection against pathogens. Nat. Rev. Immunol. 2020 20 4 229 238 10.1038/s41577‑019‑0244‑2 31836872
    [Google Scholar]
  10. Inoue T. Kurosaki T. Memory B cells. Nat. Rev. Immunol. 2024 24 1 5 17 10.1038/s41577‑023‑00897‑3 37400644
    [Google Scholar]
  11. Alhajj M. Zubair M. Farhana A. Enzyme linked immunosorbent assay. StatPearls. Treasure Island, FL StatPearls Publishing 2024 533 538
    [Google Scholar]
  12. Hearty S. Leonard P. O’Kennedy R. Measuring antibody-antigen binding kinetics using surface plasmon resonance. Methods Mol. Biol. 2012 907 411 442 10.1007/978‑1‑61779‑974‑7_24 22907366
    [Google Scholar]
  13. Waritani T. Chang J. McKinney B. Terato K. An ELISA protocol to improve the accuracy and reliability of serological antibody assays. MethodsX 2017 4 153 165 10.1016/j.mex.2017.03.002 28417081
    [Google Scholar]
  14. Han J. Schmitz A.J. Richey S.T. Polyclonal epitope mapping reveals temporal dynamics and diversity of human antibody responses to H5N1 vaccination. Cell Rep. 2021 34 4 108682 10.1016/j.celrep.2020.108682 33503432
    [Google Scholar]
  15. Robotham A.C. Kelly J.F. LC-MS characterization of antibody-based therapeutics: Recent highlights and future prospects. Approaches to the Purification, Analysis and Characterization of Antibody-Based Therapeutics. Elsevier 2020 1 33 10.1016/B978‑0‑08‑103019‑6.00001‑1
    [Google Scholar]
  16. Mojumdar A. Yoo H.J. Kim D.H. Advances in mass spectrometry-based approaches for characterizing monoclonal antibodies: Resolving structural complexity and analytical challenges. J. Anal. Sci. Technol. 2024 15 1 23 10.1186/s40543‑024‑00437‑1
    [Google Scholar]
  17. Scheid J.F. Mouquet H. Feldhahn N. A method for identification of HIV gp140 binding memory B cells in human blood. J. Immunol. Methods 2009 343 2 65 67 10.1016/j.jim.2008.11.012 19100741
    [Google Scholar]
  18. Doucett V.P. Gerhard W. Owler K. Curry D. Brown L. Baumgarth N. Enumeration and characterization of virus-specific B cells by multicolor flow cytometry. J. Immunol. Methods 2005 303 1-2 40 52 10.1016/j.jim.2005.05.014 16045923
    [Google Scholar]
  19. Frank G.M. Angeletti D. Ince W.L. A simple flow-cytometric method measuring b cell surface immunoglobulin avidity enables characterization of affinity maturation to influenza a virus. MBio 2015 6 4 e01156 e15 10.1128/mBio.01156‑15 26242629
    [Google Scholar]
  20. Priest D.G. Ebihara T. Tulyeu J. Atypical and non-classical CD45RBlo memory B cells are the majority of circulating SARS-CoV-2 specific B cells following mRNA vaccination or COVID-19. Nat. Commun. 2024 15 1 6811 10.1038/s41467‑024‑50997‑4 39122676
    [Google Scholar]
  21. Hartley G.E. Fryer H.A. Gill P.A. Homologous but not heterologous COVID-19 vaccine booster elicits IgG4+ B cells and enhanced Omicron subvariant binding. NPJ Vaccines 2024 9 1 129 10.1038/s41541‑024‑00919‑8 39013889
    [Google Scholar]
  22. Claireaux M. Elias G. Kerster G. Deep profiling of B cells responding to various pathogens uncovers compartments in IgG memory B cell and antibody-secreting lineages. Sci. Adv. 2025 11 8 eado1331 10.1126/sciadv.ado1331 39970201
    [Google Scholar]
  23. Wei X. Decker J.M. Wang S. Antibody neutralization and escape by HIV-1. Nature 2003 422 6929 307 312 10.1038/nature01470 12646921
    [Google Scholar]
  24. Utset H.A. Guthmiller J.J. Wilson P.C. Bridging the B cell gap: Novel technologies to study antigen-specific human B cell responses. Vaccines 2021 9 7 711 10.3390/vaccines9070711 34358128
    [Google Scholar]
  25. Stubbington M.J.T. Rozenblatt-Rosen O. Regev A. Teichmann S.A. Single-cell transcriptomics to explore the immune system in health and disease. Science 2017 358 6359 58 63 10.1126/science.aan6828 28983043
    [Google Scholar]
  26. Evers T.M.J. van Weverwijk A. de Visser K.E. Mashaghi A. Single-cell analysis of innate immune cell mechanics: An application to cancer immunology. Materials Advances 2024 5 12 5025 5035 10.1039/D3MA01107K
    [Google Scholar]
  27. Mulè M.P. Martins A.J. Cheung F. Farmer R. Sellers B.A. Quiel J.A. Integrating population and single-cell variations in vaccine responses identifies a naturally adjuvanted human immune setpoint. Immunity 2024 57 5 1160 1176 10.1016/j.immuni.2024.04.009
    [Google Scholar]
  28. Broketa M. Bruhns P. Single-cell technologies for the study of antibody-secreting cells. Front. Immunol. 2022 12 821729 10.3389/fimmu.2021.821729 35173713
    [Google Scholar]
  29. Sanger F. Coulson A.R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 1975 94 3 441 448 10.1016/0022‑2836(75)90213‑2 1100841
