Skip to content
2000
image of Characterization of Early Viral Populations in Infants Acquiring HIV Through Perinatal and Breastmilk Transmission: A Review of what is Currently Known and the Gaps that Need to be Addressed to Guide Passive HIV Immunization of Breastfeeding Infants

Abstract

Newborns represent only 1% of the population. Yet, HIV vertical transmissions represent 10% of all new infections globally, even though antiretroviral therapy (ART) has been shown to reduce the risk of vertical transmission to less than 2%. While vaccines still represent the most efficient and cost-effective intervention to eradicate new infections, HIV immunogens that can effectively elicit broad-spectrum protection are still at least a decade away. In contrast, passive immunization with broadly neutralizing antibody (bnAb) combinations has the potential to provide a more immediate pathway to HIV prophylaxis. Early-phase infant trials are underway to establish the safety and pharmacokinetics of bnAb combinations selected for their potency against viruses acquired adult transmissions. However, the specific characteristics and phenotypic differences of vertically transmitted viruses in infants compared to those in adults remain uncertain, including their susceptibility to known broadly neutralizing antibodies (bnAbs). We review the current knowledge of vertically transmitted HIV viruses, including their genetics and phenotypic features. Differences in immunity between adults and infants lead us to hypothesize that distinct selection and evolutionary pressures act on the virus at the time of transmission and during the early phases of infection, and these may in turn affect the choice of bnAb combinations needed for protection against vertical transmission of HIV.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/chr/10.2174/011570162X357975250902104402
2025-09-04
2025-12-05
Loading full text...

Full text loading...

/deliver/fulltext/chr/10.2174/011570162X357975250902104402/BMS-CHIVR-2024-HT10-6091-3.html?itemId=/content/journals/chr/10.2174/011570162X357975250902104402&mimeType=html&fmt=ahah

References

  1. Boyce C.L. Sils T. Ko D. Maternal Human Immunodeficiency Virus (HIV) drug resistance is associated with vertical transmission and is prevalent in infected infants. Clin. Infect. Dis. 2022 74 11 2001 2009 10.1093/cid/ciab744 34467974
    [Google Scholar]
  2. Joint United Nations Programme on HIV/AIDS (UNAIDS) . The urgency of now: AIDS at a crossroads. In: Geneva, Switzerland: Joint United Nations Programme on HIV/AIDS (UNAIDS) 2024
    [Google Scholar]
  3. Larsen A. Magasana V. Dinh T.H. Longitudinal adherence to maternal antiretroviral therapy and infant Nevirapine prophylaxis from 6 weeks to 18 months postpartum amongst a cohort of mothers and infants in South Africa. BMC Infect. Dis. 2019 19 S1 789 10.1186/s12879‑019‑4341‑4 31526366
    [Google Scholar]
  4. The European Collaborative Study. Mother-to-child transmission of HIV infection. Lancet 1988 2 8619 1039 1043
    [Google Scholar]
  5. AIDSInfo. Joint united nations programme on HIV/AIDS (UNAIDS). 2023 Available from: https://sdgs.un.org/un-system-sdg-implementation/joint-united-nations-programme-hivaids-unaids-45798
  6. Glaubius R. Stover J. Johnson L.F. Mahiane S.G. Mahy M.I. Eaton J.W. Differences in breastfeeding duration by maternal HIV status: A pooled analysis of nationally representative surveys in Sub-Saharan Africa. J. Acquir. Immune Defic. Syndr. 2024 95 1S e81 e88 10.1097/QAI.0000000000003317 38180741
    [Google Scholar]
  7. Prendergast A.J. Goga A.E. Waitt C. Transmission of CMV, HTLV-1, and HIV through breastmilk. Lancet Child Adolesc. Health 2019 3 4 264 273 10.1016/S2352‑4642(19)30024‑0 30878119
    [Google Scholar]
  8. Nduati R. John G. Mbori-Ngacha D. Effect of breastfeeding and formula feeding on transmission of HIV-1: A randomized clinical trial. JAMA 2000 283 9 1167 1174 10.1001/jama.283.9.1167 10703779
    [Google Scholar]
  9. Mbori-Ngacha D. Nduati R. John G. Morbidity and mortality in breastfed and formula-fed infants of HIV-1-infected women: A randomized clinical trial. JAMA 2001 286 19 2413 2420 10.1001/jama.286.19.2413 11712936
    [Google Scholar]
  10. Kuhn L. Aldrovandi G.M. Sinkala M. Differential effects of early weaning for HIV-free survival of children born to HIV-infected mothers by severity of maternal disease. PLoS One 2009 4 6 e6059 10.1371/journal.pone.0006059 19557167
