Skip to content
2000
Volume 20, Issue 3
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

Background: In recent years, tRFs(transfer RNA-Derived Fragments) and transfer RNADerived Stress-induced RNAs (or tRNA halves) have been shown to have vital roles in cancer biology. We aimed to reveal the expression profile of tRNA-derived fragments in breast cancer tissues in the study, and to explore their potential as biomarkers of breast cancer. Methods: We characterized the tRNA-derived fragments expression profile from 6 paired clinical breast cancer tissues and adjacent normal samples. Then we selected 6 significantly expressed tRNAderived fragments and screened the genes for validation by using Quantitative Real-time PCR. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes biological pathway were finally analyzed. Results: We found 30 differentially expressed tRNA-derived fragments across our dataset, out of which 17 were up-regulated, and 13 were down-regulated. Compared with 16 clinical breast cancer tissues and adjacent normal tissues by qPCR, the results demonstrated that tRF-32-Q99P9P9NH57SJ (FC = -2.6476, p = 0.0189), tRF-17-79MP9PP (FC = -4.8984, p = 0.0276) and tRF-32- XSXMSL73VL4YK (FC = 6.5781, p = 0.0226) were significantly expressed in breast cancer tissues (p < 0.001). tRF-32-XSXMSL73VL4YK was significantly up-regulated, and tRF-32- Q99P9P9NH57SJ and tRF-17-79MP9PP were significantly down-regulated in which the expression patterns were similar to the sequencing results. The top ten significant results of GO and KEGG pathways enrichment analysis were presented. Conclusion: Our studies have demonstrated that there were significantly expressed tRNA-derived fragments in breast cancer tissues. They are hopefully to become biomarkers and would be valuable researches in this area.

Loading

Article metrics loading...

/content/journals/cg/10.2174/1389202920666190326145459
2019-04-01
2025-10-30
Loading full text...

Full text loading...

/content/journals/cg/10.2174/1389202920666190326145459
Loading

  • Article Type:
    Research Article
Keyword(s): biomarker; Breast cancer; expression profile; gene ontology; genomes; tRNA-derived fragments
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test