    [Google Scholar]
  30. Zheng B. Yang Y. Chen L. Wu M. Zhou S. B cell receptor repertoire sequencing: Deeper digging into the mechanisms and clinical aspects of immune-mediated diseases. iScience 2022 25 10 105002 10.1016/j.isci.2022.105002 36157582
    [Google Scholar]
  31. Sanger F. Nicklen S. Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977 74 12 5463 5467 10.1073/pnas.74.12.5463 271968
    [Google Scholar]
  32. Tiller T. Meffre E. Yurasov S. Tsuiji M. Nussenzweig M.C. Wardemann H. Efficient generation of monoclonal antibodies from single human B cells by single-cell RT-PCR and expression vector cloning. J. Immunol. Methods 2008 329 1-2 112 124 10.1016/j.jim.2007.09.017 17996249
    [Google Scholar]
  33. Tiller T. Busse C.E. Wardemann H. Cloning and expression of murine Ig genes from single B cells. J. Immunol. Methods 2009 350 1-2 183 193 10.1016/j.jim.2009.08.009 19716372
    [Google Scholar]
  34. van Schooten J. Schorcht A. Farokhi E. Umotoy J.C. Gao H. van den Kerkhof T.L.G.M. Complementary antibody lineages achieve neutralization breadth in an HIV-1 infected elite neutralizer. PLoS Pathog. 2022 18 11 e1010945
    [Google Scholar]
  35. van Schooten J. Farokhi E. Schorcht A. Identification of IOMA-class neutralizing antibodies targeting the CD4-binding site on the HIV-1 envelope glycoprotein. Nat. Commun. 2022 13 1 4515 10.1038/s41467‑022‑32208‑0 35922441
    [Google Scholar]
  36. Guerra D. Beaumont T. Radić L. Broad SARS-CoV-2 neutralization by monoclonal and bispecific antibodies derived from a Gamma-infected individual. iScience 2023 26 10 108009 10.1016/j.isci.2023.108009 37841584
    [Google Scholar]
  37. Brouwer P.J.M. Caniels T.G. van der Straten K. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science 2020 369 6504 643 650 10.1126/science.abc5902 32540902
    [Google Scholar]
  38. Viant C. Escolano A. Chen S.T. Nussenzweig M.C. Sequencing, cloning, and antigen binding analysis of monoclonal antibodies isolated from single mouse B cells. STAR Protocols 2021 2 2 100389 10.1016/j.xpro.2021.100389 33778783
    [Google Scholar]
  39. Gieselmann L. Kreer C. Ercanoglu M.S. Effective high-throughput isolation of fully human antibodies targeting infectious pathogens. Nat. Protoc. 2021 16 7 3639 3671 10.1038/s41596‑021‑00554‑w 34035500
    [Google Scholar]
  40. Leggat D.J. Cohen K.W. Willis J.R. Vaccination induces HIV broadly neutralizing antibody precursors in humans. Science 2022 378 6623 eadd6502 10.1126/science.add6502 36454825
    [Google Scholar]
  41. Metzker M.L. Sequencing technologies — The next generation. Nat. Rev. Genet. 2010 11 1 31 46 10.1038/nrg2626 19997069
    [Google Scholar]
  42. Liu L. Li Y. Li S. Comparison of next-generation sequencing systems. J. Biomed. Biotechnol. 2012 2012 1 251364 22829749
    [Google Scholar]
  43. Carlson C.S. Emerson R.O. Sherwood A.M. Using synthetic templates to design an unbiased multiplex PCR assay. Nat. Commun. 2013 4 1 2680 10.1038/ncomms3680 24157944
    [Google Scholar]
  44. Six A. Mariotti-Ferrandiz M.E. Chaara W. The past, present, and future of immune repertoire biology - The rise of next-generation repertoire analysis. Front. Immunol. 2013 4 413 10.3389/fimmu.2013.00413 24348479
    [Google Scholar]
  45. Vardi A. Vlachonikola E. Karypidou M. Restrictions in the T-cell repertoire of chronic lymphocytic leukemia: High-throughput immunoprofiling supports selection by shared antigenic elements. Leukemia 2017 31 7 1555 1561 10.1038/leu.2016.362 27904140
    [Google Scholar]
  46. Rieder M.J. Williamson D. Sherwood A. Frequency of gene usage and copy number variation within the rearranged immunoglobin heavy-chain variable locus based on immune repertoire sequencing. Blood 2013 122 21 3486 6 10.1182/blood.V122.21.3486.3486
    [Google Scholar]
  47. Corcoran M.M. Phad G.E. Vázquez Bernat N. Production of individualized V gene databases reveals high levels of immunoglobulin genetic diversity. Nat. Commun. 2016 7 1 13642 10.1038/ncomms13642 27995928
    [Google Scholar]
  48. Reiss E.I.M.M. van Haaren M.M. van Schooten J. Fine-mapping the immunodominant antibody epitopes on consensus sequence-based HIV-1 envelope trimer vaccine candidates. NPJ Vaccines 2022 7 1 152 10.1038/s41541‑022‑00576‑9 36433972
    [Google Scholar]
  49. Phad G.E. Pushparaj P. Tran K. Extensive dissemination and intraclonal maturation of HIV Env vaccine-induced B cell responses. J. Exp. Med. 2020 217 2 e20191155 10.1084/jem.20191155 31704807