    [Google Scholar]
  11. John G.C. Nduati R.W. Mbori-Ngacha D.A. Correlates of mother-to-child human immunodeficiency virus type 1 (HIV-1) transmission: Association with maternal plasma HIV-1 RNA load, genital HIV-1 DNA shedding, and breast infections. J. Infect. Dis. 2001 183 2 206 212 10.1086/317918 11120927
    [Google Scholar]
  12. Thea D.M. Steketee R.W. Pliner V. The effect of maternal viral load on the risk of perinatal transmission of HIV-1. AIDS 1997 11 4 437 444 10.1097/00002030‑199704000‑00006 9084790
    [Google Scholar]
  13. Ioannidis J.P.A. Tatsioni A. Abrams E.J. Maternal viral load and rate of disease progression among vertically HIV-1-infected children. AIDS 2004 18 1 99 108 10.1097/00002030‑200401020‑00012 15090835
    [Google Scholar]
  14. Tookey P.A. Thorne C. van Wyk J. Norton M. Maternal and foetal outcomes among 4118 women with HIV infection treated with lopinavir/ritonavir during pregnancy: analysis of population-based surveillance data from the national study of HIV in pregnancy and childhood in the United Kingdom and Ireland. BMC Infect. Dis. 2015 16 1 65 10.1186/s12879‑016‑1400‑y 26847625
    [Google Scholar]
  15. Townsend C.L. Cortina-Borja M. Peckham C.S. de Ruiter A. Lyall H. Tookey P.A. Low rates of mother-to-child transmission of HIV following effective pregnancy interventions in the United Kingdom and Ireland, 2000–2006. AIDS 2008 22 8 973 981 10.1097/QAD.0b013e3282f9b67a 18453857
    [Google Scholar]
  16. Schrubbe L.A. Stöckl H. Hatcher A.M. Marston M. Kuchukhidze S. Calvert C. Prevalence and risk factors of unsuppressed viral load among pregnant and breastfeeding women in sub-Saharan Africa: analysis from population-based surveys. AIDS 2023 37 4 659 669 10.1097/QAD.0000000000003459 36511117
    [Google Scholar]
  17. Van de Perre P. Goga A. Ngandu N. Eliminating postnatal HIV transmission in high incidence areas: need for complementary biomedical interventions. Lancet 2021 397 10281 1316 1324 10.1016/S0140‑6736(21)00570‑5 33812490
    [Google Scholar]
  18. Van de Perre P. Rubbo P.A. Viljoen J. HIV-1 reservoirs in breast milk and challenges to elimination of breast-feeding transmission of HIV-1. Sci. Transl. Med. 2012 4 143 143sr3 10.1126/scitranslmed.3003327 22814853
    [Google Scholar]
  19. Gilbert P.B. Juraska M. deCamp A.C. Basis and statistical design of the passive hiv-1 antibody mediated prevention (AMP) test-of-concept efficacy trials. Stat. Commun. Infect. Dis. 2017 9 1 20160001 10.1515/scid‑2016‑0001 29218117
    [Google Scholar]
  20. Corey L. Gilbert P.B. Juraska M. Two randomized trials of neutralizing antibodies to prevent HIV-1 acquisition. N. Engl. J. Med. 2021 384 11 1003 1014 10.1056/NEJMoa2031738 33730454
    [Google Scholar]
  21. Cohen Y.Z. Butler A.L. Millard K. Safety, pharmacokinetics, and immunogenicity of the combination of the broadly neutralizing anti-HIV-1 antibodies 3BNC117 and 10-1074 in healthy adults: A randomized, phase 1 study. PLoS One 2019 14 8 e0219142 10.1371/journal.pone.0219142 31393868
    [Google Scholar]
  22. Edupuganti S. Mgodi N. Karuna S.T. Feasibility and successful enrollment in a proof-of-concept HIV prevention trial of VRC01, a broadly neutralizing HIV-1 monoclonal antibody. J. Acquir. Immune Defic. Syndr. 2021 87 1 671 679 10.1097/QAI.0000000000002639 33587505
    [Google Scholar]
  23. Hanass-Hancock J. Carpenter B. Reddy T. Participants’ characteristics and motivations to screen for HIV vaccine and monoclonal antibody trials in KwaZulu-Natal, South Africa. Trials 2021 22 1 897 10.1186/s13063‑021‑05792‑7 34895272
    [Google Scholar]
  24. Julg B. Stephenson K.E. Wagh K. Safety and antiviral activity of triple combination broadly neutralizing monoclonal antibody therapy against HIV-1: A phase 1 clinical trial. Nat. Med. 2022 28 6 1288 1296 10.1038/s41591‑022‑01815‑1 35551291
    [Google Scholar]
  25. Sobieszczyk M.E. Mannheimer S. Paez C.A. Safety, tolerability, pharmacokinetics, and immunological activity of dual-combinations and triple-combinations of anti-HIV monoclonal antibodies PGT121, PGDM1400, 10-1074, and VRC07-523LS administered intravenously to HIV-uninfected adults: A phase 1 randomised trial. Lancet HIV 2023 10 10 e653 e662 10.1016/S2352‑3018(23)00140‑6 37802566
    [Google Scholar]
  26. Valente P.K. Wu Y. Cohen Y.Z. Caskey M. Meyers K. Behavioral and social science research to support development of educational materials for clinical trials of broadly neutralizing antibodies for HIV treatment and prevention. Clin. Trials 2021 18 1 17 27 10.1177/1740774520948042 32838558
