Skip to content
2000
Volume 22, Issue 8
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

Background: Recent development in neuroimaging and genetic testing technologies have made it possible to measure pathological features associated with Alzheimer's disease (AD) in vivo. Mining potential molecular markers of AD from high-dimensional, multi-modal neuroimaging and omics data will provide a new basis for early diagnosis and intervention in AD. In order to discover the real pathogenic mutation and even understand the pathogenic mechanism of AD, lots of machine learning methods have been designed and successfully applied to the analysis and processing of large-scale AD biomedical data. Objective: To introduce and summarize the applications and challenges of machine learning methods in Alzheimer's disease multi-source data analysis. Methods: The literature selected in the review is obtained from Google Scholar, PubMed, and Web of Science. The keywords of literature retrieval include Alzheimer's disease, bioinformatics, image genetics, genome-wide association research, molecular interaction network, multi-omics data integration, and so on. Conclusion: This study comprehensively introduces machine learning-based processing techniques for AD neuroimaging data and then shows the progress of computational analysis methods in omics data, such as the genome, proteome, and so on. Subsequently, machine learning methods for AD imaging analysis are also summarized. Finally, we elaborate on the current emerging technology of multi-modal neuroimaging, multi-omics data joint analysis, and present some outstanding issues and future research directions.

Loading

Article metrics loading...

/content/journals/cg/10.2174/1389202923666211216163049
2021-12-01
2025-11-01
Loading full text...

Full text loading...

/content/journals/cg/10.2174/1389202923666211216163049
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test