    [Google Scholar]
  50. deCamp A.C. Corcoran M.M. Fulp W.J. Willis J.R. Cottrell C.A. Bader D.L.V. Human immunoglobulin gene allelic variation impacts germline-targeting vaccine priming. npj. Vaccines 2024 9 1 58 38250871
    [Google Scholar]
  51. Kim D. Park D. Deep sequencing of B cell receptor repertoire. BMB Rep. 2019 52 9 540 547 10.5483/BMBRep.2019.52.9.192 31383253
    [Google Scholar]
  52. Tang F. Barbacioru C. Wang Y. mRNA-Seq whole-transcriptome analysis of a single-cell. Nat. Methods 2009 6 5 377 382 10.1038/nmeth.1315 19349980
    [Google Scholar]
  53. Svensson V. Vento-Tormo R. Teichmann S.A. Exponential scaling of single-cell RNA-seq in the past decade. Nat. Protoc. 2018 13 4 599 604 10.1038/nprot.2017.149 29494575
    [Google Scholar]
  54. Chovanec P. Bolland D.J. Matheson L.S. Unbiased quantification of immunoglobulin diversity at the DNA level with VDJ-seq. Nat. Protoc. 2018 13 6 1232 1252 10.1038/nprot.2018.021 29725123
    [Google Scholar]
  55. Seah Y.F.S. Hu H. Merten C.A. Microfluidic single-cell technology in immunology and antibody screening. Mol. Aspects Med. 2018 59 47 61 10.1016/j.mam.2017.09.004 28927942
    [Google Scholar]
  56. Singh M. Al-Eryani G. Carswell S. High-throughput targeted long-read single-cell sequencing reveals the clonal and transcriptional landscape of lymphocytes. Nat. Commun. 2019 10 1 3120 10.1038/s41467‑019‑11049‑4 31311926
    [Google Scholar]
  57. Morgan D. Tergaonkar V. Unraveling B cell trajectories at single-cell resolution. Trends Immunol. 2022 43 3 210 229 10.1016/j.it.2022.01.003 35090788
    [Google Scholar]
  58. Chen H. Ye F. Guo G. Revolutionizing immunology with single-cell RNA sequencing. Cell. Mol. Immunol. 2019 16 3 242 249 10.1038/s41423‑019‑0214‑4 30796351
    [Google Scholar]
  59. Luecken M.D. Theis F.J. Current best practices in single-cell RNA-seq analysis: A tutorial. Mol. Syst. Biol. 2019 15 6 e8746 10.15252/msb.20188746 31217225
    [Google Scholar]
  60. Islam S. Kjällquist U. Moliner A. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 2011 21 7 1160 1167 10.1101/gr.110882.110 21543516
    [Google Scholar]
  61. Ramsköld D. Luo S. Wang Y-C. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 2012 30 8 777 782 10.1038/nbt.2282 22820318
    [Google Scholar]
  62. Picelli S. Faridani O.R. Björklund Å.K. Winberg G. Sagasser S. Sandberg R. Full-length RNA-seq from single-cells using Smart-seq2. Nat. Protoc. 2014 9 1 171 181 10.1038/nprot.2014.006 24385147
    [Google Scholar]
  63. See P. Lum J. Chen J. Ginhoux F. A single-cell sequencing guide for immunologists. Front. Immunol. 2018 9 2425 10.3389/fimmu.2018.02425 30405621
    [Google Scholar]
  64. Song Y. Milon B. Ott S. A comparative analysis of library prep approaches for sequencing low input translatome samples. BMC Genomics 2018 19 1 696 10.1186/s12864‑018‑5066‑2 30241496
    [Google Scholar]
  65. Hagemann-Jensen M. Ziegenhain C. Chen P. Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nat. Biotechnol. 2020 38 6 708 714 10.1038/s41587‑020‑0497‑0 32518404
    [Google Scholar]
  66. Neu K.E. Guthmiller J.J. Huang M. Spec-seq unveils transcriptional subpopulations of antibody-secreting cells following influenza vaccination. J. Clin. Invest. 2019 129 1 93 105 10.1172/JCI121341 30457979
    [Google Scholar]
  67. Skinner N.E. Ogega C.O. Frumento N. Convergent antibody responses are associated with broad neutralization of hepatitis C virus. Front. Immunol. 2023 14 1135841 10.3389/fimmu.2023.1135841 37033983
    [Google Scholar]
  68. Le Bihan T. Diaz T.N de V. de Novo sequencing of antibodies for identification of neutralizing antibodies in human plasma post sars-cov-2 vaccination. bioRxiv 2024
    [Google Scholar]
  69. Ford E.E. Tieri D. Rodriguez O.L. FLAIRR-Seq: A method for single-molecule resolution of near full-length antibody H chain repertoires. J. Immunol. 2023 210 10 1607 1619 10.4049/jimmunol.2200825 37027017
    [Google Scholar]
  70. Townsley S.M. Donofrio G.C. Jian N. B cell engagement with HIV-1 founder virus envelope predicts development of broadly neutralizing antibodies. Cell Host Microbe 2021 29 4 564 578.e9 10.1016/j.chom.2021.01.016 33662277
    [Google Scholar]
  71. Ronsard L. Yousif A.S. Nait Mohamed F.A. Engaging an HIV vaccine target through the acquisition of low B cell affinity. Nat. Commun. 2023 14 1 5249 10.1038/s41467‑023‑40918‑2 37640732
    [Google Scholar]