    [Google Scholar]
  27. Shapiro R.L. Ajibola G. Maswabi K. Broadly neutralizing antibody treatment maintained HIV suppression in children with favorable reservoir characteristics in Botswana. Sci. Transl. Med. 2023 15 703 eadh0004 10.1126/scitranslmed.adh0004 37406137
    [Google Scholar]
  28. Cunningham C.K. McFarland E.J. Morrison R.L. Safety, tolerability, and pharmacokinetics of the broadly neutralizing human immunodeficiency virus (HIV)-1 monoclonal antibody VRC01 in HIV-exposed newborn infants. J. Infect. Dis. 2020 222 4 628 636 10.1093/infdis/jiz532 31681963
    [Google Scholar]
  29. McFarland E.J. Cunningham C.K. Muresan P. Safety, tolerability, and pharmacokinetics of a long-acting broadly neutralizing human immunodeficiency virus type 1 (HIV-1) monoclonal antibody VRC01LS in HIV-1–exposed newborn infants. J. Infect. Dis. 2021 224 11 1916 1924 10.1093/infdis/jiab229 34009371
    [Google Scholar]
  30. Accelerating bnAbs for peri- and post-natal HIV prophylaxis: An action plan. Inter AIDS Vacc Initiat 2024
    [Google Scholar]
  31. Dugdale C.M. Ufio O. Alba C. Cost‐effectiveness of broadly neutralizing antibody prophylaxis for HIV‐exposed infants in sub‐Saharan African settings. J. Int. AIDS Soc. 2023 26 1 e26052 10.1002/jia2.26052 36604316
    [Google Scholar]
  32. Sakoi-Mosetlhi M. Ajibola G. Haghighat R. Caregivers of children with HIV in Botswana prefer monthly IV Broadly Neutralizing Antibodies (bNAbs) to daily oral ART. PLoS One 2024 19 3 e0299942 10.1371/journal.pone.0299942 38536810
    [Google Scholar]
  33. Zhaori G. Nirsevimab brings breakthrough in the prevention of respiratory syncytial virus infection in infants: Importance of design. Pediatr. Investig. 2023 7 2 144 146 10.1002/ped4.12377 37324599
    [Google Scholar]
  34. Williams A. Menon S. Crowe M. Geographic and population distributions of human immunodeficiency virus (HIV)–1 and HIV-2 circulating subtypes: A systematic literature review and meta-analysis (2010–2021). J. Infect. Dis. 2023 228 11 1583 1591 10.1093/infdis/jiad327 37592824
    [Google Scholar]
  35. Hraber P. Korber B.T. Lapedes A.S. Impact of clade, geography, and age of the epidemic on HIV-1 neutralization by antibodies. J. Virol. 2014 88 21 12623 12643 10.1128/JVI.01705‑14 25142591
    [Google Scholar]
  36. Mkhize N.N. Yssel A.E.J. Kaldine H. Neutralization profiles of HIV-1 viruses from the VRC01 Antibody Mediated Prevention (AMP) trials. PLoS Pathog. 2023 19 6 e1011469 10.1371/journal.ppat.1011469 37384759
    [Google Scholar]
  37. Rademeyer C. Korber B. Seaman M.S. Features of recently transmitted HIV-1 Clade C viruses that impact antibody recognition: Implications for active and passive immunization. PLoS Pathog. 2016 12 7 e1005742 10.1371/journal.ppat.1005742 27434311
    [Google Scholar]
  38. Nakamura K.J. Heath L. Sobrera E.R. Breast milk and in utero transmission of HIV-1 select for envelope variants with unique molecular signatures. Retrovirology 2017 14 1 6 10.1186/s12977‑017‑0331‑z 28122636
    [Google Scholar]
  39. Russell E.S. Kwiek J.J. Keys J. The genetic bottleneck in vertical transmission of subtype C HIV-1 is not driven by selection of especially neutralization-resistant virus from the maternal viral population. J. Virol. 2011 85 16 8253 8262 10.1128/JVI.00197‑11 21593171
    [Google Scholar]
  40. Verhofstede C. Demecheleer E. De Cabooter N. Diversity of the human immunodeficiency virus type 1 (HIV-1) env sequence after vertical transmission in mother-child pairs infected with HIV-1 subtype A. J. Virol. 2003 77 5 3050 3057 10.1128/JVI.77.5.3050‑3057.2003 12584330
    [Google Scholar]
  41. Trifinopoulos J. Nguyen L.T. von Haeseler A. Minh B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016 44 W1 W232-5 10.1093/nar/gkw256 27084950
    [Google Scholar]
  42. Keele B.F. Giorgi E.E. Salazar-Gonzalez J.F. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc. Natl. Acad. Sci. USA 2008 105 21 7552 7557 10.1073/pnas.0802203105 18490657
    [Google Scholar]
  43. Lee H.Y. Giorgi E.E. Keele B.F. Modeling sequence evolution in acute HIV-1 infection. J. Theor. Biol. 2009 261 2 341 360 10.1016/j.jtbi.2009.07.038 19660475
    [Google Scholar]
  44. Prado J.G. Prendergast A. Thobakgale C. Replicative capacity of human immunodeficiency virus type 1 transmitted from mother to child is associated with pediatric disease progression rate. J. Virol. 2010 84 1 492 502 10.1128/JVI.01743‑09 19828603
