Skip to content
2000
image of Funding Strategies to Foster Enabling Basic Science Research in the Development of an HIV Vaccine

Abstract

Despite recent advances in other prevention strategies, an effective vaccine is still needed to guarantee a sustained end to the HIV/AIDS pandemic. However, the traditional approaches of vaccinology have thus far failed to produce an effective vaccine. More basic research may be needed to enhance our understanding of HIV immunity and the immunological principles behind vaccination and to leverage advanced technologies before applied research activities can be successfully used to develop a distributable HIV vaccine. US Government funding plays a crucial role in promoting, enabling, and advising independent scientists and experts to perform such research. This article was written to provide, to the broader scientific community, detail about the tools NIAID uses for research funding, how and why they were used for HIV vaccine development, and how they have been helpful; it is written from the perspective of a Program Officer’s experiences while working for more than 25 years in the Division of AIDS (DAIDS) of NIAID at the NIH (the US National Institutes of Health). Several types of funding activities promote HIV vaccine development efforts, but three types of such activities and their impact on HIV vaccine development will be discussed in more detail.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/chr/10.2174/011570162X360804250527065110
2025-06-03
2025-12-05
Loading full text...

Full text loading...

/deliver/fulltext/chr/10.2174/011570162X360804250527065110/BMS-CHIVR-2024-HT10-6091-5.html?itemId=/content/journals/chr/10.2174/011570162X360804250527065110&mimeType=html&fmt=ahah