  72. Weinfurter J.T. Bennett S.N. Reynolds M. A SMART method for efficiently isolating monoclonal antibodies from individual rhesus macaque memory B cells. bioRxiv 2023
    [Google Scholar]
  73. Steichen J.M. Phung I. Salcedo E. Vaccine priming of rare HIV broadly neutralizing antibody precursors in nonhuman primates. Science 2024 384 6697 eadj8321 10.1126/science.adj8321 38753769
    [Google Scholar]
  74. Ehrenberg P.K. Shangguan S. Issac B. A vaccine-induced gene expression signature correlates with protection against SIV and HIV in multiple trials. Sci. Transl. Med. 2019 11 507 eaaw4236 10.1126/scitranslmed.aaw4236 31462510
    [Google Scholar]
  75. Cirelli K.M. Carnathan D.G. Nogal B. Slow delivery immunization enhances HIV neutralizing antibody and germinal center responses via modulation of immunodominance. Cell 2019 177 5 1153 1171.e28 10.1016/j.cell.2019.04.012 31080066
    [Google Scholar]
  76. Mu Z. Wiehe K. Saunders K.O. mRNA-encoded HIV-1 Env trimer ferritin nanoparticles induce monoclonal antibodies that neutralize heterologous HIV-1 isolates in mice. Cell Rep. 2022 38 11 110514 10.1016/j.celrep.2022.110514 35294883
    [Google Scholar]
  77. Salmen F. De Jonghe J. Kaminski T.S. High-throughput total RNA sequencing in single-cells using VASA-seq. Nat. Biotechnol. 2022 40 12 1780 1793 10.1038/s41587‑022‑01361‑8 35760914
    [Google Scholar]
  78. Curtis N.C. Lee J. Beyond bulk single-chain sequencing: Getting at the whole receptor. Curr. Opin. Syst. Biol. 2020 24 93 99 10.1016/j.coisb.2020.10.008 33102951
    [Google Scholar]
  79. Jammes F.C. Maerkl S.J. How single-cell immunology is benefiting from microfluidic technologies. Microsyst. Nanoeng. 2020 6 1 45 10.1038/s41378‑020‑0140‑8
    [Google Scholar]
  80. DeLaughter D.M. The use of the fluidigm C1 for RNA expression analyses of single-cells. Curr. Protoc. Mol. Biol. 2018 122 1 e55 10.1002/cpmb.55 29851244
    [Google Scholar]
  81. Gong H. Do D. Ramakrishnan R. Single-cell mRNA-seq using the fluidigm C1 system and integrated fluidics circuits. Methods Mol. Biol. 2018 1783 193 207 10.1007/978‑1‑4939‑7834‑2_10 29767364
    [Google Scholar]
  82. Titcombe P.J. Wigerblad G. Sippl N. Pathogenic citrulline-multispecific B cell receptor clades in rheumatoid arthritis. Arthritis Rheumatol. 2018 70 12 1933 1945 10.1002/art.40590 29927106
    [Google Scholar]
  83. Vollmers C. De Vlaminck I. Valantine H.A. Penland L. Luikart H. Strehl C. Monitoring pharmacologically induced immunosuppression by immune repertoire sequencing to detect acute allograft rejection in heart transplant patients: A proof-of-concept diagnostic accuracy study. PLoS Med. 2015 12 10 e1001890 10.1371/journal.pmed.1001890
    [Google Scholar]
  84. Aso H. Nagaoka S. Kawakami E. Multiomics investigation revealing the characteristics of hiv-1-infected cells in vivo. Cell Rep. 2020 32 2 107887 10.1016/j.celrep.2020.107887 32668246
    [Google Scholar]
  85. Macosko E.Z. Basu A. Satija R. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 2015 161 5 1202 1214 10.1016/j.cell.2015.05.002 26000488
    [Google Scholar]
  86. Klein A.M. Mazutis L. Akartuna I. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 2015 161 5 1187 1201 10.1016/j.cell.2015.04.044 26000487
    [Google Scholar]
  87. Zheng G.X.Y. Terry J.M. Belgrader P. Massively parallel digital transcriptional profiling of single-cells. Nat. Commun. 2017 8 1 14049 10.1038/ncomms14049 28091601
    [Google Scholar]
  88. Zhang X. Li T. Liu F. Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-seq systems. Mol. Cell 2019 73 1 130 142.e5 10.1016/j.molcel.2018.10.020 30472192
    [Google Scholar]
  89. 10x genomics terms and conditions of sale. 2024 Available from: www.10xgenomics.com/trademarks
  90. He J. Shen J. Luo W. Research progress on application of single-cell TCR/BCR sequencing technology to the tumor immune microenvironment, autoimmune diseases, and infectious diseases. Front. Immunol. 2022 13 969808 10.3389/fimmu.2022.969808 36059506
    [Google Scholar]
  91. Lee J.H. Toy L. Kos J.T. Vaccine genetics of IGHV1-2 VRC01-class broadly neutralizing antibody precursor naïve human B cells. NPJ Vaccines 2021 6 1 113 10.1038/s41541‑021‑00376‑7 34489473
    [Google Scholar]
  92. See the immune system at unmatched resolution with more sensitive immune profiling GEM-X single-cell immune profiling v3 with fea-ture barcode technology Available from: https://34.225.140.79/10xproduct_sheet_gem-x-single-cell-immune-profiling_letter_digital.pdf