    [Google Scholar]
  45. Mackelprang R.D. John-Stewart G. Carrington M. Maternal HLA homozygosity and mother-child HLA concordance increase the risk of vertical transmission of HIV-1. J. Infect. Dis. 2008 197 8 1156 1161 10.1086/529528 18462163
    [Google Scholar]
  46. Mackelprang R.D. Carrington M. John-Stewart G. Maternal human leukocyte antigen A*2301 is associated with increased mother-to-child HIV-1 transmission. J. Infect. Dis. 2010 202 8 1273 1277 10.1086/656318 20812845
    [Google Scholar]
  47. Segat L. Zupin L. Kim H.Y. HLA ‐G 14 bp deletion/insertion polymorphism and mother‐to‐child transmission of HIV. Tissue Antigens 2014 83 3 161 167 10.1111/tan.12296 24571474
    [Google Scholar]
  48. Parrish N.F. Gao F. Li H. Phenotypic properties of transmitted founder HIV-1. Proc. Natl. Acad. Sci. USA 2013 110 17 6626 6633 10.1073/pnas.1304288110 23542380
    [Google Scholar]
  49. Derdeyn C.A. Decker J.M. Bibollet-Ruche F. Envelope-constrained neutralization-sensitive HIV-1 after heterosexual transmission. Science 2004 303 5666 2019 2022 10.1126/science.1093137 15044802
    [Google Scholar]
  50. Dickover R. Garratty E. Yusim K. Miller C. Korber B. Bryson Y. Role of maternal autologous neutralizing antibody in selective perinatal transmission of human immunodeficiency virus type 1 escape variants. J. Virol. 2006 80 13 6525 6533 10.1128/JVI.02658‑05 16775339
    [Google Scholar]
  51. Kumar A. Smith C.E.P. Giorgi E.E. Infant transmitted/founder HIV-1 viruses from peripartum transmission are neutralization resistant to paired maternal plasma. PLoS Pathog. 2018 14 4 e1006944 10.1371/journal.ppat.1006944 29672607
    [Google Scholar]
  52. Rainwater S. Wu X. Nduati R. Cloning and characterization of functional subtype A HIV-1 envelope variants transmitted through breastfeeding. Curr. HIV Res. 2007 5 2 189 197 10.2174/157016207780076986 17346133
    [Google Scholar]
  53. Wu X. Parast A.B. Richardson B.A. Neutralization escape variants of human immunodeficiency virus type 1 are transmitted from mother to infant. J. Virol. 2006 80 2 835 844 10.1128/JVI.80.2.835‑844.2006 16378985
    [Google Scholar]
  54. Introduction: Infants, children and HIV-infection. In: Manual on Paediatric HIV Care and Treatment for District Hospitals: Addendum to the Pocket Book of Hospital Care of Children. Geneva World Health Organization 2011
    [Google Scholar]
  55. Palumbo P.E. Raskino C. Fiscus S. Predictive value of quantitative plasma HIV RNA and CD4+ lymphocyte count in HIV-infected infants and children. JAMA 1998 279 10 756 761 10.1001/jama.279.10.756 9508151
    [Google Scholar]
  56. Richardson B.A. Mbori-Ngacha D. Lavreys L. Comparison of human immunodeficiency virus type 1 viral loads in Kenyan women, men, and infants during primary and early infection. J. Virol. 2003 77 12 7120 7123 10.1128/JVI.77.12.7120‑7123.2003 12768032
    [Google Scholar]
  57. Goulder P.J. Lewin S.R. Leitman E.M. Paediatric HIV infection: The potential for cure. Nat. Rev. Immunol. 2016 16 4 259 271 10.1038/nri.2016.19 26972723
    [Google Scholar]
  58. Goo L. Chohan V. Nduati R. Overbaugh J. Early development of broadly neutralizing antibodies in HIV-1–infected infants. Nat. Med. 2014 20 6 655 658 10.1038/nm.3565 24859529
    [Google Scholar]
  59. Muenchhoff M. Adland E. Karimanzira O. Nonprogressing HIV-infected children share fundamental immunological features of nonpathogenic SIV infection. Sci. Transl. Med. 2016 8 358 358ra125 10.1126/scitranslmed.aag1048 27683550
    [Google Scholar]
  60. Simonich C.A. Williams K.L. Verkerke H.P. HIV-1 neutralizing antibodies with limited hypermutation from an infant. Cell 2016 166 1 77 87 10.1016/j.cell.2016.05.055 27345369
    [Google Scholar]
  61. Tomaras G.D. Haynes B.F. Lessons from babies: Inducing HIV-1 broadly neutralizing antibodies. Nat. Med. 2014 20 6 583 585 10.1038/nm.3598 24901564
    [Google Scholar]
  62. Amin O. Powers J. Bricker K.M. Chahroudi A. Understanding viral and immune interplay during vertical transmission of HIV: Implications for cure. Front. Immunol. 2021 12 757400 10.3389/fimmu.2021.757400 34745130
    [Google Scholar]
  63. Landesman S.H. Kalish L.A. Burns D.N. Obstetrical factors and the transmission of human immunodeficiency virus type 1 from mother to child. The Women and Infants Transmission Study. N. Engl. J. Med. 1996 334 25 1617 1623 10.1056/NEJM199606203342501 8628356
