Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1389-2029
  • E-ISSN: 1875-5488

Abstract

Background: Ubiquitination, as a post-translational modification, is a crucial biological process in cell signaling, apoptosis, and localization. Identification of ubiquitination proteins is of fundamental importance for understanding the molecular mechanisms in biological systems and diseases. Although high-throughput experimental studies using mass spectrometry have identified many ubiquitination proteins and ubiquitination sites, the vast majority of ubiquitination proteins remain undiscovered, even in well-studied model organisms. Objective: To reduce experimental costs, computational methods have been introduced to predict ubiquitination sites, but the accuracy is unsatisfactory. If it can be predicted whether a protein can be ubiquitinated or not, it will help in predicting ubiquitination sites. However, all the computational methods so far can only predict ubiquitination sites. Methods: In this study, the first computational method for predicting ubiquitination proteins without relying on ubiquitination site prediction has been developed. The method extracts features from sequence conservation information through a grey system model, as well as functional domain annotation and subcellular localization. Results: Together with the feature analysis and application of the relief feature selection algorithm, the results of 5-fold cross-validation on three datasets achieved a high accuracy of 90.13%, with Matthew’s correlation coefficient of 80.34%. The predicted results on an independent test data achieved 87.71% as accuracy and 75.43% of Matthew’s correlation coefficient, better than the prediction from the best ubiquitination site prediction tool available. Conclusion: Our study may guide experimental design and provide useful insights for studying the mechanisms and modulation of ubiquitination pathways. The code is available at: https://github.com/Chunhuixu/UBIPredic_QWRCHX.

Loading

Article metrics loading...

/content/journals/cg/10.2174/1389202919666191014091250
2019-08-01
2025-10-11
Loading full text...

Full text loading...

/content/journals/cg/10.2174/1389202919666191014091250
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test