  93. Cottrell C.A. Hu X. Lee J.H. Heterologous prime-boost vaccination drives early maturation of HIV broadly neutralizing antibody precursors in humanized mice. Sci. Transl. Med. 2024 16 748 eadn0223 10.1126/scitranslmed.adn0223 38753806
    [Google Scholar]
  94. Jia J. Zhao Y. Wang J.H. Kuang Y.Q. Isolating peripheral blood mononuclear cells from HIV-infected patients for single-cell RNA sequencing and integration analysis. STAR Protocols 2023 4 2 102222 10.1016/j.xpro.2023.102222 37060557
    [Google Scholar]
  95. Jia J. Zhao Y. Yang J.Q. Naïve B cells with low differentiation improve the immune reconstitution of HIV-infected patients. iScience 2022 25 12 105559 10.1016/j.isci.2022.105559 36465118
    [Google Scholar]
  96. Melzi E. Willis J.R. Ma K.M. Membrane-bound mRNA immunogens lower the threshold to activate HIV Env V2 apex-directed broadly neutralizing B cell precursors in humanized mice. Immunity 2022 55 11 2168 2186.e6 10.1016/j.immuni.2022.09.003 36179690
    [Google Scholar]
  97. Hurtado J. Flynn C. Lee J.H. Efficient isolation of rare B cells using next-generation antigen barcoding. Front. Cell. Infect. Microbiol. 2023 12 962945 10.3389/fcimb.2022.962945 36968243
    [Google Scholar]
  98. Xie Z. Lin Y-C. Steichen J.M. mRNA-LNP HIV-1 trimer boosters elicit precursors to broad neutralizing antibodies. Science 2024 384 6697 eadk0582 38753770
    [Google Scholar]
  99. Williams W.B. Alam S.M. Ofek G. Vaccine induction of heterologous HIV-1-neutralizing antibody B cell lineages in humans. Cell 2024 187 12 2919 2934.e20 10.1016/j.cell.2024.04.033 38761800
    [Google Scholar]
  100. Bassano I. Watson S. Malangone C. Pinder C.L. Paschos K. Cheeseman H.M. B cell receptor analysis using single-cell sequencing reveals preferential antibody expression in a HIV candidate vaccine study. medRxiv 2023 10.1101/2023.04.18.23288724
    [Google Scholar]
  101. Lee A. Scott M.K.D. Wimmers F. A molecular atlas of innate immunity to adjuvanted and live attenuated vaccines, in mice. Nat. Commun. 2022 13 1 549 10.1038/s41467‑022‑28197‑9 35087093
    [Google Scholar]
  102. Fan H.C. Fu G.K. Fodor S.P.A. Combinatorial labeling of single-cells for gene expression cytometry. Science 2015 347 6222 1258367 10.1126/science.1258367 25657253
    [Google Scholar]
  103. Ulbrich J. Lopez-Salmeron V. Gerrard I.B.D.B.D. Rhapsody™ single-cell analysis system workflow: From sample to multimodal single-cell sequencing data. Methods Mol. Biol. 2023 2584 29 56 10.1007/978‑1‑0716‑2756‑3_2
    [Google Scholar]
  104. Gao C. Zhang M. Chen L. The comparison of two single-cell sequencing platforms: BD Rhapsody and 10x Genomics Chromium. Curr. Genomics 2020 21 8 602 609
    [Google Scholar]
  105. BD Rhapsody™ TCR/BCR Multiomic Assay Kit. 2022 Available from: https://www.bdbiosciences.com/content/dam/bdb/marketing-documents/BD-Rhapsody-TCR-BCR-Multiomics-Assay-%20Brochure.pdf
  106. De Domenico E. Bonaguro L. Schulte-Schrepping J. Becker M. Händler K. Schultze J.L. Optimized workflow for single-cell transcriptomics on infectious diseases including COVID-19. STAR Protocols 2020 1 3 100233 10.1016/j.xpro.2020.100233 33377120
    [Google Scholar]
  107. Ma K.Y. Schonnesen A.A. He C. High-throughput and high-dimensional single-cell analysis of antigen-specific CD8+ T cells. Nat. Immunol. 2021 22 12 1590 1598 10.1038/s41590‑021‑01073‑2 34811538
    [Google Scholar]
  108. Iwabuchi S. Tsukahara T. Okayama T. B cell receptor repertoire analysis from autopsy samples of COVID-19 patients. Front. Immunol. 2023 14 1034978 10.3389/fimmu.2023.1034978 36911681
    [Google Scholar]
  109. Isakova A. Neff N. Quake S.R. Single-cell quantification of a broad RNA spectrum reveals unique noncoding patterns associated with cell types and states. Proc. Natl. Acad. Sci. USA 2021 118 51 e2113568118 10.1073/pnas.2113568118 34911763
    [Google Scholar]
  110. Shangguan S. Ehrenberg P.K. Geretz A. Monocyte-derived transcriptome signature indicates antibody-dependent cellular phagocytosis as a potential mechanism of vaccine-induced protection against HIV-1. eLife 2021 10 69577 10.7554/eLife.69577 34533134
    [Google Scholar]
  111. Lopes de Assis F. Hoehn K.B. Zhang X. Tracking B cell responses to the SARS-CoV-2 mRNA-1273 vaccine. Cell Rep. 2023 42 7 112780 10.1016/j.celrep.2023.112780 37440409
    [Google Scholar]
  112. Li J. Zhang Y. Yang C. Rong R. Discrepant mRNA and protein expression in immune cells. Curr. Genomics 2020 21 8 560 563 10.2174/1389202921999200716103758 33414677
    [Google Scholar]