References

  1. Implementing the global health sector strategies on HIV, viral hepatitis and sexually transmitted infections, 2022-2030: report on progress and gaps 2024. In: Geneva World Health Organization 2024
    [Google Scholar]
  2. Fauci A.S. Marston H.D. Ending AIDS--is an HIV vaccine necessary? N. Engl. J. Med. 2014 370 6 495 498 10.1056/NEJMp1313771 24499210
    [Google Scholar]
  3. Bush V. Science – The Endless Frontier: A Report to the President on a Program for Postwar Scientific Research. In: Washington, DC National Science Foundation 1945 10.21236/ADA361303
    [Google Scholar]
  4. Bayh-Dole Regulations. 2018 Available from: https://grants.nih.gov/grants/bayh-dole.htm
  5. Stokes D.E. Pasteur’s Quadrant: Basic Science and Technological Innovation. Washington, DC Brookings Institution Press 1997
    [Google Scholar]
  6. Shapiro S.Z. Lessons for general vaccinology research from attempts to develop an HIV vaccine. Vaccine 2019 37 26 3400 3408 10.1016/j.vaccine.2019.04.005 30979571
    [Google Scholar]
  7. Shapiro S.Z. HIV vaccine development: 35 years of experimenting in the funding of biomedical science. Viruses 2020 12 12 1469 10.3390/v12121469 33352755
    [Google Scholar]
  8. NIH HIV Reagent Program. 2024 Available from: https://www.niaid.nih.gov/research/nih-hiv-reagent-program
  9. NIAID HIV/AIDS Specimen Repository Programs. 2017 Available from: accessed on 12 August 2024 https://www.niaid.nih.gov/research/hivaids-specimen-repository
  10. HIV Database and Analysis Unit. 2025 Available from: https://www.niaid.nih.gov/research/hiv-database-analysis-unit
  11. Sanders R.W. Vesanen M. Schuelke N. Stabilization of the soluble, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1. J. Virol. 2002 76 17 8875 8889 10.1128/JVI.76.17.8875‑8889.2002 12163607
    [Google Scholar]
  12. Guenaga J. Dubrovskaya V. de Val N. Structure-Guided Redesign Increases the Propensity of HIV Env To Generate Highly Stable Soluble Trimers. J. Virol. 2016 90 6 2806 2817 10.1128/JVI.02652‑15 26719252
    [Google Scholar]
  13. He L. Kumar S. Allen J.D. HIV-1 vaccine design through minimizing envelope metastability. Sci. Adv. 2018 4 11 eaau6769 10.1126/sciadv.aau6769 30474059
    [Google Scholar]
  14. Correia B.E. Ban Y.E.A. Holmes M.A. Computational design of epitope-scaffolds allows induction of antibodies specific for a poorly immunogenic HIV vaccine epitope. Structure 2010 18 9 1116 1126 10.1016/j.str.2010.06.010 20826338
    [Google Scholar]
  15. Borst A.J. Weidle C.E. Gray M.D. Germline VRC01 antibody recognition of a modified clade C HIV-1 envelope trimer and a glycosyl-ated HIV-1 gp120 core. eLife 2018 7 e37688 10.7554/eLife.37688 30403372
    [Google Scholar]
  16. Abbink P. Maxfield L.F. Ng’ang’a D. Construction and evaluation of novel rhesus monkey adenovirus vaccine vectors. J. Virol. 2015 89 3 1512 1522 10.1128/JVI.02950‑14 25410856
    [Google Scholar]
  17. Hokey D.A. Weiner D.B. DNA vaccines for HIV: challenges and opportunities. Springer Semin. Immunopathol. 2006 28 3 267 279 10.1007/s00281‑006‑0046‑z 17031649
    [Google Scholar]
  18. Pardi N. LaBranche C.C. Ferrari G. Characterization of HIV-1 Nucleoside-Modified mRNA Vaccines in Rabbits and Rhesus Ma-caques. Mol. Ther. Nucleic Acids 2019 15 36 47 10.1016/j.omtn.2019.03.003 30974332
    [Google Scholar]
  19. Wei X. Ghosh S.K. Taylor M.E. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 1995 373 6510 117 122 10.1038/373117a0 7529365
    [Google Scholar]
  20. Ho D.D. Neumann A.U. Perelson A.S. Chen W. Leonard J.M. Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 1995 373 6510 123 126 10.1038/373123a0 7816094
    [Google Scholar]
  21. Shapiro S.Z. HIV vaccine development: strategies for preclinical and clinical investigation. AIDS Res. Hum. Retroviruses 2013 29 11 1401 1406 10.1089/aid.2012.0337 23379343
    [Google Scholar]
  22. Gray G.E. Bekker L.G. Laher F. Vaccine efficacy of ALVAC-HIV and bivalent subtype C gp120–MF59 in Adults. N. Engl. J. Med. 2021 384 12 1089 1100 10.1056/NEJMoa2031499 33761206
    [Google Scholar]
  23. Nabel G.J. Philosophy of science. The coordinates of truth. Science 2009 326 5949 53 54 10.1126/science.1177637 19797647
    [Google Scholar]
  24. Gilbert P.B. Huang Y. deCamp A.C. Neutralization titer biomarker for antibody-mediated prevention of HIV-1 acquisition. Nat. Med. 2022 28 9 1924 1932 10.1038/s41591‑022‑01953‑6 35995954
    [Google Scholar]
  25. Kong R. Xu K. Zhou T. Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science 2016 352 6287 828 833 10.1126/science.aae0474 27174988
    [Google Scholar]
  26. Georgiev I.S. Joyce M.G. Chen R.E. Two-Component Ferritin Nanoparticles for Multimerization of Diverse Trimeric Antigens. ACS Infect. Dis. 2018 4 5 788 796 10.1021/acsinfecdis.7b00192 29451984
    [Google Scholar]
  27. Klausner R.D. Fauci A.S. Corey L. Medicine. The need for a global HIV vaccine enterprise. Science 2003 300 5628 2036 2039 10.1126/science.1086916 12829768
    [Google Scholar]
  28. Fields B.N. AIDS: time to turn to basic science. Nature 1994 369 6476 95 96 10.1038/369095a0 8177331
    [Google Scholar]
  29. Fields B.N. Studies of reovirus pathogenesis reveal potential sites for antiviral intervention. Adv. Exp. Med. Biol. 1992 312 1 14 10.1007/978‑1‑4615‑3462‑4_1 1325099
    [Google Scholar]
  30. Cohen M.S. Gay C.L. Busch M.P. Hecht F.M. The detection of acute HIV infection. J. Infect. Dis. 2010 202 S2 S270 S277 10.1086/655651 20846033
    [Google Scholar]
  31. Tomaras G.D. Yates N.L. Liu P. Initial B-cell responses to transmitted human immunodeficiency virus type 1: virion-binding immu-noglobulin M (IgM) and IgG antibodies followed by plasma anti-gp41 antibodies with ineffective control of initial viremia. J. Virol. 2008 82 24 12449 12463 10.1128/JVI.01708‑08 18842730
    [Google Scholar]
  32. Goonetilleke N. Liu M.K.P. Salazar-Gonzalez J.F. The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. J. Exp. Med. 2009 206 6 1253 1272 10.1084/jem.20090365 19487423
    [Google Scholar]
  33. Brumme Z.L. Walker B.D. Tracking the culprit: HIV-1 evolution and immune selection revealed by single-genome amplification. J. Exp. Med. 2009 206 6 1215 1218 10.1084/jem.20091094 19487418
    [Google Scholar]
  34. Xiao X. Chen W. Feng Y. Dimitrov D.S. Maturation pathways of cross-reactive HIV-1 neutralizing antibodies. Viruses 2009 1 3 802 817 10.3390/v1030802 21994570
    [Google Scholar]
  35. Mascola J.R. Stiegler G. VanCott T.C. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat. Med. 2000 6 2 207 210 10.1038/72318 10655111
    [Google Scholar]
  36. Shapiro S.Z. The HIV/AIDS vaccine researchers’ orientation to the process of preparing a US FDA application for an investigational new drug (IND): what it is all about and how you start by preparing for your pre-IND meeting. Vaccine 2002 20 9-10 1261 1280 10.1016/S0264‑410X(01)00453‑4 11818145
    [Google Scholar]
  37. Arunachalam P.S. Charles T.P. Joag V. T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers. Nat. Med. 2020 26 6 932 940 10.1038/s41591‑020‑0858‑8 32393800
    [Google Scholar]
  38. Martin T.M. Robinson S.T. Huang Y. Discovery medicine – the HVTN’s iterative approach to developing an HIV-1 broadly neutralizing vaccine. Curr. Opin. HIV AIDS 2023 18 6 290 299 10.1097/COH.0000000000000821 37712873
    [Google Scholar]
  39. Trkola A. Moore P.L. Vaccinating people living with HIV: a fast track to preventive and therapeutic HIV vaccines. Lancet Infect. Dis. 2024 24 4 e252 e255 10.1016/S1473‑3099(23)00481‑4 37883985
    [Google Scholar]
  40. Roark R.S. Habib R. Gorman J. HIV-1 neutralizing antibodies in SHIV-infected macaques recapitulate structurally divergent modes of hu-man V2 apex recognition with a single D gene. bioRxiv 2024 2024.06.11.598384 10.1101/2024.06.11.598384
    [Google Scholar]
/content/journals/chr/10.2174/011570162X360804250527065110
Loading

  • Article Type:
    Review Article
Keywords: vaccinology ; HIV-1 ; biomedical research funding ; vaccine design ; NIAID ; HIV vaccines
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test