    [Google Scholar]
  64. Van de Perre P. Scarlatti G. Moore P.L. Preventing breast milk HIV transmission using broadly neutralizing monoclonal antibodies: One size does not fit all. Immun. Inflamm. Dis. 2024 12 3 e1216 10.1002/iid3.1216 38533917
    [Google Scholar]
  65. Gray R.R. Salemi M. Lowe A. Multiple independent lineages of HIV-1 persist in breast milk and plasma. AIDS 2011 25 2 143 152 10.1097/QAD.0b013e328340fdaf 21173592
    [Google Scholar]
  66. Heath L. Conway S. Jones L. Restriction of HIV-1 genotypes in breast milk does not account for the population transmission genetic bottleneck that occurs following transmission. PLoS One 2010 5 4 e10213 10.1371/journal.pone.0010213 20422033
    [Google Scholar]
  67. Salazar-Gonzalez J.F. Salazar M.G. Learn G.H. Origin and evolution of HIV-1 in breast milk determined by single-genome amplification and sequencing. J. Virol. 2011 85 6 2751 2763 10.1128/JVI.02316‑10 21191008
    [Google Scholar]
  68. Danaviah S. de Oliveira T. Bland R. Evidence of long-lived founder virus in mother-to-child HIV transmission. PLoS One 2015 10 3 e0120389 10.1371/journal.pone.0120389 25793402
    [Google Scholar]
  69. Gantt S. Carlsson J. Heath L. Genetic analyses of HIV-1 env sequences demonstrate limited compartmentalization in breast milk and suggest viral replication within the breast that increases with mastitis. J. Virol. 2010 84 20 10812 10819 10.1128/JVI.00543‑10 20660189
    [Google Scholar]
  70. Permar S.R. Kang H.H. Wilks A.B. Local replication of simian immunodeficiency virus in the breast milk compartment of chronically-infected, lactating rhesus monkeys. Retrovirology 2010 7 1 7 10.1186/1742‑4690‑7‑7 20122164
    [Google Scholar]
  71. Etti M. Calvert A. Galiza E. Maternal vaccination: A review of current evidence and recommendations. Am. J. Obstet. Gynecol. 2022 226 4 459 474 10.1016/j.ajog.2021.10.041 34774821
    [Google Scholar]
  72. Pauthner M.G. Nkolola J.P. Havenar-Daughton C. Vaccine-induced protection from homologous Tier 2 SHIV challenge in nonhuman primates depends on serum-neutralizing antibody titers. Immunity 2019 50 1 241 252.e6 10.1016/j.immuni.2018.11.011 30552025
    [Google Scholar]
  73. Nelson A.N. Dennis M. Mangold J.F. Leveraging antigenic seniority for maternal vaccination to prevent mother-to-child transmission of HIV-1. NPJ Vaccines 2022 7 1 87 10.1038/s41541‑022‑00505‑w 35907918
    [Google Scholar]
  74. Wright P.F. Lambert J.S. Gorse G.J. Immunization with envelope MN rgp120 vaccine in human immunodeficiency virus-infected pregnant women. J. Infect. Dis. 1999 180 4 1080 1088 10.1086/314985 10479134
    [Google Scholar]
  75. Hompe E.D. Mangold J.F. Kumar A. Induction of neutralizing responses against autologous virus in maternal HIV vaccine trials. MSphere 2020 5 3 e00254 e20 10.1128/mSphere.00254‑20 32493720
    [Google Scholar]
  76. Jennewein M.F. Goldfarb I. Dolatshahi S. Fc Glycan-mediated regulation of placental antibody transfer. Cell 2019 178 1 202 215.e14 10.1016/j.cell.2019.05.044 31204102
    [Google Scholar]
  77. Martinez D.R. Fong Y. Li S.H. Fc characteristics mediate selective placental transfer of IgG in HIV-infected women. Cell 2019 178 1 190 201.e11 10.1016/j.cell.2019.05.046 31204101
    [Google Scholar]
  78. Rosenberg Y.J. Ordonez T. Khanwalkar U.S. Evidence for the role of a second Fc-binding receptor in placental IgG transfer in nonhuman primates. MBio 2023 14 2 e00341 e23 10.1128/mbio.00341‑23 36946726
    [Google Scholar]
  79. Fu C. Lu L. Wu H. Placental antibody transfer efficiency and maternal levels: specific for measles, coxsackievirus A16, enterovirus 71, poliomyelitis I-III and HIV-1 antibodies. Sci. Rep. 2016 6 1 38874 10.1038/srep38874 27934956
    [Google Scholar]
  80. Hemelaar J. Elangovan R. Yun J. Global and regional molecular epidemiology of HIV-1, 1990–2015: a systematic review, global survey, and trend analysis. Lancet Infect. Dis. 2019 19 2 143 155 10.1016/S1473‑3099(18)30647‑9 30509777
    [Google Scholar]
  81. Rubio-Garrido M. González-Alba J.M. Reina G. Current and historic HIV-1 molecular epidemiology in paediatric and adult population from Kinshasa in the Democratic Republic of Congo. Sci. Rep. 2020 10 1 18461 10.1038/s41598‑020‑74558‑z 33116151
    [Google Scholar]
  82. Nazziwa J. Faria N.R. Chaplin B. Characterisation of HIV-1 molecular epidemiology in nigeria: Origin, diversity, demography and geographic spread. Sci. Rep. 2020 10 1 3468 10.1038/s41598‑020‑59944‑x 32103028