  113. Stoeckius M. Hafemeister C. Stephenson W. Simultaneous epitope and transcriptome measurement in single-cells. Nat. Methods 2017 14 9 865 868 10.1038/nmeth.4380 28759029
    [Google Scholar]
  114. Biolegend TotalSeq products. 2025 Available from: https://www.biolegend.com/en-gb/search-results?Keywords=totalseq
  115. Erickson J.R. Mair F. Bugos G. AbSeq protocol using the nano-well cartridge-based rhapsody platform to generate protein and transcript expression data on the single-cell level. STAR Protoc 2020 1 2 100092 10.1016/j.xpro.2020.100092 33000001
    [Google Scholar]
  116. Shahi P. Kim S.C. Haliburton J.R. Gartner Z.J. Abate A.R. Abseq: Ultrahigh-throughput single-cell protein profiling with droplet microfluidic barcoding. Sci. Rep. 2017 7 1 44447 10.1038/srep44447 28290550
    [Google Scholar]
  117. Intracellular CITE-seq Assay Using BD® AbSeq Antibody-Oligos. 2025 Available from: https://www.bdbiosciences.com/en-nl/products/reagents/single-cell-multiomics/abseq/intracellular-abseq
  118. Su Y. Chen D. Lausted C. Yuan D. Choi J. Dai C. Multiomic immunophenotyping of covid-19 patients reveals early infection trajectories. bioRxiv 2020
    [Google Scholar]
  119. Scharf L. Axelsson H. Emmanouilidi A. Mathew N.R. Sheward D.J. Leach S. Longitudinal single-cell analysis of SARS-CoV-2–reactive B cells uncovers persistence of early-formed, antigen-specific clones. JCI Insight 2023 8 1 e165299
    [Google Scholar]
  120. Dugan H.L. Stamper C.T. Li L. Profiling B cell immunodominance after SARS-CoV-2 infection reveals antibody evolution to non-neutralizing viral targets. Immunity 2021 54 6 1290 1303.e7 10.1016/j.immuni.2021.05.001 34022127
    [Google Scholar]
  121. Pollara J. Khanal S. Edwards R.W. Single-cell analysis of immune cell transcriptome during HIV-1 infection and therapy. BMC Immunol. 2022 23 1 48 10.1186/s12865‑022‑00523‑2 36175869
    [Google Scholar]
  122. Setliff I. Shiakolas A.R. Pilewski K.A. High-throughput mapping of B cell receptor sequences to antigen specificity. Cell 2019 179 7 1636 1646.e15 10.1016/j.cell.2019.11.003 31787378
    [Google Scholar]
  123. Shiakolas A.R. Kramer K.J. Johnson N.V. Efficient discovery of SARS-CoV-2-neutralizing antibodies via B cell receptor sequencing and ligand blocking. Nat. Biotechnol. 2022 40 8 1270 1275 10.1038/s41587‑022‑01232‑2 35241839
    [Google Scholar]
  124. Single-Cell Protein and RNA 2025 Available From: https://www.biolegend.com/en-us/totalseq/single-cell-rna
  125. Multiplexed antigen screening for rapid B-and T-cell clonotype dis-covery Single-cell Immune Profiling with Barcode Enabled Antigen Mapping (BEAM). 2022 Available From: https://pages.10xgenomics.com/rs/446-PBO-704/images/10x_LIT000195_Product_Sheet_BEAM_Letter_digital.pdf
  126. Investigate Novel Cell Subsets with Customized dCODE Klickmer®. 2025 Available From: https://www.immudex.com/products/basic-research/dcode-dextramer-ngsmulti-omics/dcode-klickmer/
  127. Yan F. Powell D.R. Curtis D.J. Wong N.C. From reads to insight: A hitchhiker’s guide to ATAC-seq data analysis. Genome Biol. 2020 21 1 22 10.1186/s13059‑020‑1929‑3 32014034
    [Google Scholar]
  128. Shah R. Gallardo C.M. Jung Y.H. Activation of HIV-1 proviruses increases downstream chromatin accessibility. iScience 2022 25 12 105490 10.1016/j.isci.2022.105490 36505924
    [Google Scholar]
  129. Staitieh B.S. Hu X. Yeligar S.M. Auld S.C. Paired ATAC- and RNA-seq offer insight into the impact of HIV on alveolar macrophages: A pilot study. Sci. Rep. 2023 13 1 15276 10.1038/s41598‑023‑42644‑7 37714998
    [Google Scholar]
  130. Jefferys S.R. Burgos S.D. Peterson J.J. Selitsky S.R. Turner A-M.W. James L.I. Epigenomic characterization of latent HIV infection identifies latency regulating transcription factors. PLoS Pathog. 2021 17 2 e1009346 10.1371/journal.ppat.1009346
    [Google Scholar]
  131. Wu V.H. Nordin J.M.L. Nguyen S. Profound phenotypic and epigenetic heterogeneity of the HIV-1-infected CD4+ T cell reservoir. Nat. Immunol. 2023 24 2 359 370 10.1038/s41590‑022‑01371‑3 36536105
    [Google Scholar]
  132. Ståhl P.L. Salmén F. Vickovic S. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 2016 353 6294 78 82 10.1126/science.aaf2403 27365449
    [Google Scholar]
  133. Danishuddin K.S. Khan S. Kim J.J. Spatial transcriptomics data and analytical methods: An updated perspective. Drug Discov. Today 2024 29 3 103889 10.1016/j.drudis.2024.103889 38244672
    [Google Scholar]
  134. Choe K. Pak U. Pang Y. Hao W. Yang X. Advances and challenges in spatial transcriptomics for developmental biology. Biomolecules 2023 13 1 156 10.3390/biom13010156 36671541
    [Google Scholar]
  135. Williams C.G. Lee H.J. Asatsuma T. Vento-Tormo R. Haque A. An introduction to spatial transcriptomics for biomedical research. Genome Med. 2022 14 1 68 10.1186/s13073‑022‑01075‑1 35761361
    [Google Scholar]
  136. Engblom C. Thrane K. Lin Q. Spatial transcriptomics of B cell and T cell receptors reveals lymphocyte clonal dynamics. Science 2023 382 6675 eadf8486 10.1126/science.adf8486 38060664
    [Google Scholar]
  137. Meylan M. Petitprez F. Becht E. Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. Immunity 2022 55 3 527 541.e5 10.1016/j.immuni.2022.02.001 35231421
    [Google Scholar]
  138. Hudson W.H. Sudmeier L.J. Localization of T cell clonotypes using the Visium spatial transcriptomics platform. STAR Protocols 2022 3 2 101391 10.1016/j.xpro.2022.101391 35707680
    [Google Scholar]
  139. Meslier V. Quinquis B. Da Silva K. Benchmarking second and third-generation sequencing platforms for microbial metagenomics. Sci. Data 2022 9 1 694 10.1038/s41597‑022‑01762‑z 36369227
    [Google Scholar]
  140. Xiao T. Zhou W. The third generation sequencing: The advanced approach to genetic diseases. Transl. Pediatr. 2020 9 2 163 173 10.21037/tp.2020.03.06 32477917
    [Google Scholar]
  141. Athanasopoulou K. Boti M.A. Adamopoulos P.G. Skourou P.C. Scorilas A. Third-generation sequencing: The spearhead towards the radical transformation of modern genomics. Life 2021 12 1 30 10.3390/life12010030 35054423
    [Google Scholar]
  142. Goodwin S. McPherson J.D. McCombie W.R. Coming of age: Ten years of next-generation sequencing technologies. Nat. Rev. Genet. 2016 17 6 333 351 10.1038/nrg.2016.49 27184599
    [Google Scholar]
  143. Kingan S.B. Urban J. Lambert C.C. A high-quality genome assembly from a single, field-collected spotted lanternfly (Lycorma delicatula) using the PacBio Sequel II system. Gigascience 2019 8 10 giz122 10.1093/gigascience/giz122 31609423
    [Google Scholar]
  144. Pomerantz A. Peñafiel N. Arteaga A. Real-time DNA barcoding in a rainforest using nanopore sequencing: Opportunities for rapid biodiversity assessments and local capacity building. Gigascience 2018 7 4 giy033 10.1093/gigascience/giy033 29617771
    [Google Scholar]
  145. Korlach J. Bjornson K.P. Chaudhuri B.P. Real-time DNA sequencing from single polymerase molecules. Methods Enzymol. 2010 472 431 455 10.1016/S0076‑6879(10)72001‑2 20580975
    [Google Scholar]
  146. Eid J. Fehr A. Gray J. Real-time DNA sequencing from single polymerase molecules. Science 2009 323 5910 133 138 10.1126/science.1162986 19023044
    [Google Scholar]
  147. Koning M.T. van der Zeeuw S.A.J. Navarrete M. Massive parallel sequencing of full-length B cell receptor sequences reveals HLA-dependent shaping of the B cell immune repertoire. Blood 2014 124 21 4143 3 10.1182/blood.V124.21.4143.4143
    [Google Scholar]
  148. Minervini C.F. Cumbo C. Redavid I. Nanopore sequencing approach for immunoglobulin gene analysis in chronic lymphocytic leukemia. Sci. Rep. 2021 11 1 17668 10.1038/s41598‑021‑97198‑3 34480068
    [Google Scholar]
  149. Canzar S. Neu K.E. Tang Q. Wilson P.C. Khan A.A. BASIC: BCR assembly from single-cells. Bioinformatics 2017 33 3 425 427 10.1093/bioinformatics/btw631
    [Google Scholar]
  150. mixcr align. Available from: https://mixcr.com/mixcr/reference/mixcr-align/
  151. Andreani T. Slot L.M. Gabillard S. Strübing C. Reimertz C. Yaligara V. Benchmarking computational methods for B cell receptor reconstruction from single-cell RNA-seq data. NAR Genom. Bioinform. 2022 4 3 lqac049
    [Google Scholar]
  152. Upadhyay A.A. Kauffman R.C. Wolabaugh A.N. BALDR: A computational pipeline for paired heavy and light chain immunoglobulin reconstruction in single-cell RNA-seq data. Genome Med. 2018 10 1 20 10.1186/s13073‑018‑0528‑3 29558968
    [Google Scholar]
  153. Lindeman I. Emerton G. Mamanova L. BraCeR: B cell-receptor reconstruction and clonality inference from single-cell RNA-seq. Nat. Methods 2018 15 8 563 565 10.1038/s41592‑018‑0082‑3 30065371
    [Google Scholar]
  154. Song L. Cohen D. Ouyang Z. Cao Y. Hu X. Liu X.S. TRUST4: Immune repertoire reconstruction from bulk and single-cell RNA-seq data. Nat. Methods 2021 18 6 627 630 10.1038/s41592‑021‑01142‑2 33986545
    [Google Scholar]
  155. Afik S. Raulet G. Yosef N. Reconstructing B cell receptor sequences from short-read single-cell RNA sequencing with BRAPeS. Life Sci. Alliance 2019 2 4 e201900371 10.26508/lsa.201900371 31451449
    [Google Scholar]