    [Google Scholar]
  83. Kwon E.H. Musema G.M.A. Boelter J. HIV-1 subtypes and drug resistance mutations among female sex workers varied in different cities and regions of the Democratic Republic of Congo. PLoS One 2020 15 2 e0228670 10.1371/journal.pone.0228670 32045455
    [Google Scholar]
  84. Gounder K. Oyaro M. Padayachi N. Complex Subtype diversity of HIV-1 among drug users in major kenyan cities. AIDS Res. Hum. Retroviruses 2017 33 5 500 510 10.1089/aid.2016.0321 28068781
    [Google Scholar]
  85. Khamadi S.A. Lihana R.W. Osman S. Genetic diversity of HIV type 1 along the coastal strip of Kenya. AIDS Res. Hum. Retroviruses 2009 25 9 919 923 10.1089/aid.2009.0005 19751145
    [Google Scholar]
  86. Sheon A.R. Fox H. Rich K.C. The women and infants transmission study (WITS) of maternal-infant HIV transmission: Study design, methods, and baseline data. J. Womens Health 1996 5 1 69 78 10.1089/jwh.1996.5.69
    [Google Scholar]
  87. Marichannegowda M.H. Mengual M. Kumar A. Different evolutionary pathways of HIV-1 between fetus and mother perinatal transmission pairs indicate unique immune selection in fetuses. Cell Rep. Med. 2021 2 7 100315 10.1016/j.xcrm.2021.100315 34337555
    [Google Scholar]
  88. Kishko M. Somasundaran M. Brewster F. Sullivan J.L. Clapham P.R. Luzuriaga K. Genotypic and functional properties of early infant HIV-1 envelopes. Retrovirology 2011 8 1 67 10.1186/1742‑4690‑8‑67 21843318
    [Google Scholar]
  89. Samleerat T. Braibant M. Jourdain G. Characteristics of HIV type 1 (HIV-1) glycoprotein 120 env sequences in mother-infant pairs infected with HIV-1 subtype CRF01_AE. J. Infect. Dis. 2008 198 6 868 876 10.1086/591251 18700833
    [Google Scholar]
  90. Connor E.M. Sperling R.S. Gelber R. Reduction of maternal-infant transmission of human immunodeficiency virus type 1 with zidovudine treatment. Pediatric AIDS Clinical Trials group protocol 076 study group. N. Engl. J. Med. 1994 331 18 1173 1180 10.1056/NEJM199411033311801 7935654
    [Google Scholar]
  91. Gaillard P. Mwanyumba F. Verhofstede C. Vaginal lavage with chlorhexidine during labour to reduce mother-to-child HIV transmission: Clinical trial in Mombasa, Kenya. AIDS 2001 15 3 389 396 10.1097/00002030‑200102160‑00012 11273219
    [Google Scholar]
  92. Thea D.M. Vwalika C. Kasonde P. Issues in the design of a clinical trial with a behavioral intervention—the Zambia exclusive breast-feeding study. Control. Clin. Trials 2004 25 4 353 365 10.1016/j.cct.2004.06.005 15296810
    [Google Scholar]
  93. Mwapasa V. Rogerson S.J. Molyneux M.E. The effect of Plasmodium falciparum malaria on peripheral and placental HIV-1 RNA concentrations in pregnant Malawian women. AIDS 2004 18 7 1051 1059 10.1097/00002030‑200404300‑00014 15096809
    [Google Scholar]
  94. Russell E.S. Ojeda S. Fouda G.G. Short communication: HIV type 1 subtype C variants transmitted through the bottleneck of breastfeeding are sensitive to new generation broadly neutralizing antibodies directed against quaternary and CD4-binding site epitopes. AIDS Res. Hum. Retroviruses 2013 29 3 511 515 10.1089/aid.2012.0197 23075434
    [Google Scholar]
  95. Fouda G.G. Mahlokozera T. Salazar-Gonzalez J.F. Postnatally-transmitted HIV-1 Envelope variants have similar neutralization-sensitivity and function to that of nontransmitted breast milk variants. Retrovirology 2013 10 1 3 10.1186/1742‑4690‑10‑3 23305422
    [Google Scholar]
  96. Chasela C.S. Hudgens M.G. Jamieson D.J. Maternal or infant antiretroviral drugs to reduce HIV-1 transmission. N. Engl. J. Med. 2010 362 24 2271 2281 10.1056/NEJMoa0911486 20554982
    [Google Scholar]
  97. Tu J.J. Kumar A. Giorgi E.E. Vertical HIV-1 transmission in the setting of maternal broad and potent antibody responses. J. Virol. 2022 96 11 e00231 e22 10.1128/jvi.00231‑22 35536018
    [Google Scholar]
  98. Coovadia H.M. Rollins N.C. Bland R.M. Mother-to-child transmission of HIV-1 infection during exclusive breastfeeding in the first 6 months of life: an intervention cohort study. Lancet 2007 369 9567 1107 1116 10.1016/S0140‑6736(07)60283‑9 17398310
    [Google Scholar]
  99. Holmes S. Li H. Shen X. Neonatal immunity associated with heterologous HIV-1 neutralizing antibody induction in SHIV-infected Rhesus Macaques. Nat. Commun. 2024 15 1 10302 10.1038/s41467‑024‑54753‑6 39604409
    [Google Scholar]