  156. Gupta N.T. Vander Heiden J.A. Uduman M. Gadala-Maria D. Yaari G. Kleinstein S.H. Change-O: A toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data. Bioinformatics 2015 31 20 3356 3358 10.1093/bioinformatics/btv359 26069265
    [Google Scholar]
  157. Bischof J. Ibrahim S.M. bcRep: R package for comprehensive analysis of B cell receptor repertoire data. PLoS One 2016 11 8 e0161569
    [Google Scholar]
  158. Borcherding N. Bormann N.L. Kraus G. scRepertoire: An R-based toolkit for single-cell immune receptor analysis. F1000 Res. 2020 9 47 10.12688/f1000research.22139.1 32789006
    [Google Scholar]
  159. Yermanos A. Agrafiotis A. Kuhn R. Robbiani D. Yates J. Papadopoulou C. Platypus: An open-access software for integrating lymphocyte single-cell immune repertoires with transcriptomes. NAR Genom. Bioinform. 2021 3 2 lqab023 10.1093/nargab/lqab023
    [Google Scholar]
  160. Gabernet G. Marquez S. Bjornson R. Peltzer A. Meng H. Aron E. nf-core/airrflow: An adaptive immune receptor repertoire analysis workflow employing the immcantation framework. PLOS Comput. Biol. 2024 20 7 e1012265
    [Google Scholar]
  161. IJspeert H. van Schouwenburg P.A. van Zessen D. Pico-Knijnenburg I. Stubbs A.P. van der Burg M. Antigen receptor galaxy: A user-friendly, web-based tool for analysis and visualization of T and B cell receptor repertoire data. J. Immunol. 2017 198 10 4156 4165 10.4049/jimmunol.1601921 28416602
    [Google Scholar]
  162. Fähnrich A. Krebbel M. Decker N. ClonoCalc and ClonoPlot: Immune repertoire analysis from raw files to publication figures with graphical user interface. BMC Bioinformatics 2017 18 1 164 10.1186/s12859‑017‑1575‑2 28284194
    [Google Scholar]
  163. Bagaev D.V. Zvyagin I.V. Putintseva E.V. VDJviz: A versatile browser for immunogenomics data. BMC Genomics 2016 17 1 453 10.1186/s12864‑016‑2799‑7 27297497
    [Google Scholar]
  164. Heumos L. Schaar A.C. Lance C. Best practices for single-cell analysis across modalities. Nat. Rev. Genet. 2023 24 8 550 572 10.1038/s41576‑023‑00586‑w 37002403
    [Google Scholar]
  165. Iyer A. Hamers A.A.J. Pillai A.B. CyTOF® for the Masses. Front. Immunol. 2022 13 815828 10.3389/fimmu.2022.815828 35493491
    [Google Scholar]
  166. Park L.M. Lannigan J. Jaimes M.C. OMIP‐069: Forty‐color full spectrum flow cytometry panel for deep immunophenotyping of major cell subsets in human peripheral blood. Cytometry A 2020 97 10 1044 1051 10.1002/cyto.a.24213 32830910
    [Google Scholar]
  167. Sharma S. Boyer J. Teyton L. A practitioner’s view of spectral flow cytometry. Nat. Methods 2024 21 5 740 743 10.1038/s41592‑023‑02042‑3 37789184
    [Google Scholar]
  168. Del Tordello E. Rappuoli R. Delany I. Reverse vaccinology. Hum. Vaccin. 2017 65 86
    [Google Scholar]
  169. Rappuoli R. Reverse vaccinology. Curr. Opin. Microbiol. 2000 3 5 445 450 10.1016/S1369‑5274(00)00119‑3 11050440
    [Google Scholar]
  170. Rappuoli R. Bottomley M.J. D’Oro U. Finco O. De Gregorio E. Reverse vaccinology 2.0: Human immunology instructs vaccine antigen design. J. Exp. Med. 2016 213 4 469 481 10.1084/jem.20151960 27022144
    [Google Scholar]
  171. Seib KL Zhao X Rappuoli R Developing vaccines in the era of genomics: A decade of reverse vaccinology. Clin Microbiol Infect 2012 18 5 109 16.(Suppl. 5) 10.1111/j.1469‑0691.2012.03939.x 22882709
    [Google Scholar]
  172. Cao Y. Su B. Guo X. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ b cells. Cell 2020 182 1 73 84.e16 10.1016/j.cell.2020.05.025 32425270
    [Google Scholar]
  173. Goldstein L.D. Chen Y.J.J. Wu J. Massively parallel single-cell B cell receptor sequencing enables rapid discovery of diverse antigen-reactive antibodies. Commun. Biol. 2019 2 1 304 10.1038/s42003‑019‑0551‑y 31428692
    [Google Scholar]
  174. Pulendran B. Systems vaccinology: Probing humanity’s diverse immune systems with vaccines. Proc. Natl. Acad. Sci. USA 2014 111 34 12300 12306 10.1073/pnas.1400476111 25136102
    [Google Scholar]
  175. Plotkin S.A. Correlates of protection induced by vaccination. Clin. Vaccine Immunol. 2010 17 7 1055 1065 10.1128/CVI.00131‑10 20463105
    [Google Scholar]
  176. Schadt E.E. Woo S. Hao K. Bayesian method to predict individual SNP genotypes from gene expression data. Nat. Genet. 2012 44 5 603 608 10.1038/ng.2248 22484626
    [Google Scholar]
/content/journals/chr/10.2174/011570162X362655250620115404
Loading
/content/journals/chr/10.2174/011570162X362655250620115404
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test