  100. Giorgi E.E. Li H. Hora B. Shaw G.M. Wagh K. Williams W.B. Viral envelope evolution in simian–HIV-infected neonate and adult-dam pairs of rhesus macaques. Viruses 2024 16 7 1014 10.3390/v16071014 39066177
    [Google Scholar]
  101. Schröter J. de Boer R.J. What explains the poor contraction of the viral load during paediatric HIV infection? J. Theor. Biol. 2023 570 111521 10.1016/j.jtbi.2023.111521 37164225
    [Google Scholar]
  102. Ganeshan S. Dickover R.E. Korber B.T. Bryson Y.J. Wolinsky S.M. Human immunodeficiency virus type 1 genetic evolution in children with different rates of development of disease. J. Virol. 1997 71 1 663 677 10.1128/jvi.71.1.663‑677.1997 8985398
    [Google Scholar]
  103. Geller R. Domingo-Calap P. Cuevas J.M. Rossolillo P. Negroni M. Sanjuán R. The external domains of the HIV-1 envelope are a mutational cold spot. Nat. Commun. 2015 6 1 8571 10.1038/ncomms9571 26450412
    [Google Scholar]
  104. Mansky L.M. Temin H.M. Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J. Virol. 1995 69 8 5087 5094 10.1128/jvi.69.8.5087‑5094.1995 7541846
    [Google Scholar]
  105. Novitsky V. Wang R. Rossenkhan R. Moyo S. Essex M. Intra-host evolutionary rates in HIV-1C env and gag during primary infection. Infect. Genet. Evol. 2013 19 361 368 10.1016/j.meegid.2013.02.023 23523818
    [Google Scholar]
  106. Shinohara N. Matsumoto C. Matsubayashi K. Nagai T. Satake M. Analysis of evolutionary rate of HIV-1 subtype B using blood donor samples in Japan. Virus Genes 2018 54 3 457 460 10.1007/s11262‑018‑1548‑1 29511955
    [Google Scholar]
  107. Peck K.M. Lauring A.S. Complexities of viral mutation rates. J. Virol. 2018 92 14 e01031 e17 10.1128/JVI.01031‑17 29720522
    [Google Scholar]
  108. Garcia-Knight M.A. Slyker J. Payne B.L. Viral evolution and cytotoxic T cell restricted selection in acute infant HIV-1 infection. Sci. Rep. 2016 6 1 29536 10.1038/srep29536 27403940
    [Google Scholar]
  109. Raghwani J. Bhatt S. Pybus O.G. Faster Adaptation in Smaller Populations: Counterintuitive Evolution of HIV during Childhood Infection. PLOS Comput. Biol. 2016 12 1 e1004694 10.1371/journal.pcbi.1004694 26741359
    [Google Scholar]
  110. Sanborn K.B. Somasundaran M. Luzuriaga K. Leitner T. Recombination elevates the effective evolutionary rate and facilitates the establishment of HIV-1 infection in infants after mother-to-child transmission. Retrovirology 2015 12 1 96 10.1186/s12977‑015‑0222‑0 26573574
    [Google Scholar]
  111. Zhang H. Tully D.C. Hoffmann F.G. He J. Kankasa C. Wood C. Restricted genetic diversity of HIV-1 subtype C envelope glycoprotein from perinatally infected Zambian infants. PLoS One 2010 5 2 e9294 10.1371/journal.pone.0009294 20174636
    [Google Scholar]
  112. Abrahams M.R. Anderson J.A. Giorgi E.E. Quantitating the multiplicity of infection with human immunodeficiency virus type 1 subtype C reveals a non-poisson distribution of transmitted variants. J. Virol. 2009 83 8 3556 3567 10.1128/JVI.02132‑08 19193811
    [Google Scholar]
  113. Westfall D.H. Deng W. Pankow A. Optimized SMRT-UMI protocol produces highly accurate sequence datasets from diverse populations—Application to HIV-1 quasispecies. Virus Evol. 2024 10 1 veae019 10.1093/ve/veae019 38765465
    [Google Scholar]
  114. Fouda G.G. Yates N.L. Pollara J. HIV-specific functional antibody responses in breast milk mirror those in plasma and are primarily mediated by IgG antibodies. J. Virol. 2011 85 18 9555 9567 10.1128/JVI.05174‑11 21734046
    [Google Scholar]
  115. Curlin M.E. Zioni R. Hawes S.E. HIV-1 envelope subregion length variation during disease progression. PLoS Pathog. 2010 6 12 e1001228 10.1371/journal.ppat.1001228 21187897
    [Google Scholar]
  116. Luthuli B. Gounder K. Deymier M.J. Generation and characterization of infectious molecular clones of transmitted/founder HIV-1 subtype C viruses. Virology 2023 583 14 26 10.1016/j.virol.2023.04.001 37084644
    [Google Scholar]
  117. Frost S.D.W. Liu Y. Pond S.L.K. Characterization of human immunodeficiency virus type 1 (HIV-1) envelope variation and neutralizing antibody responses during transmission of HIV-1 subtype B. J. Virol. 2005 79 10 6523 6527 10.1128/JVI.79.10.6523‑6527.2005 15858036
    [Google Scholar]
  118. Liu Y. Curlin M.E. Diem K. Env length and N-linked glycosylation following transmission of human immunodeficiency virus Type 1 subtype B viruses. Virology 2008 374 2 229 233 10.1016/j.virol.2008.01.029 18314154
    [Google Scholar]
  119. Chaillon A. Wack T. Braibant M. The breadth and titer of maternal HIV-1-specific heterologous neutralizing antibodies are not associated with a lower rate of mother-to-child transmission of HIV-1. J. Virol. 2012 86 19 10540 10546 10.1128/JVI.00518‑12 22811522
    [Google Scholar]
  120. Lynch J.B. Nduati R. Blish C.A. The breadth and potency of passively acquired human immunodeficiency virus type 1-specific neutralizing antibodies do not correlate with the risk of infant infection. J. Virol. 2011 85 11 5252 5261 10.1128/JVI.02216‑10 21411521
    [Google Scholar]
  121. Permar S.R. Fong Y. Vandergrift N. Maternal HIV-1 envelope–specific antibody responses and reduced risk of perinatal transmission. J. Clin. Invest. 2015 125 7 2702 2706 10.1172/JCI81593 26053661
    [Google Scholar]
  122. Martinez D.R. Tu J.J. Kumar A. Maternal broadly neutralizing antibodies can select for neutralization-resistant, infant-transmitted/founder HIV variants. MBio 2020 11 2 e00176 e20 10.1128/mBio.00176‑20 32156815
    [Google Scholar]
  123. Martinez D.R. Vandergrift N. Douglas A.O. Maternal binding and neutralizing IgG responses targeting the C-terminal region of the V3 loop are predictive of reduced peripartum HIV-1 transmission risk. J. Virol. 2017 91 9 e02422 e16 10.1128/JVI.02422‑16 28202762
    [Google Scholar]
  124. Mutucumarana C.P. Eudailey J. McGuire E.P. Maternal humoral immune correlates of peripartum transmission of clade C HIV-1 in the setting of peripartum antiretrovirals. Clin. Vaccine Immunol. 2017 24 8 e00062 e17 10.1128/CVI.00062‑17 28566336
    [Google Scholar]
  125. Ghulam-Smith M. Olson A. White L.F. Maternal but not infant anti-HIV-1 neutralizing antibody response associates with enhanced transmission and infant morbidity. MBio 2017 8 5 e01373 e17 10.1128/mBio.01373‑17 29066544
    [Google Scholar]
  126. Kuhn L. Trabattoni D. Kankasa C. HIV-specific secretory IgA in breast milk of HIV-positive mothers is not associated with protection against HIV transmission among breast-fed infants. J. Pediatr. 2006 149 5 611 616 10.1016/j.jpeds.2006.06.017 17095329
    [Google Scholar]
  127. Pollara J. McGuire E. Fouda G.G. Association of HIV-1 envelope-specific breast milk iga responses with reduced risk of postnatal mother-to-child transmission of HIV-1. J. Virol. 2015 89 19 9952 9961 10.1128/JVI.01560‑15 26202232
    [Google Scholar]
  128. Hompe E.D. Jacobson D.L. Eudailey J.A. Maternal humoral immune responses do not predict postnatal HIV-1 transmission risk in antiretroviral-treated mothers from the impaact promise study. MSphere 2019 4 5 e00716 e00719 10.1128/mSphere.00716‑19 31645430
    [Google Scholar]
  129. Mabuka J. Goo L. Omenda M.M. Nduati R. Overbaugh J. HIV-1 maternal and infant variants show similar sensitivity to broadly neutralizing antibodies, but sensitivity varies by subtype. AIDS 2013 27 10 1535 1544 10.1097/QAD.0b013e32835faba5 23856624
    [Google Scholar]
  130. Bricault C.A. Yusim K. Seaman M.S. HIV-1 neutralizing antibody signatures and application to epitope-targeted vaccine design. Cell Host Microbe 2019 25 1 59 72.e8 10.1016/j.chom.2018.12.001 30629920
    [Google Scholar]
  131. Mabuka J. Nduati R. Odem-Davis K. Peterson D. Overbaugh J. HIV-specific antibodies capable of ADCC are common in breastmilk and are associated with reduced risk of transmission in women with high viral loads. PLoS Pathog. 2012 8 6 e1002739 10.1371/journal.ppat.1002739 22719248
    [Google Scholar]
  132. Milligan C. Richardson B.A. John-Stewart G. Nduati R. Overbaugh J. Passively acquired antibody-dependent cellular cytotoxicity (ADCC) activity in HIV-infected infants is associated with reduced mortality. Cell Host Microbe 2015 17 4 500 506 10.1016/j.chom.2015.03.002 25856755
    [Google Scholar]
  133. Thomas A.S. Moreau Y. Jiang W. Pre-existing infant antibody-dependent cellular cytotoxicity associates with reduced HIV-1 acquisition and lower morbidity. Cell Rep. Med. 2021 2 10 100412 10.1016/j.xcrm.2021.100412 34755132
    [Google Scholar]
  134. Thomas A.S. Coote C. Moreau Y. Antibody-dependent cellular cytotoxicity responses and susceptibility influence HIV-1 mother-to-child transmission. JCI Insight 2022 7 9 e159435 10.1172/jci.insight.159435 35324477
    [Google Scholar]
/content/journals/chr/10.2174/011570162X357975250902104402
Loading
/content/journals/chr/10.2174/011570162X357975250902104402
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test